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ABSTRACT
let p = (pl,...,pn) be a vector of positive integers whose greatest
common divisor is unity. The Frobenius problem is to find the largest
integer f* which cannot be written as a non-negative integral combination of
the P;- In this note we relate the Frobenius problem to the topic of

maximal lattice free bodies and describe an algorithm for m = 3.
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I. Intro@uction

Let p = (pl,...,pﬁ) be a vector of positive integers whose greatest
common divisor is unity. The Frobenius problem is to find the largest
integer f* which cannot be written as a non-negative integral combination of
the P;- For n = 2, it is well known that f* = PqPy - P - Py- For n = 3,
there is an algorithm of Rédseth (1977) which finds the Frobenius number f#*
in polynomial time. Recently, Kannan (198%) has produced an algorithm for
the Frobenius problem which runs in polynomial time for all fixed n, but
which is doubly exponential in n.

The question of whether a single linear equation Epihi = £ is solvable
in non-negative integers is NP complete, and we cannot expect to resolve its
solvability Ey means of an algorithm which is polynomial in the number of
variables as well as the bit size of the data. For fixed n, Lenstra's
algorithm (1983) will execute in polynomial time for amy particular linear
equation., The significance of the Frobenius problem is that it is concerned
with a family of linear equations, Zpihi = f, as f varies over all positive
integers, rather than with a single equation itself. For any instance of
the Frobenius problem, the Frobenius number f* will typically be
sufficiently large so that its determination by an exhaustive search over
all f less than some established upper bound will not yield a polynomial
algorithm. .

In this note we shall relate the Frobenius problem to a different area

under recent investigation, that of maximal closed convex sets containing no

interior lattice points. Given a matrix A, the body {x:Ax = b} is & maximal]



lattice free body if it contains no lattice points in its interior and if
any strictly larger body obtained by relaxing some of the inequalities does
contain an interior lattice point. We demonstrate that if we can maximize a
linear function over the set of b's yielding maximal lattice free bodies for
a matrix with n rows and n-1 columns, then we can solve the Frobenius
problem with n variables. One consequence is an algorithm for the three
variable problem - somewhat similar to Rédseth’s algorithm - which runs in
linear time in the bit size of the integers P;- We also relate the
Frobenius number to the covering radius of a simplex in Rn-l, in a somewhat
different fashion than that established by Kannan.

Lovdsz (1988) has conjectured that if n is fixed and A is integral, the
set of b yielding maximal lattice free bodies is the union of the set of
lattice points in a polynomial number of polyhedra - with a particular
lattice for each polyhedron. Maximizing a linear function over the lattice
points in each such polyhedron is a standard integer program which can be
solved in polynomial time for a fixed number of variables. If the Lovisz
conjecture were correct, this would yield an alternative polynomial

algorithm for the Frobenius problem.

II. The Relationship to Maximal Lattice Free Bodies

Let A be a matrix of size n by n-1, whose columns generate the n-1
dimensional lattice of integers h satisfying p.h = 0. In this case the
bodies {x:Ax =< b) will be simplices which are non-empty if p.b = 0. Our
main result is

Theorem 1. f* = mﬁx {p.b | b i$ integral an& Ax < b contains no lattice

peints}.



Proof: To demonstrate Theorem 1, we observe that if b is an integer
vecto; such that Ax < b contains no lattice points, then f = p.b cannot be
written as p.h with h non-negative integers. For if this were possible then
0 = p.(b-h) so that b-h is in the n-1 dimensional lattice generated by the
columns of A. It follows that b-h = Af for some integral { and therefore
the set Ax < b contains a lattice point.

Conversely, if b is an integral vector such that Ax =< b contains a
lattice point &, then f = p.b = p.(b - A£), with b - Af a non-negative
integer vector. It follows from these two observations that f* is the
largest value of p.b for those integral b such that Ax =< b is free of
lattice points. @

Theorem 1 permits us to calculate the Frobenius number f* from a
description of the set of vectors b such that Kb = {x:Ax < b} is a maximal
lattice free body, according to our previous definition. We simply remark
that for integral b, the simplex {x:AX =< b} contains no lattice points in
its interior if, and only if, (x:Ax < b-e} contains no lattice points at
all, where e is the vector all of whose components are unity. It follows
that

f* = max{p.b|Ax < b is a maximal lattice free body)} - Zp,.
Aside from lattice translates of {x:A£ < b), which do not change the value
of p.b, there are a finite number of maximal lattice free bodies associated
with the matrix A.

gannan shows that the calculation of the Frébenius number is equivalent
to finding the covering radius of a particular n-1 dimensional simplex. The

covering radius of a body K in Rn-l is the smallest p such that the lattice

translates of pK cover Rn-l. Our discussion yields the following relation



between the Frobenius number and the covering radius of {x:Ax < b}).

