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ABSTRACT

This paper considers tests of parameter instability and structural change with
unknown change point. The results apply to a wide class of parametric models including
models that satisfy maximum likelihood—type regularity conditions and models that are
suitable for estimation by generalized method of moments procedures. The paper considers
likelihood ratic and likelihood ratio—like tests, as well as asymptotically equivalent Wald
and Lagrange multiplier tests. Each test implicitly uses an estimate of a change point.
Tests of both "pure" and "partial" structural change are discussed.

The asymptotic distributions of the test statistics considered here are non—standard
because the change point parameter only appears under the alternative hypothesis and not
under the null. The asymptotic null distributions are found to be given by the supremum
of the square of a standardized tied—down Bessel process of order p > 1. Tables of critical
values are provided based on this asymptotic null distribution.

As tests of parameter instability, the tests considered here are shown to have non-
trivial asymptotic local power against all alternatives for which the parameters are
non—constant. As tests of one—time structural change, the tests are shown to have some
weak asymptotic local power optimality properties for large sample size and small signif-

icance level. The tests are found to perform quite well in a Monte Carlo experiment.

JEL Classification No.: 211

Keywords: Asymptotic distribution, change point, Brownian bridge, Brownian motion,
F—test, generalized method of moments estimator, Lagrange multiplier test, likelihood
ratio test, maximum likelihood estimator, parameter instability, structural change, Wald
test, weak convergence.



1. INTRODUCTION

This paper considers tests of parameter instability and structural change with
un.nown change point. The proposed tests are designed for a one—time change in the value
f a parameter vector, but are shown to have power against general forms of parameter
instability. In particular, the paper considers the likelihood ratio (LR) or LR—like test for
one-time structural change with unknown change point, as well as the analogous Wald (W)
and Lagrange multiplier (LM) tests. The tests considered here apply quite generally to
parametric models that do not exhibit deterministic or stochastic tre?nds.2

The results of the paper apply to tests of "pure" structural change and "partial"
structural change. With pure structural change, the entire parameter vector is allowed to
exhibit parameter instability across the observations under the alternative hypothesis.
With partial structural change, only a subvector of the parameter vector is subject to insta-
bility under the alternative hypothesis.

The statistical literature on change point problems is extensive. (See "change
point" in Current Indez to Statistics and the review papers by Zacks (1983) and Krishnaiah
and Miao (1988). Recent references include James, James, and Siegmund (1887), D. L.
Hawkins (1987), and Kim and Siegmund (1989) among others.) Many of the results in the
literature concern location models, other scalar parameter models, or simple regression
models. Most of the results only apply to tests of pure structural change. The most gen-
eral results available appear to be those of D. L. Hawkins (1987), who considers Wald tests
of pure structural change based on maximum likelihood (ML) estimators in independent
identically distributed (iid) scenarios. These results are still too restrictive, however, for
many econometric applications. In consequence, in this paper we establish results that
allow for dependent non—identically distributed (dnid) observations, estimation by
methods other‘ than ML, tests of both pure and partial structural change, and tests based

on W, LM, and LR (or LR~like) test statistics. For example, stationary models estimated



by generalized method of moments (GMM) and dnid models estimated by ML are used to
illustrate the general results.

We now introduce and motivate the tests considered in this paper. With the linear
regression model, it is common in econometrics to test for a one—time structural change
occurring at a given time point using an F—test (often referred to as a Chow test). This
test can be extended to W, LM—like, and LR-like tests in general parametric models,
whether estimation is by maximum likelihood or not, see Andrews and Fair (1988). For
specificity, let WT(W) , LMT(w) , and LRT(‘K) denote the W‘, LM-like, and LR-like
tests referred to above, where T is the sample size, {Tn] is the given change point for
some 7€ (0,1), and [Tn] denotes the integer part of Tw. For simplicity, we refer to
7, rather than [T#], as the point of structural change.

Although the tests WT(';r), .+vy LRp(m) are widely used and exhibit various opti-
mality properties, there are several commonly occurring situations in which these tests are
not appropriate. It is the purpose of this paper to consider alternative, but closely related,
tests for these situations. These situations include the following: First, suppose one has no
prior information regarding the point 7 at which structural change may occur. Then, the
tests WT(w), cers LRT(vr) can be applied only by using some ad hoc choice of 7. Such
a choice has adverse effects on the power of the tests, since the change point is misspecified
for many alternatives of interest.

Second, suppose a suitable value of = is available, but this value has been deter-
mined by looking at the data or by looking at data that is not independent of the data on
which the test is to be applied. Then, the tests WT(w), ceey LRT(w) are not valid for
reasons of data—mining. That is, the sizes of the tests are not correct even in large
samples. Note that for macroeconomic applications especially this problem is likely to be
prevalent, since many different applications use the same or similar data and most macro-
economic variables are correlated with one another.

Third, suppose a suitable value of = is available and has been determined by an



"exogenous" event, such as an oil price shock. Then, the tests WT(vr), ces LRT(vr) still
are not valid for data—mining reasons if the exogenous event has been chosen endogenously.
For example, suppose there are multiple exogenous events that occur during the sample
period, any one of which has the potential to induce structural change. If one chooses a
particular exogenous event on the basis of émpirica.l studies that use the same or similar
data or data that are not independent of those to be used for the test, then the resulting
test is again subject to the criticism of data—mining.

Fourth, if one is interested in testing against more gemeral forms of structural
change than one—time changes, then a test that uses a fixed change point is likely to have
low or no power against many alternatives of interest. Thus, as tests of parameter insta-
bility, the tests W (7), ..., LR(n) are inadequate.

The obvious solution to the inadequacy of Wr(7), ..., LRT(':r) in the situations
described above is to treat the change point 7 as an unknown and to construct tests for
structural change that do not take = as given. The problem of testing for one—time struc-
tural change with an unknown change point, however, does not fit into the standard
"regular” testing framework, see Davies (1977, 1987). The reason is that the parameter =
only appears under the alternative hypothesis and not under the null. In consequence, W,
LM, and LR tests constructed with = treated as a parameter do not possess their standard
large sample asymptotic distributions.

In this paper, we adopt a common method used in this scenario and consider test

statistics of the form

(1.1) sup Wo(r), sup LM (7)), and sup LR(7),
rell T e T el 1

where II is some pre—specified subset of [0,1] whose closure lies in (0,1).3 (The reasons for
taking I as such are discussed below.) Tests of this form can be motivated or justified

along several grounds. First, sup LRT(r) is the LR (or LR—-like) test statistic for the
mell

case of unspecified parameter 7 with parameter space Il . In addition, the test statistics



sup Wp(7) and sup LMy(7) generally are asymptotically equivalent to sup LR(7)

well mell mell
under the null and local alternatives. Second, the test statistics sup Wm(m),
mell
v, SUD LRT(:rr) correspond to the tests derived from Roy’s type I (or union-
nell

intersection) principle, see Roy (1953) and Roy, Gnanadesikan, and Srivastava (1971, pp.
36—46). Third, the above test statistics can be shown to possess certain (weak) asymptotic
optimality properties against local alternatives for large sample size and small significance
level. These results are due to Davies (1977, Thm. 4.2) for scalar parameter one—sided
tests and are extended below to multi—parameter two—sided tests. .

Below we determine the asymptotic distributions of the test statistics of (1.1) under
the null hypothesis of parameter constancy and under local alternatives of parameter insta-
bility including one—time structural change. Specifically, the local alternatives considered
are of the form 6, =6, + 7% n(t/T) {for some bounded function 75(-) on [0,1]. The
local power results of the paper show that the tests of (1.1) have power against all local
alternatives for which #(-) is not almost everywhere on II equal to a constant. Thus, as
tests of parameter instability, the tests of (1.1) have some desirable properties.

As tests of parameter instability, the tests of (1.1} can be compared with several
other tests in the literature, such as the CUSUM and CUSUM of squares tests of Brown,
Durbin, and Evans (1975) and the fluctuation test of Sen (1980) and FPloberger, Kfémer,
and Kontrus (1989). These tests are all designed for the linear regression model. A draw-
back of the CUSUM test is that it exhibits only trivial power against alternatives in certain
directions, as shown by Krimer, Ploberger, and Alt (1988) using asymptotic local power
and by Garbade (1977) and others using simulations. In addition, the CUSUM of squares
test has only trivial asymptotic local power against all alternatives of the form discussed
above, see Ploberger and Krimer (1986). In contrast, the tests of (1.1) do not exhibit these
local power problems.

The fluctuation test is similar to the sup Wp(7) test of (1.1), but the latter
rell



possesses large sample optimality properties for each fixed =, whereas the former does
not. The reason is that the fluctuation test aggregates the elements of a vector by taking

the supremum over the elements, whereas the sup WT(vr) test aggregates the elements in
7ell

the standard way using a quadratic form. In addition, the fluctuation test statistic

sup FLy(7) is unequally weighted across different values of 7, since the asymptotic var-
mell

iance of FLp(#) is #(l-7) under the null hypothesis. In contrast, the sup WT(vr)
mell

statistic is equally weighted across different values of 7, since the asymptotic variance of
W(7) isoneforall «€(0,1) under the null hypothesis. In sum, the differences outlined

above suggest that the sup WT(w) test may have better all around power properties than
mell

the fluctuation test.

We note that the CUSUM, CUSUM of squarés, and fluctuation tests have been
analyzed in the literature only in the context of the linear regression model. In contrast,
the results given here for the tests of (1.1) apply to a general class of models. In addition,
they apply to tests of both pure and partial structural change. The results given here also
can be used to extend the applicability of the fluctuation test to more general models and
to tests of partial structural change, for details see Andrews (198%¢).

Several additional tests in the literature for testing for parameter instability are the
tests of Leybourne and McCabe {1989) and Nyblom (1989). (Also, see the references in
Krimer and Sonnberger (1986, pp. 56—59).) These tests are designed for non—stationary
alternatives, and hence, have a different focus than the tests considered here.

The focus of this paper is on formal hypothesis tests. Nevertheless, the statistics,
statistical processes, and asymptotic distribution theory discussed here can be used quite
effectively in a data analytic fashion. In particular, they can be used in a manner similar
to that advocated by Brown, Durbin, and Evans (1975) for recursive residuals and the

CUSUM test and by Hendry {1989, pp. 44, 49) for rolling change point tests.



The remainder of this paper is organized as follows: Section 2 introduces a class of
partial-sample extremum (PSE) estimators, establishes their consistency, and determines
their asymptotic distributions. Section 3 introduces W, LM, and LR tests of parameter
instability based on the PSE estimators. Section 4 determines the asymptotic null
distributions of the W, LM, and LR test statistics and provides tables of critical values for
them. Section 4 also establishes the asymptotic distributions of these test statistics under
local alternatives and obtains two local power optimality results. In Sections 2—4, the
GMM and ML cases are treated explicitly as examples of the general results. Section 5
presents some simulation evidence regarding the performance of the tests in the linear
regression context. An Appendix provides proofs of the results given in the paper.

Lastly, we mention several notational conventions that are used throughout the
paper: Unless specified otherwise, all limits are taken as T +w, where T is the sample
size. The symbol 2 denotes weak convergence (as defined by Billingsley (1968, Ch. 1)
using the Skorohod metric or by Pollard (1984, pp. 64—66) using the uniform metric}, 4,
denotes convergence in distribution, -2, denotes convergence in probability, E: abbrev-

iates Eb

t=a> Il denotes the Euclidean norm, and for simplicity Tr denotes (T7],

where {-] is the integer part operator. II denotes a set whose closure lies in (0,1).

2. PARTIAL-SAMPLE EXTREMUM ESTIMATORS

In this section we analyze partial~sample extremum (PSE) estimators. PSE esti-
mators are extremum estimators that primarily use the pre—T7 or the post—T~ data in
estimating a parameter 91 for variable values of 7 in II and use all the data in
estimating an additional parameter 93 . These estimators are the basic components of the
Wald test of parameter instability and structural change with unknown change point.
Furthermore, the properties of PSE estimators are used to obtain the asymptotic distri-

butions of the corresponding LM—-like and LR~like tests.



The first subsection below defines the class of estimators to be considered. The
second provides conditions under which they are consistent uniformly over 7€ Il. The
third subsection establishes the weak convergence of PSE estimators to a function of a
vector Brownian motion process on [0,1] restricted to IT. The fourth subsection considers
the estimation of unknown matrices that arise in the limiting Brownian motion process.

GMM and ML estimators are discussed throughout to exemplify the results given.

2.1. Definition of Partial-Semple Extremum Estimators

The data are given by a triangular array of random vectors (rv’s) {th}
= {th :t=1, ..., T; T>1} defired on a probability space (92,8,P). The observed
sample is {WTt it=1, ..., T}. Often we let Wt abbreviate Wy, . PSE estimators

are defined as follows:

DEFINITION: A sequence of partial-sample eztremum (PSE) estimators {6(:):T>1}

= {(8(r): 7€ 1) : T 21} isany sequence of stochastic processes such that

(2.1) - d(mp(B(), 7, 7(n), Hm) = :92({) d(dp (6, =, 7(m), A7)

; P P
for all 7€ Il with probability -1, where = (b"i, G‘é, 63) €0, x O 93 CR xR

Py i 1 T7 maithy b7 1T : v
«R®, mglny) =13 0 + o Ipppa|mully G 7o)y R,
340y 63, 71) 3y 7o)
7= (7], Té)’ €7x7cRYxR", m_ (0, 6, 7,) abbreviates m (W, 8, 85 7;) for

. k v
r=1,3, mp(, ) is a function from R T'x@ x0,=7 to R for 1=1,3,

kr., is a positive integer <o, ()= (7;(7)", -'r2(w)’)' and #{r) are random elements

Tt
of 7x7 and T c R® (which depend on T in general), and d(:,-) is 2 non-random,

real—valued function (which does not depend on T ).
As the definition indicates, 8(7) = (bl(w)’, bz(w)’, -93(1r)’)’ is a 2p+pg—vector

. P .
comprised of an estimator Bl(w) ¢ R that primarily uses the pre—Tr data, an estimator
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?2(w) € Rp that primarily uses the post—Tx data, and an estimator () € Rp3 that uses
all of the data. Under the null hypothesis of parameter constancy ?1(w) and ?)2('”) are
estimators of the same parameter, call it 910. In the case of tests of pure structural
change, there is no parameter 6, or function mg (6, 65, 7,) . In this case, Ql(w) is
based strictly on the pre—Tx data and 92(1) strictly on the post—Tr data. In the case of
tests of partial structural change, the parameter 03 appears and is taken to be constant
across the observations under both the null hypothesis and the alternative. The prelimin-
ary nuisance parameter estimators 7(r) and 7x) that appear in the criterion function
are allowed to depend on 7, but this dependence is often suppressed below for notational
simplicity.

For a fixed value of 7, the PSE estimators defined above are quite similar to the
extremum estimators of Andrews and Fair (1988). For 7 =1, the PSE estimators are
analogous to the estimators analyzed in Andrews (1989a,b,c) but with the restriction that
7(n) is finite dimensional. In fact, at the cost of greater complexity, the stochastic equi-
continuity approach espoused in the latter papers can be employed here as well. Thus, it is
possible 1o exiend many of the results given below to semiparametric PSE estimators and
to PSE estimators that are based on functions mrt(al’ 93, 'rl) , T=1,3, that are not
differentiable in 91 or 83.

Next, we introduce two examples of PSE estimators:

EXAMPLE 1 (GMM): In this example, we discuss the generalized method of moments
(GMM) estimator as defined and analyzed by Hansen (1982). We consider the case of pure
structural change. That is, no parameter 93 or function m3t(01, 83, 71) appears in the
definition of #(7). The pre—Tr GMM estimator Ql(fr) is defined to minimize the qua-

dratic form -

1T : e
(2.2) [TEI Wy, ‘91)] %r"ai,Tral,Tvr[%E’{Tf(“t’ Bl)J /2



P
over ;€ © €R , where ai,Twal,Tw is @ weight matrix defined using the pre—Tr data
and 1(-,-) is a given function that satisfies the orthogonality conditions Ef(Wt, 910) =0

Vi 2 1 for some 6, € 61 when no parameter instability or structural change occurs. The

post—T7 GMM estimator 3?2(1) is defined analogously with Erf”, I/m, and a; qp

replaced by E%?H"l .

matrix defined using the posi—Tx data.

1/(1~7), and 8 T respectively, where 33 T2 Tr is a weight

The GMM estimator is easily seen t0 be a PSE estimator with

mlt(gl’ '7'1) = f(Wt, 91) , Am) = djag{ai’Tﬁal’TW/T: aﬁ,Tvra‘2,T7r/(1—7r)} ;

(2.3)
and d(m,y) =m’'ym/2.

In this example, no nuisance parameter estimator 7{7) appears.

EXAMPLE 2 (ML): This example considers maximum likelihood (ML) estimators in
models with endogenous and exogenous variables and with data that may be dnid. We
consider partial structural change, so #(r) contains a sub—vector @3(70. For

t=1,...,T, let
{ft(ﬁl, 93): 616 Ol, 03E @3}

2.4)
( = {f,(Y,|Y}s.o0s ¥

Xy vons X 0p,6) 0, €0, 05 € 6,)

t—17 11
denote a parametric family of conditional densities (with respect to some measure {1 ) of
Yt given Yy, ..., Yt—l and Xl, ceny Xt, evaluated at the rv’s Yl, ceey Yt’
Xl
is E? log ft(b‘l, 0,) . The distribution of {Xt 11 ¢ T} is assumed not to depend on 6, or

; «=+y X, - The conditional log—likelihood function of {Yt :t ¢ T} given {Xt 1t < T}

p p
6,. Let 6;,€0,CR and f,,€©,CR ° denote the true values of ¢, and 0,

3 -
respectively, when no parameter instability or structural change occurs.

The ML estimator #(z) = (?1(w)', 92(w)’, ?3(1r)')' is defined to minimize

Tr T
(2.5) _El log {t(ﬂl, 83) - ETTH—] log ft(92’ 93)
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over 0= (6, gé, aé) € 91 x 91 x 6)3 = © . This estimator is a PSE estimator with
k

‘ t
W= (Y{, oy Y, Xy oo0n X{) ER T, mlt(ﬂl,ﬁa,'r ) = ~log £,(6,,6,),
(2.6) .
m3t(01,93,71) =0 and d(m,y)= m; + m, + m, for m= (ml,mz,mS)’ €ER".

No nuisance parameter estimators 7{7) or 4{r) arise in this example.
The choice of mt(-,.-) and d(-,-) in (2.6) is used to prove the consistency of the
ML estimator #(r). To obtain its asymptotic distribution, however, it is more convenient

to express @(w) as the solution 10 a set of first order conditions. That is, we take Wt as

above and

m,, (6}, b yTy) = m;—logf(ﬁl,ﬁa) mg, (0], 9 'r)——a-g—logf(()l,t?)

2-7) and d(m,y) = m’'m/2.

If 6(r) is consistent for some 0, and f, is an interior point of ©, then f(r) will
satisfy the first order conditions from (2.6), and hence, will minimize (2.1) defined using
(2.7), with probability that goes to one as T - o . In this case, the same estimator §(7)
can be expressed as a PSE estimator using {2.6) or (2.7), since the definition of a PSE esti-

mator only requires (2.1) to be minimized with probability that goes toc oneas T-c .

2.2. Uniform Consistency of Partiel-Sample Eztremum Estimators

Here we establish the consistency of f(r) for by = (010 b1 Béo)' uniformly over
7¢Il {or some 910 € 91 and 030 € 93 . This result applies when no parameter instabil-
ity or structural change occurs. The uniformity of the result is needed below to establish
the weak convergence of 6(-) viewed as a process indexed by I .

In what follows we avoid the devotion of space to questions of measurability by
assuming the quantities dealt with are measurable or the probabilities dealt with are inter-
preted as inner or outer probabilities when necessary. Also, we pay little attention to the

question of existence of a sequence of PSE estimators. Existence is assumed implicitly.
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Sufficient conditions for existence include continuity of d{mp(f,77(7)), 7)) in ¢ with
probability one and compactness of 6 . These conditions, of course, are far from neces-
sary.

For consistency we assume the following:
ASSUMPTION 1: (a) supli ()—7ol 220 for r=1,2 for some 7,€7 and
mell
sup||A(7) — 70(7r)|| 2.0 for some ')ro(r) el Vrell.
mell

(b) {mn(ﬂl, b, 7)1t 2 1} satisfies a uniform SLLN over © x .93 xTy, where T, is
some neighborhood of 7., and mI(Bl, 93, 'rl) = %11;1 %.Zr{Emrt(Gl, 6?3, rl) ezists uni-

Jormly over © x @q x Ty for r=1,3 4

(c) m (6, 8;, 7)) is continuous in 7, @i 7y uniformly over (6, 0;) € O, Oy for
1=1,3 aend d(m,7) is uniformly continuous over KA x Ty, where T (CT) contains an
e-neighborhood of 'yo(w) Vrell forsome ¢>0, A={me¢R:m= m(0,7,7) for some
fe0, 7ell, 1€ TO x TO} , and  m(fmr)= (m1(91,93,rl)', (1—7r)m1(02,93,'r2)',
mma(6y,05,7) + (l—w)m3(92,03,'r2)’)

d} For every neighborhood ©, (C©) of 6., inf[ inf d(m(0, 7, 7,), 7,(7))
@) 0 ) 0" ren c0/0, oo

~ d(m(8y, 7, 70), 20(r)] > 0.

THEOREM 11 Under Assumption 1, every sequence of extremum estimators {6(-)} satis-

fies supl|8(m) — Gyl 0.
Tell

We now discuss Assumption 1. Assumption 1(a) either holds trivially because no
preliminary estimators 7(7) and *(7) appear or it can be verified by the application of
Theorem 1 to 7(7) and 3(7) rather than #(r) . Assumption 1(b) can be verified under
broad assumptions regarding temporal dependence and non—identical distributions using
the uniform strong laws of large numbers (SLLN) provided, for example, by Andrews

(1987, 1989d), Pétscher and Prucha (1989), and Newey (1989). Assumption 1(c) is usually
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straightforward to verify and holds in most applications. Assumption 1(d) is the unique-
ness assumption that ensures that {8(7)} converges to a point 0, rather than to a

multi—element subset of © .

EXAMPLE 1 (GMM, cont.): Sufficient conditions (similar to those of Hansen (1982)) for

the GMM estimator to satisfy Assumption 1 are given by
ASSUMPTION GMM-1: (a) suﬁllal Tr_aOH + t;uI]%Ha2 T~ 20l B0 for some px v,
e ! .3 ! -

matriz 2 -
(b) {W,:=w<t< m} is stationary end ergodic.
() f(w, 91) is continuous in 01 uniformly over 91 €0, for each w in the support of

W, and E sup |{(W,, 6, <o.
( ont B gup 0%, 6
(d) ©; isbounded

(e) Ef{W,0,,)=0 and inf  Ef{W
v 8,€0,/0,,

hoods @10 of 910.

¢ 6,) aga Ef(W,, 6,) >0 for all neighbor-

To see that Assumption GMM-1 implies Assumption 1, note that GMM-1(a)
implies 1(a), GMM~1(b), (c), and (d) imply 1(b) using Andrews’ (1989d, Thm. 6 and As.
TSE~1C) uniform SLLN, GMM-1(c) implies 1(c) (since m(f,7,7) = (rEf(W,, §,)",

(1-m)Ef(W,, 6,)°)" and GMM-i(c) implies that  sup Ef(W,6)<=e), and
8,€0,
GMM-1(e) implies 1{d}. Assumption GMM~1(a) can be made more primitive if a, Tr

H

and 3y Ty BI€ defined more explicitly.

EXAMPLE 2 (ML, cont.): For brevity, we do not state an analogue of Assumption
GMM-1 under which Assumption 1 holds for ML estimators. Instead, we note that with
mlt("') and d(-,-) as in (2.6), Assumption 1(a) holds trivially, 1(b) requires that

{-log ft(ﬁl, 63) :t 21} satisfies a uniform SLLN over ©, x ©, and that ml(ﬂl, g

1% 93 3)

= lim-+21E log f,(6,, 6,) exists uniformly over ©, x ©,, 1(c) holds automatically
T T4 1 “3 1% 73 ’
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and 1(d) requires that inf (m;(6;, b3) —m (0,4, 855)) > 0 for all

neighborhoods ©,, and 930 of 6,, and 830. These conditions are just the same as

10
the conditions used to prove strong consistency of the ML estimator when the full sample is

used.

2.8. Weak Convergence of Partial-Sample Extremum Estimators
The asymptotic distribution of the PSE estimator 4(-) depends on the following

madtrices:
S S my,(8,n, , )
5 18] _ 1 im Var| o |1 10 %0 7o)} |
Sig S33| T-e Mg, (610 f30 7o)
Mo Ml K my4(819 O30 7p)
Mg; Mgg] Toe 3/ my (80, 839, 7o)
™ g 7er3
] J .
M(ﬁ)=']1‘:TEa- apllp mzg)=| ¢ (1-mM  (1-7)M;qi, and
L‘er31 (1-m)My, M,
32
D(7) = grrd(m, 74(7)) 7o)

where m(fy, 7, 7,) = lim Emp(d,, 7, 75) . As noted above (see Example 2), the func-
T=p

tions mrt(' ,*»+) and d(-,-) may be chosen differently in this section and in Section 2.2.

EXAMPLE | (GMM, cont.): In this example, we have

_ 9
5= ,}l’fvar[w (W, 6'10)] M*%j‘;}'rz Egrr (W 1)

(2.9)
™ 0 aéao/ﬂ 0
M(m = , and D(7) =
0 (1-mM 0 aéaO/(l—'fr)
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EXAMPLE 2 (ML, cont.): For the weak convergence results of this section, we use the
definition of mrt("') and d(-,-) given in (2.7) for the ML estimator. This yields

. 1T 8 1T, 8
$ = lim Var| 73] 50108 f(0,00050)] , M = )} im = 75 B rlon 1 )

Tow
5
M13_M = lnm-TzlEmB—log 10,930),
(2.10) M,, = lim—ALL A £,.00, 1,0a0)
: 33‘le T1EBU—6T3 égt 10°%30/
r |
™™ g les

M{(mr)=1 0 (1-m)M  (1-7)}M;,.{, and D(m) =1
(1-m)M1 4 M

2p+p3

33

Let  {(By(m)", B3(1r)')’ :m€[0,1)} denote a v +vg—vector of independent
Brownian motions on {0,1]. Let opw(l) and Opw(l) denote quantities that are op(l)
and Op(l) uniformly over 7 €Il respectively. Let ©,,, ©5,, and T, denote some
neighborhoods of 610, 030, and Ty Tespectively.

The following assumption is sufficient to obtain the weak convergence of the PSE

estimator #(-) as a process indexed by 7 €Tl to a function of the Brownian motion

L

vector (By(-)’, Ba(-)")

ASSUMPTION 2: (a) supl{#{=)— BOH B0 for some by = (81 0: 050, 030)} that 1s 1n the
mell

interior of © and satisfies 6’10 = 920

(b) sup]l’r(w) Gl 2.0 jor some T(m el Vrell.

(c) JI'( (w)—'r ) p,’r(l) for some To €T forr=1,2.