Theorem 2. Let the covering radius of {x:Ax < b) be Py for any
particular b with p.b > 0. Then f* = (p.b)pb - Zpi.

Proof: If Kb* is that maximal lattice free simplex {x:Ax < b*} which
maximizes p.b, then its covering radius is unity. For if x is not covered
by any lattice translate of Kb*’ then Kb* - % contains no lattice points and
it can be expanded to a maximal lattice free body strictly larger than Kb*'
On the other hand, a slight contraction of Kb* contains no lattice points,
and, therefore, its lattice translates do not cover the origin. The
covering radius of Kb* is therefore equal to unity. For any other b with p.b
> 0, the simplex Kb is similar to L it can be brought to Kb* by a
suitable translation and expansion by a factor p.b*/p.b. It follows that

the covering radius of Kb is p.b*/p.b = (f* + Epi)/(p.b). ®

IIT. Maximal Laﬁtice Free Bodies for n = 3

Relatively little is known about the set of maximal lattice free bodies
associated with a general matrix A with n rows and n-1 columns. It is not
clear to us how to use the analysis given by Scarf (1985) for the case n = 4
to solve the corresponding Frobenius problem., When n = 3, Scarf (1981) has
demonstrated - under the assumpﬁions that the entries in each row of A have
an irrational ratio, that sA = 0 for a strictly positive vector x and that
no two rows are proportional - that there are two maximal lattice free
bodies of the form_{x:A.s b}, up to a latt%ce tfanslation, and thaq these
bodies are easy to find. Specifically, Scarf shows that there is a
unimodular coordinate transformation so that the matrix A has the sign

pattern



with the sum of the second and third rows strictly positive, and that the

two maximal lattice free bodies are given by

1
b = (0, a2'1, a3'1
2

b~ = (0, a

+ a3,2) and
2,1 % 82,20 23,2)
But the assumption that the entries in each row of A have an
irrational ratio is, of course, not satisfied in our case, and the analysis
to be presented becomes somewhat more complex; in particular some of the
strict inequalities given above may become weak inequalities and there may
be more than two maximal lattice free regions.
We shall describe an algorithm which yields a unimecdular transformation
of coordinates such that the matrix A has the sign pattern
- =
+ -
< + ],
with the sum of the entries in the second row gféater than or equal to zero,
and the sum in the third row strictly positive; and then demonstrate that
this pattern is sufficient to characterize the maximal lattice free
triangles (the symbol < appearing in the matrix signifies that the
corresponding entry is less than or equal to zero).
We begin with a particular form for th? matri§ A. Let v be the|greatest
common divisor of Py and Pqs and write v = maP,y = MyPq, with m, and m,

integers satisfying 0 = m2'< p2/1 and 0 < my < p3/7. Then the columns of



-y 0

A= | mapy -Pg/7

“m,Pp Py/7T

generate the lattice of integers satisfying p.h = 0. The matrix has the
sign pattern described above, but without any specific signs for the sums of
the second and third rows. We shall systematically add integral multiples
of one of the columns of A to the other column, retaining the signs of the
entries in A and ultimately achieving the desired signs for these row sums.

The algorithm alternates between two steps:

1. adding the largest integral multiple of column 2 to column 1 so as
to preserve the sign pattern (-, +, =) in column 1, and

2. adding the largest integral multiple of column 1 to column 2 so as
to preserve the sign pattern (=<, -, +) in column 2.

After a step of type 1, the sum of the two columns of A will have the
sign pattern (-, =, +), in which case we terminate, or (-, -, +) and we move
to a step of type 2. After a step of type 2, the sum of the two columns of
A will have the sign pattern (-, =, +4), in which case we terminate, or the
pattern (-, +, <) and we continue with a step of type 1. 1In both of these
observations we use the fact that entries in the column sum cannot be all
less than or equal to zero, since the pair of columns in a matrix arising
from repeated applications of steps 1 and 2 will generate the lattice of
integers satisfying p.h = 0. The algorithm clearly terminates in a number
of steps bounded above by Fhe bit size of p.