» Toh Am)| = op(T_l/ ), where 74 = (74, 74)
(e) {( ( 10 30, 0) mSt(010’030’ 0)’)' 1121} satisfies an invariance principle with

- _ 14Trx
covariance matriz L. That s, for v p(7) = 7['21 (m_, (60,830, 79)-E m L (8y0:1020:70)) 5

/
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1/2

ve)] [] 8% o ]]By()

1=1,3, wehave vy(-) = 3 =| 0 0
vgr(*)] [4(+)]  {S31 Sa3)|Bal*)
VaxV YaxV
ed by wel0l), where Sq €R° 1 and S5, eR° P
si/2 o ][s/? o
0 0 0 0
S31 S33||S31 533
() gﬁd(m,'y) and -&Hgﬁd(m,'y) ezist for (m,7) € My = T and are uniformly continu-

ous on {(m(BO,vr,zO), () : xe N}, where Ky and T\ contain e—neighborhoods of

as a process indez-

are such that

=3.

m(%’ T, IO) and 70(7r) , respectively, for all 7€ 1l and some €>0 and m(HO, 7, ;50)

- ri‘im Emq(fy, m 74) -
-+

(g) mrt(el, 93, 'rl) is twice, twice, and once continuously differentiable in 4, , 93 , and
71 respectively, on @10 x 930 x TO Vi>1, YweQ, for 1=1,3. The sequences
{mrt(ﬂl, bs, 'rl)} , {Eﬁqiiﬂé_]mrt(gl’ B, Tl)} , and {ng—mrt(Bl, 0a, Tl)} satisfy uniform
SLLN’s over 05 630 x TO for 1=13. The Umits mr(ﬂl, s, Tl)
= Lim AETEm (0, 05, 7)., Lim %E?Emi_,aﬂg)'mrt(gl 0,7, and dm (0),057))
= r}\11:}1 %E?E—af—imrt(ﬁl, 93, 'rl) ezist uniformly over ©,, x ©4q x T and are continuous

at (810, 930, TO) for 1=1,3. dmr(b"lo, b2, TU) =0 for 1=1,3. In eddition,

1.T i |
ITm EE sup H T ,m(ﬂ,ﬂ,r)‘<mforr=1,3.
Tow T 1 60,0, 0060, €T, A01:0g) AT Tl T8

(k) M(n)'D(m)M(7) is nonsingular Y7 € Il and has eigenvalues bounded away from zero.

THEOREM 2: Under Assumption 2, every sequence of partial—sample ezirernum estimators
{6(:)} satisfies

VI(O(-) = 85) # ~(M(-)"D(-)M(-)) " M(-) D(-)G(+)
as @ process indezed by well, where T has closure contained in (0,1),
G(-) = (1 (-), vy (1) =¥, (), 1y(1)7) ", and (vy(-)7, vy(-)") " is the Gaussian pro-

cess defined in Assumption 2(e).
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COMMENTS: 1. In the case of pure structural change, the result of Theorem 2 can be
expressed as
- o] | TMRIOMTMD()5 B, ()
(211) VT, 3 ,
bo(-) = b1y ]:%(TI(M'DQ(-)M)_IM'Dz(-)SI/Q(Bl(l) ~B,(-))
where ¢-) is the identity function on 1T, ie 7)== Vrell, and D,(-) and D2(-)
are the upper and lower v, x v; blocks of D(-) respectively.

2. In the case where 2p + py = v (i.e., the dimension of § equals the dimension of
ﬁlT(g,W,I) ), the limit process of Theorem 2 simplifies to - —M(-)'"IG(-) , since
(M(-)D(-M(-) ™! = M(-)TID)THMC) )T

Next we discﬁss Assumption 2. Assumption 2(a) can be established by Theorem 1.
Assumptions 2(b) and (c) hold trivially if no preliminary estimators *7) and 7(r)
appear. Otherwise, they can be established by applying Theorems 1 and 2 to 4(-) and
7(-) respectively. Assumption 2(d) usually is simple to verify since Emrt((}lo, 030, TO)
usually equals zero Vt 21, for r=1,3.

Assumption 2{e) can be verified by applying a multivariate invariance principle for
dnid rv’s (e.g., see Phillips and Durlauf (1986, Thm. 2.1) and Eberlein (1986)) or by show-
ing that the rv's  {(m, (g, b5, 0 Mg, (8,0, Oag o) Ja:t2 1} satisfy a univariate
invariance principle with variance a’Ya for each unit v tvg—vector @ and that
{vp(+): T2 1} has asymptotically independent increments.?  For example, univariate
invariance principles are given for dnid rv's by McLeish (1975, Thms. 3.8 and 4.2; 1977,
Thm. 2.4 and Cor. 2.11), Herrndorf (1984, Thm. and Cors. 1-4), and Wooldridge and
White (1988, Thm. 2.11 and Cors. 3.1-3.2). Note that the property of asymptotically inde-
pendent increments of {uT(-) : T2 1} generally is implied by the weak dependence
conditions on {mrt(ﬂlo, 030, TO) :1 2 1} that are used to obtain the univariate invariance
principle for  {(my, (0,4, b5, 7)*, Mg, (6, 0300 Tg)Ja:t 21} for arbitrary unit

v1+v3-—vector o .
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Since d(m,7) is often of the form m’~ym/2, Assumption 2(f) is not restrictive and
is easy to verify. Assumption 2(g) is a standard requirement of smoothness of
mrt(gl’ 63, 11) in 61 , 83 , and 1 the existence of certain limiting averages of ex-
pectations, and non—explosive non—irending behavior of the summands {mrt(gl’ 83, -rl)}
and their first two derivatives. The uniform SLLN’s referenced in Section 2.2 above can be
used in verifying this assumption. The smoothness assumptions could be avoided by using
the approach taken in Andrews (1989a,b,c). In addition, using the latter approach, the
preliminary nuisance parameter estimator 7() could be infinite dimensional for each .
Assumption 2(g) also imposes an asymptotic orthogonality condition between the esti-
mators of (ﬂio, b3 )’ and 7. This condition is easy to verify when it holds.

Assumption 2(h) imposes a nonsingularity condition that ensures that the estimator
B(7) has a nomsingular asymptotic variance Vr € II .7 In many examples, this assumption

is satisfied if the covariance matrix I of Assumption 2(e) is nonsingular, see Examples 1

and 2 below.

EXAMPLE 1 (GMM, cont.): In the GMM example, the limit process of T(#(-)~ ;)

given in Theorem 2 is
IV —yr, ... cl/2
-(—)-(L M agagM) "M aga 877 By(-)

(2.12) _
e LRy IMaga $1%(B,(1) - B ()

H

where M and § are as in (2.9), ajay Is as in Assumption GMM-1, and (m =r.
Also, Assumption GMM-1 plus the following Assumption GMM-2 are sufficient for
Assumption 2 (where McLeish’s (1975} Thm. 2.5 is used to establish Assumption 2(e)).
Let {t abbreviate f(Wt, 910) y let Fo=o({W, - <tg m}), and let ||-||2 denote

the L2 norm.



18

ASSUMPTION GMM-2: (i) 0, is in the interior of ©,
(ii) Efif, <o and Var[VTETf] = S for some positive definite v, x v, matriz S.

Y
-0 ¢s min{T,m} o VheR 1

(3i1) EiVar[wE b, |7_ ] h’Sh

(iv) ¢y = ok 5) for some {> 1/2, where ¢y = vsup (B 7 g -

heR *, ||h]=1
(v) f(Wt, 91) is twice continuously differentiable in 0 on some neighborhood @10 of
910 for all realizations of Wt , 0 ggp "'5'9'{ Wt, g )” <o, and

2
3
E sup ”W,f(w,ﬂ)“<m.
6,€0, vl

(vi) E—ay—f is full rank p (¢ vl) and aja, is nonsingular.

More primitive conditions than GMM—2(iii) and (iv} can be given in terms of strong
mixing or near epoch dependent rv’s using Cor. 3.9 and Thm. 4.2 of McLeish (1975). For

example, GMM-2(iii) and (iv) can be replaced by: {W,} is strong mixing with strong

@
mixing coefficients {e{n)}, ¥ a(n)l'—2/ﬁ <o and E||ft||ﬁ < wo for some f>2, and
n=1

Ef, = Q.

EXAMPLE 2 (ML, cont.): For ML estimators, the limit process of Theorem 2 equals

i =1,
)M Y { )M]3 Vl(‘)
(2.13) 0 (IM (- ))Mp| | - 50,
L’/(')Mig (1_"(°))Mi3 M33 I V3(') ]
since D(-} = Ile_p3 and M(.) is symmetric.

In this example, Assumption 2{a) holds by Theorem 1 under the conditions outlined
above. Assumptions 2(b) and (c) hold trivially, since no preliminary estimators () and

7(r) arise. Assumption 2(d) holds since Emq(f;, 7, 7,) = provided the conditional

. . . . a
density ft(ﬁlo, 030) is sufficiently regular to permit interchange of the BW and
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. . . a . .
_[ operations in the expression ijt(ﬁw, 930)d§T. Assumption 2(e) requires

{BW_TJ‘I? 77108 fi (10 fgp) ¢ 2 1} to satisfy an invariance principle. Any of the results

referenced above can be used for this. Assumption 2(f) holds trivially. Assumption 2(g)
holds if (i) log {,(6;, 65) is three times continuously differentiable on ©,, x ©,, for all

C .. d
realizations of {Wr,}, ii {W——r)_l —~log {,(4,, @ } and
Tt (ii) T g t( 1 3)
&
{6(9’, 9’)'6‘(91, 93)‘°gft(”1' 93)}

satisfy uniform SLLN’s over 910 x @30 ;
T-w 10 T-w 173 173
exist uniformly over 010 x 630 (as occurs, e.g., in the stationary g—th order Markov
case), and (iv) T1 TE E sup ”3% vec —aya—;y-log f,(6;, 93)“ <o
T-w g E@lo, G.¢€ 30 r 5§ q

Vr,s,q=1,3. Assumption 2(h) holds provided the asymptotic information matrix

&

_]1m Tzl L ORAL B(Gi,ﬁé)log ft(gll)’ 930) is nonsingular. (The latter condition is

sufﬁaent for Assumption 2(h), because a formula for the determinant of a partitioned
matrix shows that the determinant of M(7) equals m{1—m) times the determinant of the
upper p x p block of the asymptotic information matrix times the determinant of the

asymptotic information matrix.)

2.4. Covariance Matriz Estimation for Partial-Sample Eztremum Estimators
The Wald statistic defined in Section 3 below is based on the vector
VI 91(-) - 92(-)) . Here we consider estimation of the unknown constants that appear in

the limit distribution of yT(8 (-) - b,(-)) .

1‘”1‘”3
For m = (mi, mj, m3) €R , let
() = gnagmrd(m, 2() m={ "7
D (7)) = —d{m, v.(7 , 6.(m) = , and
r S 0 m=m(fy,7,7,) : -7 for 1=2

V. (7) = &2(#)(M’D (r)M)"IM D (x)SD_(m)M(MD (mM)~" for 1=1,2.
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For fixed 7e1l, Vl(ﬂ) + V2(1r) is the asymptotic variance of ﬂ(bl(ﬂ) - ‘92(7r)) under
Assumption 2 and an additional assumption given in Section 3. Note that if p = vy (i.e.
the dimension of §; equals the dimension of mn(ﬂl, b, 74) ), V(7) simplifies to
gl mmIsM™)’, since (MD ()M)™1 = M7ID_(x) ™ (M)} . In this case, the esti-
mators introduced below can be simplified accordingly.

Estimators of Vl(w) and Vz(vr) are given by

o — el D 5D S D M (8D MY for 11 2 6
(2.15) V= & (M;D M )M D S DM (MDD M) for r=1,2,

where the dependence of ?r, Mr’ D, 6, and Sr on = is suppressed for notational

) SR S
simplicity. The latter matrices can be defined in two ways. The first way uses only the
datafor t =1, ..., Tm for thecase r=1 and only thedatafor t = Tr+1, ..., T for

the case 1= 2:

M, (r) = e 517 Z1,%9,Irr1“,'(271(7r), Ba(m), 7)) ,
(2.16) My(7) = mtag s -a-%mlt(az(w), by(m), 7o(m)

D (1) = aar—aﬁ;d(mw(f’(’f% 7, 7{m), Am))
and ér(w) is as defined below, for r=1,2. The second way uses all of the data for

r=1and r=2:

-~ - T - - N
M (1) = M= 5] ngmn(ﬂl(l), b,(1), 7,(1)) and

2.17 . .
B b0 = g ), 5 50 )

The estimators defined in (2.16) and (2.17) have the same probability limits under
the null hypothesis (using Assumption 2) and under sequences of local alternatives (see Sec-
tion 4). They do not necessarily have the same probability limits, however, under
sequences of fixed alternatives. One might argue that the estimators of (2.16) are prefer-
able to those of (2.17) in terms of the power of Wald tests based upon them, but vice versa

in terms of the closeness of the true and nominal sizes of such tests.
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The v, x v, matrix S equals 'i‘lm Var 71;21 lt('glO’ 930, TO)], see (2.8). If

{m,(fy9, 930, 75)} is a sequence of mean zero, uncorrelated rv’s, then

§= %‘un TE Em (8,4, b5 To)mlt(ﬂm, fagr Tg)” - In this case, the estimators ﬁr(vr)
—m

corresponding to equations (2.16) and (2.17) can be taken to be

’

§,(n) = a8t "y (B, (r), By(x), Fy(M)myy(By(m), By(m), #(m)

(2.18)

§.(r) = S my (By(7), By(m), Tp(m))myy(By(), By(m), #y())’, and
(2.19) é:(”) =§= %ETmlt(-61(1)"93(1)’%1(1))m1t(‘91(1)'.03(1)’%1(1)), forr=1,2,
respectively.

Alternatively, if {m; (6., b3, TO)} is a sequence of mean zero, temporally
dependent rv’s, then

o

$= L Lim T2y 41Em1, 8> G50 o)1 (b0 B0 70"
(2.20)

T ,
+v21 1im T2y 41Em1 (b1 30 oIy (G0 B 70)

In this case, the estimator Sr(vr) corresponding to (2.17) can be taken to be

Il MH

§(r)=8= 3 K(v/UT)EET, m (0,0, 0500), 7y (D)my,_(8,(1),0501),4,(1))°

0

<

(2.21)

-+
v

I ek
p—t

k(o /HT)AET my (,00), 85000, (1)my(2,(1),B(1),7, (1)
+

for r=1,2, where k(-) is a kernel and {T) is a (possibly data—dependent) bandwidth
parameter. See Andrews (1988) regarding the choice of kernel and bandwidth parameter.
Corresponding to (2.16), kernel estimators Sl(w) and Sz(r) can be defined analogously
using the data from the time periods 1, ..., Tr and Tr+l1, ..., T, respectively, and

using the estimators (Z?l(r), @3(w), ’rl(r)) and (az(w), 93(1), 7o(7)) respectively.
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Under Assumption 2 and the following Assumption 3, the estimators Vr(w) are

consistent uniformly over 7€ Il :

ASSUMPTION 3: Vr(w) is constructed using an estimator Sr(vr) that satisfies
supllgr(vr) 8| 2~0 forr=1,2.
Tell

THEOREM 3: Under Assumptions 2 and 3,

sup[[V (1) =V (mIl 220 for 1=1,2,

Tell

where Vr(w) is as defined in (2.15) plus either (2.16) or (2.17).

3. TESTS OF PARAMETER INSTABILITY

In this section, we introduce tests for parameter instability and structural change
with unknown change point in general parametric models indexed by parameters (4,,, 630)

for t=1, ..., T. The null and alternative hypotheses of interest are

H.: ¢ =910 ¥Vt < T for some HIOERP

0" "1t

(3.1)
le 915# 9“ for some s, t=1, ..., T.

Of particular interest are one—time structural change alternatives: For = ¢ (0,1},

Bl(vr) for t=1,..,Ir

(3.2) Hy(m): 8, = for some constants 8,(7), Oy(7) € RP.

0y(7) for t=Tr+1,...,T

In the case of tests of pure structural change, no parameter 930 appears and the entire
parameter vector, viz. glt’ is subject to parameter instability under the alternative
hypothesis H; or H, (7).

The first subsection below defines tests based on the Wald statistic. The second
subsection defines tests based on type "a" LM-like and LR-like statistics. The third

defines tests based on type "b" LM-like and LR-like statistics.
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8.1. Tests Based on Wald Statistics
The Wald statistic for testing H, against Hl(w) is given by
. N N N =i, -
(33) Wop(r) = T(B(7) = By(m) (¥, (x) + Vom)) By (7) - By},

where Vl(w) and \72('#) are as in (2.15) plus either (2.16) or (2.17) above.
Based on the Wald statistic W.(r), the following test statistic can be used for

testing Hy versus U Hl(w) or Hy versus Hj:
mell

(3.4) sup We(n),
mell T

where 11 is a set with closure in (0,1). One rejects H, for large values of sup WT(vr) .
mell

For reasons of power, the use of II = [0,1] is not desirable, see Comment 1 to Corollary 1
in Section 4 below. In addition, for II =[0,1] the asymptotic critical values given below
are not valid, see Corollary 1.

The test statistic of (3.4) and those introduced below have the desired nuisance
parameter—iree asymptotic null distribution only under the following assumptions. Let a
vector or matrix appended with a subscript * denote the sub—matrix or sub-vector with

blocks that correspond to 93 or mSt(glﬂ’ 630, 'ro) deleted. Thus,

™™ 0 D,(r}) D, ,(7) x
(3.5) My(7) = , Dy(r)=]| ! 12970 and xy = | Y,
0 (1I-mM Dyy(m)  Dy(n) Xy
, vy vy Vg v 2\'1x2p
where x = (x, X4, xé) eR "xR "xR"=R", M,(r) e R , and
2v1x2v1
Di(m) €R . Let
P=(2p*p,) : 2
_ = -1 . ={I_:-1)eRP™P.
(3.6) B=[l,:-1 iQeR and Hy = [I ;-1 )¢
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ASSUMPITON 4: (i) S is nonsingular and M is full renk p (¢ v,).

(i) B(M(r) D(m)M(r)) " M(r) D(m)x = By(My(7)’ Da(m)Mu(m)) " My(m) Dy(m)x,
vxeRY, Vrell.

(ili) Da(7) dis block diagonal with nonsingular vy x v, blocks Dy(7) and Dy(w) that
satisfy D(7) = a(m)Do(7) for some scalar constant a(m) 4 0.

(iv) Either p=v, (i.e., the dimension of 01 equals the dimension of m,,(0,, b, 'rl))
or D (m) depends on 7 only through & scalar multiple for 1=1,2 (ie, D7)

= a (m)D, for some scalar a(r) end some matriz D for 1=1,2 ).

Three cases in which the key Assumption 4(ii) holds are as follows. (i) Assumption
4(ii) obviously holds in the context of tests for pure structural change, since H = Hs,
M(x) = M,{r), etc. (ii) Assumption 4(ii) also holds in the case of "orthogonality"
between the estimators of (91, 92) and 6, . That is, if M(7) and D(#) are block
diagonal with blocks of dimension (2v]L x 2p, Vg x p3) and (2v1 X 2Vy, Vg X v3) , respec-
tively, then 4(ii) holds. (iii) If M(n) is square (ie, § and m(f,7,7) have the same
dimension 2p + pg = v ) and nonsingular, then Assumption 4(ii) helds. In this case
(M(r)* D(m)M(x)) " M(r) ' D(m)x = M(r) " x and M(z), defined in (2.10), is of the

appropriate form for the application of Lemma A-3 of the Appendix.

EXAMPLE 1 (GMM, cont.): Suppose for the time being that a parameter 03 may abpear
in the GMM Example 1. In this scenario, Assumption 4(ii) does not always hold. It holds
in the cases of (i) tests of pure structural change (i.e., when no 03 parameter appears),
(ii) orthogonality between the estimators of (91, 92) and 6, , or (iii) equal dimensions of

(Bi, Hé) and {(Wt, b, 93) , le, Pp+py=vy+vg, and nonsingularity of

E'a(_ﬂ_?—)'l? A f(Wt, 010, 930) (where f(Wt, 61, 83) is the v1+v3——vector function that defines

the GMM estimator when a parameter 03 may be present).
We return now to the case where no parameter 93 appears in the GMM example.

Assumption 4(i) holds by Assumption GMM—2(ii) and (vi). Also, Assumptions 4(iii) and
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(iv) are satisfied since D(x) = Dy(n) is block diagonal with blocks D,(7) = aga,/7 and
Dy(m) = agay/(1-7) .

EXAMPLE 2 (ML, cont.): In this example, M(x) is symmetric and nonsingular, s0
Assumption 4(ii) always holds. Assumption 4(i) holds because M =S and M is non-
singular (since it is the upper pxp block of the nonsingular asymptotic information
matrix for (6, 65) ). Toobtain M = S, 1,(8;, 83) must be sufficiently regular to permit

interchange of the ,a v and operations in the expressions
g m‘)‘li

g d .
X7 J[B(‘H"H‘)l ARG 930)] f(f fo)dbr 824 For ) ’J{t(GIO’ B30)8¢
. . . i} . .
(since in this case {[— mi—,gé—riog ft_(glﬂ’ Oa0)s o(vies Wt)] 12 1} is a martingale
difference sequence and the conditional information matrix equality holds). Assumptions

4(iii) and (iv) are satisfied since D(7) = I2p+p3 and D (7) = Dy(7) = I

§.2. Tests Based on Type "a" LM-like and LR—like Statistics

In this subsection and the next, we consider type a and type b LM-like and LR—like
test statistics. The LM',:L and LRa statistics are defined for any criterion function
d(my (6, 7, 7(r)), ¥(7)) that satisfies Assumptions 2, 4, and 5a (stated below), although
the LR statistic has the desired asymptotic null distribution only under special conditions.
These conditions are sometimes satisfied in the GMM Example 1, but are not satisﬁed in
the ML Example 2. The LMb and LRb statistics are defined only for criterion functions for
which d(m,7) = m'm/2 and fﬁT(g,‘:‘T,I) = g—épT( f,m,7) for some function bT(B,w,I) .
The latter conditions are satisfied in the ML Example 2 but not in the GMM Example 1.
For ML estimators, the LMb and LRb statistics correspond to the usual LM and LR test
statistics.

First we define the LMaT(w) and LRaT(w) statistics. They make use of the

P

restricted extremum estimator 6,.{-):
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-

DEFINITION: A sequence of restricted ezxtremum estimators {??a(-)} ={(f,(n): me1):

T > 1} is any sequence of stochastic processes such that
(3.7) (@ g8 (1),m{m), M) = inH{d(mp(6m,H(m)Hm) : 0= (01,85,63) € ©, 6, = 0,}

with probability ~ 1.

Note that the same preliminary estimators 7(#) and 7) are used to define ?)a(w) as
are used to define &(r). This is necessary for the LMaT(w) and LRaT(w) test statistics
to have x2 asymptotic null distributions for each fixed = .

Suppose the null hypothesis HO is true. If Assumption 1 holds for the parameter
space ©, it also holds for the parameter space éO = {fe0O: 91 = 62} . Thus, Assump-

tion 1 and Theorem 1 imply that supllf, () — 6|l B 0. In consequence, the first part of
nell

the following assumption is straightforward to verify:

ASSUMPTION 5a: (i) If ¢, satisfies the null hypothesis, supl 8, (m) — G|l Bo.
, mell

(i) H(M(r)' D(m)M(r)) " H" = Hy(M,(n)/Dy(m)My(r)) " TH; Vrell.

The second part of Assumption 5a is closely related to Assumption 4(ii). It holds in
the case of testing for pure structural change. It also holds in the case of orthogonality
between the estimators of (6, f,) and 6, (as defined above). In addition, it holds if
M(7)} is square (2p + pg = v) and nonsingular and D{r) is block diagonal with blocks of
dimension (2v; x 2vy, Vg x Vq) u Thus, in the GMM Example 1, Assumption 5a(ii) is
satisfied in some, but not all, cases.

The LM, statistic uses estimators of V,(x) and V2(7r) that are constructed with
the restricted estimator Pa(-) in place of §(-). Let V(m), M(r), and D (r) be
defined as are \:f'r(w) , Mr(vr) , and ﬁr(r) in (2.15) plus either (2.16) or (2.17) but with
8(-) replaced by 8,(+).

For fixed change point 7, the LMa statistic is defined to be
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LM, 1(r) = T[558(my(F,, 7 1), 90; Dyt~

- pagdtng(B, . 1), 0f30,0,) 7 6

- 23D, 81, i@y (B, m D7)

where here and below the dependence on 7 of 93 ,
suppressed for notational simplicity.

Next, for fixed change point =, the LR_ statistic is defined by
(3-9) LRaT("T) = 2T(d(rﬁT(Z?a(1r), T, :C)) 'A'f) - d(ﬁlT(b(W)s T, i), :T))/b ;

where b is a scalar rv defined in Assumption 6a below. The preliminary estimators
(7{7), ¥(7)) wused in LRaT(w) may be restricted or unrestricted estimators of
(IO’ 70(7r)). They must be the same in both criterion functions used to calculate
LRaT(rr) . however, and they must be such that both f(x) and ?)a(ﬂ') are consistent
under the null hypothesis.

The LRaT(‘n) statistic has the desired asymptotic x2 null distribution for each

fixed 7 only under the following assumption:

ASSUMPTION 6a: M’DI(W)SDI(W)M = bé';l(‘rr)M’Dr('rr)M for 1=1,2, for some

scalar constant b4 0 and BB b for some sequence of non—zero rv's {v} .
When Assumption 6a holds, Vr(w) can be simplified {o

(3.10) ¥ (7) = BEAMV (x) DML () for r=1,2.

Vr(w) can be simplified analogously. In this case, LMaT(vr) simplifies to

2 N
(3.11) LM, p(m) = I 2 (m) (¥ () D (m)¥ty(m)™

-
H%—
—_——
=]
3
—
I
o
——
=
‘:—J
A
1_‘
:—/
2
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where = denotes equality that holds with probability -1. (This simplification of
LM, p(7) occurs because -g—ad(ﬁlT(-ﬁa(ﬂ'), %, 1), %) %—[Ip -1, : 0} X(n) for some
p—vector A(7) of Lagrange multipliers.)

As in (3.4), for testing H, versus Unﬂl(w) or Hy versus H;, we consider the
13
statistics
(312)  supLM rI\('rr) and sup LR_(7) .

mell nell
The null hypothesis H-0 is rejected for large values of these statistics.

EXAMPLE 1 (GMM, cont.): Here, the major components of LMaT(w) are given by

_ i - - A 1 P 1T v
aagld(m"_[‘( ga(w)rﬂsz): T) = Ml(ﬂ.)’ ? al,T'ﬂ'al,T‘ﬂ' TE]. Tf(“t} gla(ﬂ-)) and

d /= (7 Ay 2 v 1, T
—_ ) )
where ?a(w) = (?la(w)’, ?1a(ﬁ)’) :
In this example, Assumption 62 holds with b= 1 if
v =l
(3.14) ajag = S .