Now let us argue that the sign pattern which has just been established
is sufficient to identify the maximal lattice free bodies associated with A.

1 1

Consider the triangle {x:Ax < b™}, with b~ = (0, a + a The

3,1

a2,1’ 3’2).



inequalities

< 0, 0 < a2,1’ 0 < a3,1 + a

< 0, 0<a

a

1,1 3,2

a + a < 0, a

1,1 1,2 3,2

state that (0,0), (1,0), (1,1} are each in the relative interior of one of
the three faces of the triangle. It is elementary to argue that if the
triangle contains any lattice points in its interior, then one of the'three
lattice points (0,1), (0,-1), or (2,1) will also Be‘interior to the
triangle., But this cannot be so since al.(O,-l) =0, az.(2,1) = az,1 and
a3.(1,0) > a3,1 + 33,2. Moreover, this triangle is a maximal lattice free

triangle since an interior point is obtained if any of the three

inequalities is relaxed.

FIGURE 1

I1f the three inequalities a 0

1,2 =90, a2,1 + a2,2 > 0 and a3r1 = 0 are

all strict, then an inspection of Fig.l reveals that the triangle with



b2 = (0, a2,1 + a2’2, a3’2) is also a maximal lattice free body. In this
case it is easy to see that there are no other maximal lattice free
triangles. Such a body must have a lattice point in the relative interior
of each side; we may translate the body so that (0,0) is in the relative
interior of the side a;x = bl. Since (0,1) is not interior to the triangle
we must have a3.(0,1) > b3 and similarly az.(l,O) = b2' Moreover, the
lattice point (1,1) must satisfy a,x z bi for i = 2 or 3; if this inequality
holds for i = 3, then the body is contained in (x:Ax =< bl}. I1f the
inequality is satisfied for i = 2, then the body is contained in

{x:Ax = bz}. We see that f¥% = max{p.bl, p.bz} - Py - Py - P3g-

If a9~ 0, the second lattice free body is not maximal, since b3 may
be relaxed slightly without introducing interior lattice points. In this
case, the bedies with azx = b2 passing through (1,t) and a3x - b3 passing
through (1,t+l), so that b = bl + t{(0, a2,2’ a3,2), will also be maximal
lattice free bodies for all non-negative integral t with ay + 1!:3.2’2 = 0.
But all of these bodies will be lattice translates of each other and yield
the same value of p.b. More specifically, if al’2 = 0, then if v is the
greatest common divisor of Py and Py, We have a2,2 = -p3/7, a3’2 = p2/7,
al,l = -y and p.b = p.bl = 7p; + p2p3/1. The other cases, 52,1 + a2,2 =0

or a5 4 = 0, yield the same conclusion, i.e., that the Frobenius number is

1
p.b” - Zpi.
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FIGURE 2

As a final topic let us turn to the possibility of finding the
Frobenius number f* by studying a pair of problems with two variables. As
before, let y be the greatest common divisor of pz‘and P, SO that p2/7 and
p3/7 are integers. From the analytic solution of -the two variable problem
we know that every integer

h = h¥ = (p, /1) (Py/7) - (py/Y) - (/7)) + 1
can be represented as a non-negative integer combinatiom of p2/1 and p3/7
and therefore for every integer h = h*, vh = p2h2 + p3h3 for non-negative
integral h2 and h3. By considering the Frobenius problem based on the Fwo
integers Py and v we also know that every integer = PyY - Py -7 F 1 can be
represented as Plhl + +h for h1 and h = 0. From thfs last remark it follows
that every integer 2z P1Y - Py -7 1 + yh#*

= PyY + PyP3/Y - Py - Py, - Pyt 1

can be represented as alh1 + qh for h1 2 0 and h 2 h* and, therefore, as a
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non-negative integral combination of P+ Py P3- We conclude that
f* < P17 + p2p3/1 - Py - Py - Py with equality if we can exhibit a maximal
lattice free triangle {x:Ax < b} with p.b =~ Py + p2p3/1. In the case in
which one of the three inequalities ay < 0, a2,1 + az,2 = 0 and 33,1 =< 0,
obtained by our algorithm, is satisfied with equality, we have constructed

precisely such a maximal lattice free body.
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