In this case, V (1), V. (), and LM,p(7) can be simplified as in (3.10) and (3.11),

respectively, and LRaT('fr) is given by

_ 1T v 1 1oT7
LRaTw)—T[ RATENOE SE e P, By, ()
T - T

+ 1501 Wy 9,(0) 55 25 TrP2 Tr Tl iy B, (7))

TETTH(W,, B ()

t’ “"la
(3.15)

Tr 5 ,
"TE f(W , (W)) _al Tx%1 JTI7T

L 1V, () T 25 T2, Tr T W 02(”))) -
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3.2. Tests Based on Type b LM—like and LR—like Statistics

First, we describe the context in which the LMb and LRb statistics are defined:
ASSUMPTI%N 6b: (i) d(m,y) = m'm/2. There ezist functions {pp (W, 0}, ba, )}
such that Uﬂ;th(WTt’ 91, 83, ‘rl) = mth(WTt’ 81, 03, 'rl) Vi, forr=1,3. With
probability =1, 8(x)  solves inf{pp(8, 7, 7(n)): 0€ O}, where pp(6m])
_ 1T 14T
=127 (W 01 030 1) + 1210 1P (Wrpys O, 03, 70)
(i) S = ¢cM for some scalar c# 0 and & Bc for some sequence of non—zero rv's {&} .

When Assumption 6b(i) holds the LM r.(7) and ‘LRbT(vr)' statistics are defined.
The LRbT(w) statistic has an asymptotic x2 null distribution for fixed =, however,

only when Assumption 6b(ii) also holds.

EXAMPLE 2 (ML, cont.): In the ML case, Assumption 6b(i) holds with

(3.16) p(Wrp,, 0, g, 7,) = —log f,(8,, 63) :
Assumption 6b(ii) holds with ¢ =1, since § =M (see the end of Section 3.1).

The LMpp(r) and LRy p(r) statistics make use of the restricted estimator
-Bb(‘n') :
DEFINITION: A sequence of restricted eztremum estimators {?)b(- )} = {(Z’b(w) crell):

T 2> 1} is any sequence of stochastic processes such that
(3.17) ,BT(?b(w), m, 7(m) = inf{p (6, , r)): 0=(6], 05 65) €0,6, = 6y}
with probability - 1.

Note that if 7{r) does not depend on  orif pq,(+,-,) does not depend on a
preliminary nuisance parameter estimator 7(7), then f}b('rr) does not depend on 7.
Also note that 8, (r) and 8 () differ in general, because 6, () minimizes p.(6,m,7(7))
subject to §; = f§,, whereas "9a(7r) minimizes B—g—;—f)T(g,‘rr,i(‘fr))gpr(Q,W,i'(ﬂ)) subject to
b, =10,.
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As with {?a(w)}' , the consistency of {8 ()} can be established using Theorem 1.

Thus, the following assumption is straightforward to verify:
ASSUMPTION 5b: If 6, satisfies the null hypothesis, sup 1B, (m)— Gl Bo.
TE

By definition,

(3.18)
1o-1 8 - 3 . 11 0 .
x[ﬂl_ M Wi—pT(gb’ T T)- 55 M, —a-gz—,z—p,r(ﬂb, , 'r)] and
LRbT(“T) = 2T(ﬁT(?b’ (L %) pT( 0#”)2))/6 H

where M_ (= M_ (7)) and Sr (= Sr(w)) are as defined above but with 8 () in place of
?a(vr) or §(z). To obtain x2 asymptotic null distributions for fixed 7, the preliminary
estimator #(7) must be the same in both criterion functions used to calculate LRbT(w)
and used to define E?b(fr) and &(7) .

When Assumptions 2 and 6b(i) hold, we have: D (7n)=1_ for r1=12,

& )

T
M= 1im 1 Egrar P Ve b0 0

2(h). I in addition SI(':r) = cMr(vr) Vrell, for r=1,2, for somescalartv ¢ #0, as

7o), and M is nonsingular by Assumption

usually occurs when Assumption 6b(ii) holds, then LMbT(r) simplifies as follows:

2 - - " —_ p ~
319) Wy 2 Tapap(Ry(n), m DS grap(@(n. m Dl

=3t
o~
:!_—‘
p o —
o
1
on
g
av]

(This simplification uses the fact that WT( Bb( m, =1 -1 - g]'
p—vector B{7) of Lagrange multipliers.)

For testing Hy versus U H,(w) or Hy versus H, , we consider the statistics
rell

(3.20) sup LM, (7) and sup LR, (7).
n€ll bT mell bT

The null hypothesis HO is rejected for large values of these statistics.
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EXAMPLE 2 (ML, cont.): In the ML case, we have

Co1eTT 8 ern 3 a1 [ 1gTr & R
MbT(“)_T[TEI o7,1% fi (O Eab)] [_TEI a7, o718 Ty (O, 931))]

L4

1oT7 &
01 g7 i8] RO 3b)+T[TET1r+IHTJng 1 f )]

&

r I Tx
(3.21) (- T‘T—ETHIBFI'BF{Ingt(glb’ iay)] 1 av‘logf(glb’” )

LR, 1(r) = - [ log £,(B), Fa) —£] " Jog £,(0(7), By(m)
— 311 log £(By(m), By(m))

where Bb = (Hib, Bib, Péb) does not depend on 7 since no estimator 7(r) appears.

4. ASYMPTOTIC PROPERTIES OF THE TEST STATISTICS

4.1. Asymgptotic Distributions under the Null Hypothesis
The first result of this section provides the asymptotic null distributions of the test

statistics introduced in Section 3.

THEOREM 4: Suppose Assumptions 2—4 hold. Given any set I whose closure lies in
(0,1), the following processes indezed by = € I1 satisfy:

(a) Wp(-)2 Q") and sup Wolr ) -% sup Q7). where

Q) =®()- £-)B*(1)) (B*(+) — L )BH(/1 )14 )] ,
{(b) LM ()= Qp(-) and sup LM T( )___@_, sup Q (w) provided Assumption 5a also

mell mell
holds,
(¢) LR p(-)» Q (-) and sup LR aT(T )—d—f sup Q _(m) provided Assumptions 5a and 6a
P mell rell P

hold in place of 3,

(d) LMbT(-) 3 Qp(-) and 51611% LMy (7 )__Q_, ilE]II_JI Qp(w) provided Assumptions 5b and

6b(i) also hold, and



32

(¢) LRyp(-)= Qp(-) and S‘EIIPi LR, 1(7) 4. sgﬁ _Qp(vr) provided Assumptions 5b and
T 7ell

6b hold in place of 3,
where B*(-) 1s ¢ p—vector of independeﬁt Brownian motions on [0,1] restricted to I1 and
i+) is the identity function, f.e., 7)=1x VxelIl. Furthermore, the convergence in

(a)—(e) holds jointly.

COMMENTS: 1. The limit process Qp(-) is referred to in the literature as the square of
a standardized tied—down Bessel process of order p, see Sen (1981, p. 46). For any fixed
n € (0,1), Qp(w) has a chi—square distribution with p degrees of freedom. Under the

assumptions, the asymptotic null distributions of sup Wr(7), ..., sup LR, (7) are
’ Tell T mell bT

free of nuisance parameters except for the dimension p of 01 . Thus, critical values for
the test statistics can be tabulated, see below.
2 1= [7r1, “2] for 0 < M &my <, then it can be shown (e.g., see the proof of

Corollary 1 below) that

su BM(s) BM(s)/s > ca] ,

(1) P[sup Qlm > Ca] - P[sE[l,Wg(l—ﬁ?/(m(l—ﬂ’g))]

mell

where BM(:) denotes a p—vector of independent Brownian motion processes on [0,m) . In

consequence, critical values based on the distribution of [sup Q_(r) depend on L
TE\T, T
172

and 7, only through the parameter A = m (1 - 1r1)/(1r1(1 ~,)) . This simplifies the
tabulation of such critical values.

Since ||BM(-)|| is a Bessel process of order p, the probability on the right—hand
side of (4.1) is the probability that a Bessel process exceeds a square root boundary
somewhere in the given interval. Such probabilities and corresponding critical values for
given significance levels have been computed numerically for p < 4 by DeLong (1981).

3. Critical values ¢ for the test statistics sup W(7), ..., sup LR, (%) are
o T bT
mell mell

provided in Table 1 based on their asymptotic null distribution sup Qp(vr). By
7ell



33

definition, ¢ satisfies P(suﬁ Qp(ﬂ’) > ca) = a. The tables cover significance levels
7€

a = .01, .025, .05, and .10, p = 1(1)20, and Il =[.15, .85] . The given choice of Il was
determined (subjectively) by trading off the length of II and the power of the test for one-
time structural change for points in II in the Monte Carlo experiment described in
Section 5.

The values reported in Table 1 are estimates of the critical values ¢ obtained by
(1) approximating the distribution of the supremum of Qp(w) over =€ [.15,.85] by its
maximum over a fine grid of points TII(N) and (ii) simulating the distribution of

max Q _(r) by Monte Carlo. The grid II(N) is defined by
€ II(N) P

(4.2) N(N) =1[15 85]n{r=j/N:j=0,1, ..., N}.

The value of N was chosen to be 3,600 based on a comparison of the approximations ob-
tained here with the numerical results of DeLong (1981), which are available for p<4. A

single realization from the distribution of max) Qp(w) was obtained by simulating a
melI(N

p—vector B*(-) of independent Brownian motions at the discrete points in II(N) and

computing  max (B*(7) — wB*(l))’(B*(vr) — 7B*(1))/[#(1-m)] . The number of repeti-
meI1(N)

tions R used was 25,000. The accuracy of the simulated critical value for approximating

the critical value based on the statistic m?x Qp(w) can be determined by noting that
me[1{N)

the rejection probability of the statistic m?x Qp(ﬂ') using the simulated critical value
7€ [1(N)

has mean o and standard error approximately equal to (cr(l—az)/R.)I/2 . For a=.01,
.025, .05, and .10, the standard errors are .001, .002, .002, and .003 respectively.

4. The requirement that II is bounded away from zero and one is made to ensure
that the functions mapping wvp(-) of Assumption 2(e) into each of the processes in
Theorem 4(a)—{(e) are continuous. For example, if 1T ={0,1], the functions 7-1/r and

7-1/(1-7) are not continuous. In fact, if I =([0,1], the test statistics
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sup W (7), +.., 8Up LRy p(7) do not converge in distribution, see Corollary 1 below.
7€l

5. The p—dimensional Brownian motion process B*(:) differs from the
v,—dimensional Brownian motion process Bl(-) of Theorem 2, unless p=v,. If one
considers joint weak convergence of the processes in Theorems 2 and 4, then B*(:) has to
be a matrix multiple of Bl(-) when p < vy, see the proof of Theorem 4.

6. Suppose the alternatives of greatest interest are ones in which some sub—vector of
f,, say 0;,, exhibits parameter instability. In this case, one can redefine 91 and 93
such that the new vector 91 only contains 91! and use the W, LM, or LR statistic to test
for instability of 61 E Alternatively, one can leave 91 and 03 defined as they are and
base a Wald test on alt(“) - *2£(1r) , where Qrt(vr) is the appropriate subvector of @r(w)

for r =1, 2. In particular, let
(43) W pp(m) = T8 A7) = Do) ([V4(M) g + VoM T (B 7) = By fm)

where [Vr(w)]a denotes the sub—matrix of Vr(r) that corresponds to ?Ig('fr) for

r=1,2. Under Hy and Assumptions 24, Wr(-) and ;EI}_}I W,p(7) each have the

same asymptotic distribution as that given for WT(-) and sup W ( 7) in Theorem 4(a)
mell

but with p replaced by the dimension of Blt . Note that the null hypothesis HO must be
as defined in (3.1) for the above result to hold. The null hypothesis cannot include cases

where 91 ¢ is constant over the sample, but other coefficients are variable.

1’ 93’

(Assumption 2(g)), e.g., as occurs with least absolute deviation estimators, then analogous

T I mrt(gl’ 93, 1'1) is not differentiable in ¢ or 7 for r=1,3
results to those of Theorem 4 can be obtained for the WT( -} statistic using the stochastic
equicortinuity approach of Andrews (1989a,b,c), provided Emn(ﬁl, 93, Tl) is different-
iable in 91, 93, and 7y Alternatively, if 71 is infinite dimensional, and hence, f isa

semiparametric estimator, then analogous results to those of Theorem 4 can be obtained for
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all of the test statistics Wwp(+), ..., LRyp(+) wusing the approach of Andrews
(1989a,b,c).
8. The fluctuation test of Sen (1980) and Ploberger, Krimer, and Kontrus (1989)

can be extended to general parametric models as follows. Let

(44) FLy() = max ol[¥,0)7 /18y ) - 0N

where \71(1) is as defined in (2.15) and [S]j denotes the. }~th element of the p-vector

¢ . Analogously to the results of Theorem 4, the fluctuation test statistic sup FLT(vr)
mell

satisfies

(4.5) sup FLr.(7) 4, sup sup|B*(r) — #B*(1)| ,
mell 7ell j<p J J

where B*(m) = (Bi(7), ..., Bi“)(vr))’ , under the null hypothesis and under the assump-
tions given in Andrews (1989¢).

9. The results of Theorem 4 also establish the asymptotic distributions of test statis-
tics of the form g({W(r): 7€1I}) for arbitrary continuous functions g (using the
uniform metric on the space of real functions on IT ). In particular, g({WT(w) e I1})

3 g({Qp(vr) t 7 € [1}) under the assumptions and likewise for LM (-} etc.

EXAMPLE 1 (GMM, cont.): Utilizing previous results, we now provide a set of sufficient
conditions for the assumptions of Theorem 4 to hold in the GMM context. First, Aséump-
tions GMM-1 and GMM-2 imply Assumptions 2, 4, and 5a. Next, aga, =S implies
Assumption 6a. Lastly, if SI(‘IT) = ( i',Twar,Tw)_l for 1=1,2, then Assumption 3
holds.

EXAMPLE 2 (ML, cont.): For the ML case, the conditions given at the end of Sections
2.2 and 2.3 are sufficient for Assumptions 2, 4, and 5b. These conditions plus that given at
the end of Section 3.1 are sufficient for Assumption 6b. Lastly, Assumption 3 holds when

Assumption 6b holds, if § (x) = M_(r) or § (r) =M (r) for r=1,2.
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Next, we consider the limiting behavior of the statistics sup Wr(m), ...,
mell

sup LRy p(r) when II = [0,1] . For the location model with iid N(0,1) errors, D. M.
well

Hawkins (1977) has already investigated this behavior (heuristically). In the general model

scenario considered here, this behavior is determined using the results of Theorem 4.

COROLLARY 1. Suppose the conditions of Theorem 4{a) (resp. 4(b), ...,4(e)) and the

null hypothesis H. hold. Then, sup W (7r) 20 (resp. sup LM_~(7)
v 0 r€[0,1] T re[0,1] 27
L., ..., sup LR.o(n)-E+0o).
’ 7€f0,1] oT

COMMENTS: 1. The corollary shows that the restriction in Theorem 4 to sets I1 whose
closure is in (0,1) is not made only for technical convenience. Unless I is bounded away

from zero and one, critical values for the test statistics sup W.(7), ..., sup LR, ~(7)
mell L rell  °1

must diverge to infinity as T - o to obtain a sequence of level o tests. By bounding =
away from zero and one, however, a fixed critical value suffices for all T large. This sug-
gests that the restriction of Il to a set whose closure is in (0,1) yields significant power
gains if the true change point is in II or is close to II. Some Monte Carlo results of
Talwar (1983) and James, James, and Siegmund (1987) for the location model substantiate
this result. Furthermore, the Monte Carlo results of Talwar (1983) show that the test

statistic sup WT(W) has much closer true and nominal sizes in the location model under
mell

non—normal errors when [T is restricted than when 11 =10,1].

2. Suppose 7 maximizes Wq(r), LM, p(r), LR p(7), LMpp(m), or
LRbT(‘H) over [0,1]. For example, in the ML Example 2, if # maximizes LRbT(w),
then 7 is the ML estimator of 7 for the parameter space [0,1]. By Theorem 4 and

Corollary 1, sup  Wrp(r) =0 (1) Ve>0 and  sup Wep(m) ~Pyp under the
TE[e, 1—¢] P 7€{0,1]

null hypothesis and analogous results hold for LMaT(fr), ciey LRbT(r) . In consequence,
#-P- {0,1} under the null hypothesis. By symmetry, presumably, T Bern(1/2) ,
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where Bern(1/2) denotes a Bernoulli distribution with parameter 1/2. In contrast, if I

has closure in (0,1) and Qp(-) has a unique maximum on I with probability one, then

w3, argmax{Qp(vr) : 7€ T1} by the continuous mapping theorem. The latter distribu-

tion has support equal to II .

4.2. Asymptotic Local Power of the Test Statistics
Next, we consider the behavior of &(-), Wo(:), etc. under sequences of local

alternatives. We introduce the following assumption:

ASSUMPTION 2—{p: The triangular array {WTt 4 T, T>1} is such that Assumption
2 holds but with part (d) replaced by

(d) :rtéﬁ“ﬂ-gad(EmT(ﬂg, T, IO)’ ’yo(?r)) —p(w)“ = op(l) for some mon—random,

RY—valued function p on 11 .

, v
We write p(7) = (py(7)", polm)’, ,u3(7r)’) for p(m)eR T r=1,2,3.

H

In many cases, p(7) can be expressed more simply. For example, suppose
(i) d(mg(6,7,7), 7) is of the form m(d,m,7) mmp(6,7,7)/2, (i) 7(m)

= diag{D(7), Do(r), Do(7)} where D,(r) and D,(m) are v x v, matrices and Dg(r)

3
is a Vo x Vg matrix, (iii) Assumption 2—fp holds, (iv) {WTt :t<T, T>1} is such that

Emth(th’ 6‘10 + n(t/T)/VT, 930, 'ro) =0 ¥t<T, VT21 for some bounded
RP—valued function 7(-) on [0,1] that is Riemann integrable on [0,7] uniformly over

6rc, 70) = M

a0 To -0 a T-o. Inthis

renu{1},} and (v) max
4 <T

5 ,
Ea'ai“mm(“‘w 610

case, one can show that
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ul(ﬂ) -Dl(w)MJ?n( s)ds
@) M) = |ugln)| = |-DylmM|  n(s)ds
ﬂ3(w)

. 14T
D3(1r)%‘1m TzlEmSt(BIO’ 030, 'ro)
- m

“

EXAMPLE 1 (GMM, cont.): In this example, we have

3020 ,}L‘f 71‘21 Ef(Wrpy» 6)9)
(4.7) ) = .
2430 =7 ,lr:f;‘ 71‘ T +1EWry f19)

Now, suppose {W Ty S T, T > 1} is such that Ef(WTt, 010 + 7(t/T)/VT) =0 Vt<T,
YT >1 for n{-) as above and T‘:')I(‘ E—a—g-f Wy 910) Mi-0 as T-w, where

M=1im TEIEEF—{ Ty f10) - Then, asin (4.6), we have

T
ks
pm] g * MJOn(s)ds
(48) ur) = = oA
#olT) —aéaO'I——_vrMJ 7(s)ds
s

EXAMPLE 2 (ML, cont.): Inthe ML case, we have

r 3
. 1 ¢T7 d
lim—grT Egpleeflhe b30)
. 1 5
(4.9) pr) = | Lim = g 5 71557108 {8101 B30)
. T
r}‘:{: 7T 21 E—a-gglog f,(610; 030)

o . il |
H {Wp:t<¢T, T2 1} is such that EWIIOg f,(6,0+ n(t/TYVT, b30) =0 Vt<T,

E—a-g%y—log 1( 10, 30) M|~+0, where

1

vT>1 for n(-) as above and max
t<T

M= %\_‘m - TElelogf 10° 30) then
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1
(4.10) wm) = —Mjrn(s)ds

. 1 ¢T
lim ~ way BlE-apglog £.(6,0 030)

THEOREM 5: Suppose Assumptions 2—fp, 3, and 4 hold. Given any set T1 whose closure
lies in (0,1), the following processes indezed by = € I satisfy:
. -1
(a) VT(B(-) = 6y) » {(M(-)'D(-)M(-)) " M(:) (D(-)G() + ),
(b) supllV (r) —V (DI BO for r=1,2,
mell

(€) Wo(-)# Q) = I3(-)33()  ond i‘éﬁwT(“)Li‘éﬁ Qi(r), where  J3()
CBY() = u(0BH1) [N MR 12y
()P ) Prnt)

. [ﬁ%}” A3 )

(d) LM p(-) = Q}(-) and sup LM () 4 sup Q*(7) provided Assumption 5a also
P mell rell P

holds,

(¢) LR, p(+)= Q*(+) and sup LR () 4, sup Q*(7) provided Assumptions da end 6a
P mell rell P

hold in place of 3,

(f) LM, (-)2 Q*(:) and sup LM, () 4, sup Q*(7) provided Assumptions 5b and
BT 77 7p rell OF rell P

6b(i) also hold, and

(g) LR, (-) =2 Q*(-) and sup LR, (7) 4, sup Q*(#) provided Assumptions 5b and
bT P el 0L zell P

6b hold in place of 3,

where G{:) is as in Theorem 2, B*(:) and (-) are as in Theorem 4,
(e = (g (4)7 mg0), u3(-)’)l is as in Assumption 2-fp, A =1, when p=vy,
A= (C(W)C(w)’)'l/zc(w) Jor any 7 €Il when p < vy for
C(r) = (M’D1(7r)I~i)_II\’ID1(7r)Sl/2 (since (C(W)C(W)’)—I/:ZC(?r) does not depend on =
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in this case by Assumption 4(iv)), end B*(:) = ABI(') . Furthermore, the convergence in
(a)—g) holds jointly.

COMMENTS: 1. When g{-) satisfies (4.6), the limit process Q;(-) of Theorem 5
depends on 7(-) in the following way: QI’;(-) = J;(-)'J;(-) and

oy _ B*(:) = ()B*(1
+ As‘l/zM[[l—}_ﬁ'}l]llzj[:(.)n(s)ds - [ Sie ]I/Zﬁ(_)n(s)ds} .

2. For fixed 7€ (0,1), Q;(w) has a noncentral chi—square distribution with p

(4.11)

degrees of freedom and noncentrality parameter given by the squared length of the sum of

the last two summands that define J;(w) in Theorem 5(c).

EXAMPLE 1 (GMM, cont.): When u(-) is as in (4.8), the limit process

Qi*)(.) = J;(-)’J;(-) of Theorem 5 is given by (4.11).

EXAMPLE 2 (ML, cont.): In the ML case, the limit process Q;(-) = J;(-)’J;(-) of
Theorem 5 simplifies when (4.10) holds as follows:

J*_::B*"—L'B*l
o) ()R- !

- M1/2[[}%(L_.Lj)}1/2[;(.)n(s)ds - [ - ]l/zji(-)n(s)ds} ,

since AzIp, S=M, and Dr(w)zlp forr=1,2.

(4.12)

The local power results of Theorem 5 can be used to show that the tests based on

sup WT('rr), cesy SUD LRbT(w) each have non—trivial power against alternatives for
mell mell

which the ﬂn parameter is non—constant on Il . These results are analogous to results
obtained by Ploberger et al. (1989, Cor. 1) for the fluctuation test in the more restrictive

context of testing for pure structural change in an iid linear regression model.
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COROLLARY 2: Suppose the assumptions of Theorem 5(c) (resp. 5(d)-5(g)) hold with
p{-) as in (4.6) but with n(-) replaced by &n(-) . If 7 i3 not almost everywhere

(Lebesgue) equal to a constant vector on 11, then

lim 1im P(sup Wq(7) > ¢ ) =1

(oo Tao  7ell
(resp. lim lim P(sup LM_(7)>c )=1, ..., lim lim P(sup LR, (%) > c )
fio Tow  mell 21 @ T e Tep  mell DT a

=1), where ¢ is as defined above and a€ 0,1).

Next, using Theorem 5, we can establish a weak optimality result for the test sta-

tistics  sup Wip(7), ..., sup LRbT(vr) for testing against the alternatives in
well nell

U H1(7r) . This result is a generalization to multiparameter two-sided tests of a result of
mell

Davies {1977, Thm. 4.2) for scalar parameter one—sided tests. The result shows that as the
significance level « goes to zero, the power against all local alternatives of the level a

test based on sup W(n) is at least as large as that of the level a test based on W (%)
mell

for any fixed 7€ Il. Thus, if _WT(%) possesses asymptotic local power optimality prop-

erties against certain alternatives, e.g., as it does in the ML case against one—time

structural changes (i.e, for n(s)=0 for s<#, =46 for s27), then sup Wy(r)
well
inherits these same properties as a =0. The same results also hold for

sup LM, ~(7), ..., sup LR, (7).
mell aTH D " pell b1

THEOREM 6: Let 7 denote a bounded RP—valued function on [0,1) that is Riemann inte-
grable on [0,7) uniformly over m€ T U {1} . Let = denote the set of all such functions 7
for which there ezists a distribution P17 of the triengular erray {WTt 1 <T, T>1} such
that Assumptions 2—¢€p, 3, and 4 hold with u(-) asin (4.6). Then,

(4.13) lim inf inf lim[P (5up Wen(m) > ¢ ) =P (Wr(7) > © )} 50,
a0 7eZ el Tawl Trell 1 o T a

where the critical values C, and Ea are such that the tests based on sup WT(’TF) and
mell
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Wp(7) have asymptotic level a € (0,1) . The result (4.13) also holds with W(-) replaced
by (1) LM (), (i) LR, p(-) (iii) LMy p(+), or (iv) LRyp(+) provided = -is
restricted to include only functions 7 for which P17 also satisfies (i) Assumption 5a, (ii) 5a

and 62 in place of 3, (iii) 5b and 6b(i), or (iv) 5b and 6b in place of 3, respectively.

COMMENT: The optimality result (4.13) is referred to above as a weak result because it
appears that o must be quite small before the result is illustrative of finite sample

behavior of the test statistics sup WT(ar) and WT(v'r) . Nevertheless, the result does
well

serve to indicate that as a decreases the difference decreases between the power function

of the level « test based on sup WT(vr) and the envelope of the power functions of the
mell

level o tests based on WT(%) for fixed Fell.

5. MONTE CARLO RESULTS

This section presents some Monte Carlo results regarding the finite sample size and
power properties of the tests discussed above. It considers tests of parameter instability in
a linear regression model with iid normal errors. A "sup F test,” which is covered by the
results of this paper, is compared with the CUSUM test of Brown, Durbin, and Evans
(1975), the fluctuation test of Sen (1980) and Ploberger, Krimer, and Kontrus (1989), and
the "midpoint F test" (i.e., Chow test) of one—time structural change occurring at the mid-
point of the sample. The CUSUM test is the best known parameter instability test in the
literature for linear regression models. The fluctuation test is a more recently developed
alternative to the CUSUM test that has been shown to have some power advaniages, see
Krimer and Sonnberger (1986) and Kontrus (1984). The midpoint F test also has been
suggested for use as a general test of parameter instability. In addition, its power
properties for a one-time shift at the midpoint of the sample can be used to measure the
cost in terms of power of having to estimate the change point using the sup F test, as

opposed to knowing the change point.
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The sup F test is the supremum over 7€ [.15, .85] of the F test statistic, FT(vr) :
for testing one—time structural change in the regression parameters at point 7. (Frp(r)
is also known as the Chow test statistic for testing change at time t=Tr.) Since
Fp(7) = ((T-2p)/T)W(r)/p (where p is the number of regressors), the asymptotic
results of Section 4 apply to the sup F test and the critical values of Table 1 divided by p
are appropriate. See Krdmer and Sonnberger (1986, pp. 49—53, 59—61), for example, for
the definition of the CUSUM and fluctuation tests. The midpoint F test is Fp(.5) .

For reasons of comparability, the model used in the Monte Carlo experiment report-
ed here is the same as that used by Krimer and Sonnberger (1986, pp. 64—69) and Kontrus
(1984). It is given by

r

t .. 2
(5.1) Yt=xiﬁt+ut’ Xt=(1,(-—1)) , Ut~udN(0,a y, t=1, ..., T,

Under the null hypothesis, ﬁt = ‘60 YVt for some ﬁo € R2 and the distributions of the four
test statistics are invariant with respect to ﬁD and 02 . For simplicity, we take ,60 =0
and o° = 1 for the significance level results.

The sup F, CUSUM, and fluctuation tests are asymptotic tests. In comsequence, the
first set of Monte Carlo results compares each of these tests’ true and nominal significance
levels, see Table 2. The midpoint F test is exact, and hence, no results are reported for it
in Table 2. Nominal (asymptotic) significance levels of 1%, 5%, and 10% and sample sizes
of T = 30, 60, 120, 240, and 1000 are considered. Fifty thousand repetitions are used for
each of the first three sample sizes, while ten thousand repetitions are used for the latter
two.

Table 2 shows that the sup F test over—rejects when T = 30 . The over~rejection
is fairly small for the 5% and 10% nominal significance levels, but is marked for the 1%
result. For each of the larger sample sizes, however, the sup F test exhibits close
agreement between its true and nominal significance levels. In all such cases except

(T = 60, 1%) , it under—rejects slightly, and hence, is slightly conservative. The CUSUM
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and fluctuation tests both exhibit marked under-tejection for sample sizes T = 30, 60, and
120 and 2!l significance levels. The under—rejection of the fluctuation test in particular is
quite severe for T = 30 and 60. In sum, for sample sizes T = 60 and 120, the sup F test
exhibits the best performance of the three tests under the null, while for T = 30 no single
test is dominant.

Next, we consider the power properties of the sup F, CUSUM, fluctuation, and mid-
point F tests. Again for reasons of comparability, we consider more or less the same
alternatives as are considered by Krdmer and Sonnberger (1986) and Kontrus (1984). In

particular, we consider the simple case of a single shift Af in the Tegression parameters:
(5.2} B, = (0,0) for t¢ Tr* and f, = Af for t> Tr*.

We vary (1) the time 7* of change, (2) the magnitude ||Af|| = b/J/T of change, (3) the
angle ¢ between Af and lim % 2‘]1?EXt = (1,0)*, and (4) the sample size T. We
Tw

report results for #*=.15,.3,.5,.7,.85; b=48,7296,120; ¥=0",36°, 54°, 90 ;
0% =1 . and T = 30, 60, 120. One thousand repetitions are used for each scenario. Note
that ||AB|l = b/yT is a decreasing function of T, and so, the power of a given test for
any fixed value of b is not necessarily increasingin T .

The sup F and midpoint F tests possess several desirable invariance properties that
the other two tests do not possess. First, their power is invariant with respect to the
"direction of time," and hence, they have equal finite sample power for 7* = .15 and .85,
as well as for 7* = .3 and .7. In contrast, the CUSUM test will be seen to have greater
power against changes early in the sample as opposed to late and vice versa for the fluctua-
tion test. Second, the sup F and midpoint F tests have power that is invariant with
respect to the angle . In contrast, as shown by Kramer, Ploberger, and Alt (1988), the
CUSUM test has local power that depends greatly on the angle ¢ . Its local power is zero

for 1= 90" and is maximized for %= 0°. The fluctuation test also has power that
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depends on 9. For this test, local power is least for 1 = 45° and greatest for ¥ = 0* or
90°.

Tables 3A, 3B, and 3C report the powers of the four tests under consideration for
significance level 5% and sample sizes T = 30, 60, and 120 respectively. Asymptotic
critical values are used for the sup F, CUSUM, and fluctuation tests, while exact critical
values are used for the midpoint F test. For T = 60 and 120, all of the tests are conserva-
tive (i.e., they do not over—rteject), and hence, comparisons between the tests are
meaningful. For T =30, the sup F test over—rejects and its power performance is
(misleadingly) enhanced accordingly.

Tables 4A, 4B, and 4C give the size corrected powers of the four tests under consid-
eration for significance level 5% and sample sizes T = 30, 60, and 120 respectively. The
exact critical values used for the sup F, CUSUM, and fluctuation tests were generated by
Monte Carlo using 50,000 repetitions.9 These tables eliminate the power distortions that
arise due to under— or over—rejection under the null when asymptotic critical values are
used. The power of the midpoint F test that is given in Tables 4A—4C, is the same as that
given in Tables 3A—3C, since no size correction is needed for that test.

First, we discuss the general characteristics of the power of each of the four tests as
exhibited in Tables 3A~3C and 4A—4C. Thereafter, we compare the power of the four
tests. The sup F test has power that is invariant with respect to the direction of time and
angle 4, as discussed above. Its power is always greatest when change occurs in the
middie of the sample (7* = .5) and lowest when it occurs very early or very late in the
sample (7* = .15 0r.85).

The CUSUM test has power that declines quickly with the magnitude of the angle
¥ . It has no power at angle 90° and little or no power at angle 54° in all of the scenarios
considered. The CUSUM test has greater power when change occurs in the first half of the

sample than when it occurs in the second hall. In each scenario, its power is greatest for
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o = .3, next greatest for #* = .15, and mext for 7*=.5. For 7* = .7 and .85, there
is a large drop off in power.

The fluctuation test has maximum (and approximately equal) power at angles 0°
and 90° and minimum (and approximately equal) power at 36° and 54°. The difference in
power between the former and the latter is usually in the range of 10% to 50%. Thus, the
fluctuation test’s power variés significantly with the angle ¢, but it varies much less than
does the power of the CUSUM test. The fluctuation test has greater power when change
oceurs in the latter half of the sample than when it occurs in the earlier half. The differ-
ence between halves, however, is not nearly as pronounped as for the CUSUM test. For the
fluctuation test, the values of the change point 7* in order of declining power are 5, .,
.3, .85, .15.

The midpoint F test has power that is invariant with respect to the direction of
time and the angle ¢ . As with the sup F test, it has greatest power for 7 = .5 and least
power for #* = .15 and .85. The dropoff in power from r*=.5 to 7™ = .3 and .7 t0
# = .15 and .85 is sharp. The midpoint F test has very little power when 7%= .15 and
.85.

We now discuss the relative power of the tests based on the asymptotic critical
values (Tables 3A--3C). The symbols + and = in the tables indicate those scenarios where
the CUSUM, fluctuation, and midpoint F tésts have power greater than, respectively equal
to, that of the sup F test. The scarcity of such symbols indicates the nearly uniform strict
dominance of the sup F test over the CUSUM and fluctuation tests in these tables. The
comparison between the sup F and midpoint F tests is as expected. The sup F test has
higher power at each change point except the midpoint. The sup F test has much higher
power than the midpoint F test for =* = .15 and .85, but noticeably lower power at
™ = .5. In terms of overall power performance, the sup F test is clearly the best of the
four tests in Tables 3A—3C.

Next, consider the size adjusted power results of Tables 4A—4C. The greatest
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change between Tables 3A—3C and 4A—4C is the increased power of the CUSUM and
fluctuation tests due to the correction of their under—rejection. For the CUSUM test, the
increase in power is not sufficient to alter the near uniform strict dominance of the sup F
test. For the fluctuation test, the increase in power does alter the dominance of the sup F
test. The differences between these two tests vary mainly with #* rather than with ¢ or
T . For 7* = .15, the sup F test is generally significantly more powerful than the fluc-
tuation test across different values of 9 and T . For #* = .3, it varies from slightly
more powerful to somewhat more powerful. For #* = .5, it is somewhat less powerful.
For 7* = .7, it varies from equally powerful to somewhat more powerful. For m* = .85,
it is somewhat more powerful. In sum, the overall power properties of the sup F test are
preferable to those of the fluctuation test even after size correction, but they are not
uniformly dominant. The comparison between the sui) F test and the midpoint F test in
Tables 4A-4C is quite similar to that in Tables 3A-3C.

To conclude, the sup F test is clearly the best test of the four considered in the
Monte Carlo experiment in the limited scenarios considered here. It has much less
nominal/true size discrepancy than the CUSUM and fluctuation tests. It has much better
power than the CUSUM test with or without size correction. It has much better power
than the fluctuation test without size correction and somewhat better power with size
correction. It has much better power than the midpoint I test for changes away from the
midpoint, but less power for changes at the midpoint.

Although the range of alternative scenarios considered here is quite limited, two
factors suggest a preference for the sup F test over the CUSUM and fluctuation tests for a
wider range of alternatives. First, the CUSUM test is essentially a one degree of {reedom
test and the resulting problems that it exhibits in the tables here for many angles will
manifest themselves in other scenarios as well. Second, the considerable under—rejection of
the fluctuation test will shrink its (non—size corrected) power not just for the one—time

shift alternatives considered here, but for all alternatives of parameter instability.
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Lastly, we report some Monte Carlo comparisons between the sup F—test and the

1
average F—test, defined by J FT(w)dr [m ,}xE’f:gFT(t / T)] . In terms of the distribution
0 =

of weight given to F(7) for different values of 7, the latter is the extreme opposite of
the sup F—test. In terms of closeness of true and nominal asymptotic significance levels,
the sup F—test and average F—test perform quite similarly with the sup F—test being better
overall by a slight margin. For all three sample sizes, the size corrected (and non—size
corrected) power of these two tests is remarkably similar for significance levels 5% and
10%. The sup F—test has greater power than the average F—test 1&hen d=.150r .85 and
b= 7.2, 9.6, or 12.0, whereas the average F—test has greater power than the sup F-test
when d=.5 and b =4.8. For all other scenarios, the power of the two tests is very
similar. On the other hand, when the significance level is 1%, the sup F—test has a slight,
but clear, advantage over the average F—test in terms of size corrected (and non—size
corrected) power. This result is in accord with the large sample small significance level
optimality result for the sup F—test given in Theorem 6 above.

These Monte Carlo results help to alleviate the possible criticism that the justifica-
tions given above for the use of the sup function to define the test statistic of interest are
somewhat weak. The reason is that the results indicate that the performance of a test that
is based on a function g of {Fr(7): e I1} is not overly sensitive to the choice of g, at

least for functions g within some class of "reasonable” functions.



APPENDIX
The proofs of Theorems 1 and 2 use the following two lemmas:

LEMMA A-1: Let {zt{g} 1t 21} be a sequence of rv's indezed by € =, where = is

Tr
-0 a5 Then, sup sup[ 3 Z(E)I
7e[e,1] Le= Tr1

an arbitrary space. Suppose suplTE (.f)

B0 and s 1y Bovocec<l.
L &P)T—T‘ Tr+1 t(’f)’ J

PROOF OF LEMMA A-1: To prove the first result, note that

1 <Tx 15
Al - sup su Y "Z < sup sup{giZ .
(A1) e, 08|15 (9| SzTc&Elg 72,00

By a characterization of a.s. convergence, the right—hand side (rhs) of (A.1) —B-0 iff
1 T
EEEIT?ElEZt“)

latter holds by assumption. The second result of the lemma is proved in a similar fashion

-+0 as. (e.g., see Chow and Teicher (1978, Lemma 3.3.1, p. 66)). The

- T _ oI Tr
by writing 2T1r+1"_21 -3,

LEMMA A-2: Suppose @(w) minimizes a rondom real function QT(G,W) over

2ptpg . N
fe ©CR for each 7€ T1 € [0,1] with probability - 1. If
(a)  sup [Qp(f,7)—Q(f,7)] —2.0 for some real function Q on © x I1 end
mell, fe
(b) Jfor every neighborhood © (c®) of 6,, inf(inf Q(fm) —Q(()O, m)) > 0,
el fe©/0,

then supl|B(r) — 6yl B0
mell

PROOF OF LEMMA A-2. By Assumption (b), given any neighborhood 9 of 90 ,

there exists a constant & > 0 such that in{( inf Q(67%)— Q(GO, %)] > 6> 0. Thus,
7ell BEG)/GO

P[b(w) ¢ ©/0), for some 7 € n] ¢ P[inf(Q(@(n}, %) — Q6. 7)) 2 &for some 7 ¢ n]
7ell
(A.2) < P[Q(?(w), ) — Q(f, 7) > & for some 7 € n] 0,

where " - 0" holds provided sup|Q(8(r), ») — Q(4 o ™1 —P, 0. Using Assumptions (a)
mell '



and (b), the latter follows from

0 ¢ int [Q(0(), 7) = Qldy, )] ¢ sup[QUB), 1)~ ALty )]

rell

PROOF OF THEOREM 1: We show that Assumption 1 implies that conditions (a) and
(b) of Lemma A-2 hold with  Q(6,7) = d(mp(6, m, Hm), A(r)) and Q4,7
= d(m(f, 7, 74), 70(7r)) . Condition (b) of Lemma A—2 holds by Assumption 1(d).

To obtain condition (a), note that Lemma A—1 and Assumption 1(b) imply that

(A.4) sup IiﬁlT(ﬂ,W:I) - m(G,W,I)” 0.
WEH,GE@,IETOxTO

Condition (a) of Lemma A~2 now follows from

sup Jd(mp(6, 7, 3(r)), Hm) - d(m(e, 7, 7o), 2(7)

well, 0e©
¢ gup o 1dg(0,m Z(), 5) = dlm(, 7 7(7), )
A5
" ' weﬁ?%eeid(mw’ 7, 7(m)), 3(7)) — d(m{6, 7, 70), ()|
B0,

where " —E+ 0" uses Assumptions 1(a) and (c) and (A4). O

For notational simplicity, we use the following abbreviations below: mp(f,7) for
mp(6, 7, 7(r)), m(d,r) for m(f, 7, IO)’ ¥ for ), vy for (7)), 7 for 7(m), [/
for 3‘3(1r), and Bb for E?b(vr).

a



A-3

PROOF QF THEOREM 2: Element by element mean value expansions of
\/T'a'gd ), 7), ¥} about 90 give:.Vj:l,...,2p+p3,

0, (1) = ﬂg%d(ﬁrr(b(“)’ ), )
(A.6) 2
= \{r'a'g'd(mT(BO: W)$ 'T) + Wd(mT 0* W): ) ( ( ) - 90)

where §= (), ..., B2p+p3

) and & (= 6*(7)) is on the line segment joining &(r)
and ;. The latter property and Assumption 2(a) imply that & = By + opw(l) . The
first equality of (A.6) holds because #(7) minimizes d(ﬁlT(B,vr), 3 and 8(m) isin the
interior of © Ve II with probability -1 by Assumption 2(a).

Below we show that

(A.7) Eyégzgd(rﬁrr(ﬂ*,ﬂ), ¥) = g‘ggzaz}jd(m(%’ ™ Ioh ) + 0pq(l)
where m(6,7,7) = [ml(ﬁl, g, 7,)7, (1=m)my (. B, 79)", TIg(8), by, 7))

+ (l—ﬂ)m3(02, Ba, 72)'J’ and Hpg;—d (65 ™ 7o ) 1) = M(m)'D{m)M(r). Also, we

show that
a = - ’
(A.8) VTS a(m (6, ), 3(-)) # M(-)D(-)G(-)
as a process indexed by 7€ Il . These results, equation (A.6), Assumption 2(hk), and the

continuous mapping theorem combine to give the desired result:

JI(H() = 8) = <M(-) D M( ) VTG, -), 3()) + 0 (1)
(A.9)
2 ~(M(+)'D(-)M(-))""M(-)'D(-)G(-) .

To show (A.7), we proceed as follows: Vj, {=1, ..., 2p+ g,

m;?‘?g‘gzd(ﬁlrr(g*ﬁ), ) = ’a‘g?zayzﬁlT(W,w)‘ gﬁd(mT(G”,W), )
(A.10) 2

+ Eggm':[‘(g*aw)"aagﬁ?d(m’r(g*:w): :}f)-ag?'ﬁT(e*,T) '
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By Lemma A-1 and Assumption 2(g),

1
(All) BUp Tzrlr'ﬁ mrt(glg 93, Tl) - Emrt(gli 933 Tl))“ _L 0

WEH,BIEOIO, 036630,7'1€T0 |
for 1 = 1,3 . Similarly, this result with E?T replaced by E%W +1 also holds. Combining

these results gives

A.12 sup (6, 7,7} — Edp(8,7,7)l 2.0.
(A1 nell, 060y, €T Ty T

Equation (A.12) and Assumptions 2(a), (b), (c), and (g) give

suplimn(6*, 7, 1) —m(by, 7, 7|l < suplidmp(F*, 7, 7) — Emp(6*, 7, 7)f
rell L O A0 e T T
(A.13) i A i
+ supl|Emg(f, 7, 1) —m(#, m, D + suplm(#, 7, 2) =m(0y, 7, 7o)l 20,

mell 7ell

where ErhT(H*,'rr,i) = Em(6,m,7) (0,7)=(6"7) " The second summand on the rhs

—P.,0, because the limit 'lrif: T%E?”Emrt(ﬁl, 93, 'rl) exists not only uniformly over

x 7 but also uniformly over ©,, = @30 xTyxIl for r=1,3. Using

91093070
(A.13), the uniform continuity of %ﬁd(m,v) , and Assumption 2(b), we get

(A1e)  Fdtmp(e,m), 3) = Fed(m(B, 7, 1), 9g) + 0, (1) = Q0 (1),

where the second equality holds by Assumptions 2(b), (¢), (d), (f), and (g}.

Using Assumptions 2(c¢) and (g) and Markov’s inequality, one obtains
W%UE‘T(E"‘,W) = Opﬂ(l) Vi f=1,...,2p +py. This result and (A.14) imply that
3

o1

2
Uniform continuity of Hgﬂ—,d(m,’y) , (A.13), and Assumption 2(b} give

the first term on the rhs of (A.10} is o

2 2
(A15) o (0,m),3) = g d(m(fy,m70) ) + 0, (1) = D() + 0 (1)

It follows from Lemma A-1 and Assumption 2(g) that



g (8,m7) — Eggring(6m)

(Lom

sup
weﬂ,ﬂe@ ,TET xT
(A.16)

IEW—mT(B 77— 1 lmE'ETmT(B ,7)

mell GEGO,TET -T
These  results, Assumptions 2{(a), (c), and (g) and the definition
. J _ .
M(r) = lim @6y, 7, 79) give
rim Egpinrife ™ Xy
(A.17) omp(#, 1) = M(n) + 0,,{1).
Equations (A.15) and (A.17) imply that the second term of (A.10) equals
[M(r) D(RM(m)}j;+ 0,,(1) , and hence, (A.7) is established. |
To establish (A.8), we write
(A18) VT Gty m, 3) = VI8, 7] Grdlmp(dy, ), )
Asin (A.17), we have
i
(A.19) WmT(GD, 7) = M(7) + opﬂ(l) .

By the mean value theorem, the j-th element of ﬂg—nd(rhrr(ﬁo, ), )
j=1, ..., v can be expanded about Emy(f,, m, 50) to get:

JT B%mwo, n 1, %)
= ﬂﬁd(‘sm (87, To) +am—an7d AWT @07 3) = Emep(6y,m.10) |

where m* depends on 7 and is on the line segment joining (6, 7, 7) and

(A.20)

Emq(6y m 2:0) . By (A.13), m* = m(§,, m, TO) + °p A1)
The first term of the rhs of (A.20) is Opw(l) by Assumption 2(d). Also, using
(A.13) and Assumptions 2(b) and (f),

(A.21) md(m* ) = )] +0 (1)

where [D(vr)]j denotes the j-th row of D(7).
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Using (A.18)—(A.21), the proof of (A.8) is complete once we show that
(A.22) ./T(mT(GO, T 7) - EﬁlT(BO, 7, 30)) 2 G(-).
A mean value expansion of the j—th element of mp(6,, 7, 7{(m)) about 7, yields
ﬂ(thJ(HU: 0 i-("r)) _EﬁlTJ(HO: T, IO))

(A.23) = ﬁ(mTJ( 30, , 1’0) - EﬁlTj(%: LE Io)) + 'ai_rmTj(eos ™y I*)\/T(i'(ﬂ) - zo)

= \/T(ﬁlTj(gw LA Zo) - EﬁlTj(ﬂO, LE Io)) + Opw(l) )
where 7* depends on 7 and lies on the line segment joining 7(7) and 7,. The second
equality of (A.23) holds using Assumptions 2(c) and (g), since Bg—,—ﬁlT(f?O,vr, 7*)
_ [wdml(ﬁlo, 40 Tg)"» (1=7)dm (8,0, B0, 7o)’ dmg(0y, bgg, To)f] +o (1) =9
+o_ (1) . Stacking (A28) for j=1,...,2p+py and using Assumption 2(e) gives

P
(A.22). O

PROOF OF THEOREM 3: First, suppose V (7) is as defined in (2.15) and (2.16). By
the argument of (A.15), sup||f)r(1r) — Dr(ﬂ')” = op(l) for r=1,2 and by the argument

mell
of (A.16) and (A.17), sup]lI{II(w) - M| = op(l) for 1=1,2. (Note that (A.16) still
7ell
holds with the terms in ||-|| multiplied by 1/7 or 1/(1-7).) These results and Assump-

tions 2(h) and 3 give the desired result. The proof for the case where Vr(vr) is defined as

in (2.15) and (2.17) is analogous. D

The following Lemma is used in Sections 3.1 and 3.2 to obtain simple sufficient con-

ditions for Assumptions 4(ii) and 5a(ii) to hold.

LEMMA A-3: Let  M(7) be o square mnonsingular matriz of the form

i
™ 0 ™
pxp P3*P3
0 (1-mM  (1—m)M .|, where 7€(0,1), MeR" ™, and My, €R :
My (-mMg; Mgy



’ i 2p+p3 . .
Let G=(Gy, Gs, Gé) be any vector in R and let H= [Ip:-—lp:g] . Let
7™M 0 , . -1
Mx(m) = , Ge=(G{,Gy) , end Hy=[_:-1]. Then, BM(r) "G
0 (1-mM PP

= HeMy (1) Gy .

PROOF OF LEMMA A-3: Let v=(v{,vsvs) =M(r)'G and = (¥, %)
= M*(‘?T)_IG* . Since M(7)v = G, we have

M 0 \2 _ Gl _ ';ersv3
_ 0 (1-mM vy G, (-7 )M, ,vq
v % MM v,

(A.24) ol T e , and
hvz Y LM Ml3v3

HM(W)_IG =V —vVp =¥ - ?2 == H*M*(W)PIG* . 0
PROOF OF THEOREM 4: First we establish part (a). By Assumption 4(iii),
(A.25) Clr) = (M'Dl(vr)M)_II\I'Dl(w)Sl/2 = (M'Dy(m)M) M D (r)s1/2.

Throughout this proof, we use the subscript * as a deletion operator as in Assumption 4

(except for Ji{7) which is defined below). By Theorem 2, Assumption 4(ii}, and (A.25),
VT(0,(+) = 8y(+)) = HYT(8(-) - 6,)
+ H(M(+)’ D(-JM(+))"M(-)'D(-)G()

(A.26) -1
= Ha(Ma(+) D IMa(+)) "Mal(+)' Du(+)Gis(-)

= ()7 ) - By ~ By
where Gu(+) = (v(+)", v, (1) —vl(-)’)’ and v(-) = SI/2B1(-) :
By Theorem 3 and (A.25),

(A21) V) + Vy() 3 V() + Vol) = 75000 ) + i CIe)
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Equations (A.26) and (A.27) and the continuous mapping theorem give
W(+)# (By(+) = d+)B (1))’ C(+) (C(-)C(+)) (")
x(By(+) — o +)By(1))/ [+ )1 ))] -

Now, if p=v,, then C(vr)'(C(vr)C(ar)')"IC(w) equals Ip Yr€eIl, since the

(A.28)

former is a projection matrix onto the full p—dimensional space. In this case, the first
result of part (a) holds by (A.28) with Bl(-) = B*(.).

It p<v,, then let  B*:)=(C(-)C(-))Y3C()By(-).  Since
A= (C(W)C(:rr)’)_lﬂ(}(?r) does not depend on 7 by Assu‘mption 4(iv), we have
B*(-) = AB(-) and AA’ = Ip. Thus, B*(:) is a p—vector of independent Brownian
motions and the first result of part (a) holds by (A.28) with B*(.)} = AB,(-). The second
and third results of part (a) follow from the first using the continuous mapping theorem.
The same is true in parts (b)—(e), so it suffices to establish the first result in parts (b)—(e).

Next we establish part (b). Standard arguments give: For r=1,2,

(4.20) M (m)=M+op (1), D(m) =D (r) + 0, (1), and V(x) =V (r) + o (1).

Y 9%

In addition, we show below that
0 1tm (7 -
(A30)  VTRAMR(2, 7, 3) = O, (1)
Hence, it suffices to show that LMST(v) 3 Qp(-), where LMQT(w) is the same as
LM, (), defined in (3.8), but with M, D (r), and V (7) in place of Mr(w) ,

D (m), and V (7), respectively.

Let Q(r) = Var(G(r)) and J(m) = M(7)'D(m)M(7) . Then,
TS 0

Qi) = 0 (1-m)s . Let Ju(m) denote M,(r)'Da(r)M;(7). Let = denote equality
—7

that holds with probability - 1. We have



- -1
MO (r) = Tml_‘ig;jd(mT(a ), %)JJIH; [HJ;IM*(w)’D*Q*D*M*(W)JJIH;]

* Badi g (e

s 1 1 15,17}
S TXVH.J, H:.[Hr M(r)’ DRDM(7)J™ H']

H,J Hi X

A.31 -1
(A-31) - TX‘HJ_IH'[HJ_IM(W)’DQDM(W)J_IH’] W O

= To0d(m & [Hrl (w)DQDM(w)le']_l
« Byt gpd(mT(Pa,w), oF
where the second and fourth equalities use the fact that -gyd(ﬁlT(E?a,w), ) =-H'X for
some p—vector of Lagrange multipliers A (= A7), the second equality also uses
Assumption 4(ii), the third equality uses Assumption 5a(ii), and the dependence on = of
o %, Jx, Ds, %, A, J, D, and Q is suppressed for notational simplicity.
Now we determine the asymptotic distribution of the rhs of (A.31) viewed as a pro-

cess indexed by 7€ Il. Element by element mean value expansions about 00 yield:

vi=1, ---,2P+P3,

(A.32) \/Tg%d(m B,7),3) = ﬂa%f (0™, %) Brazrd AT~ 6y)

where 67 (= 6+(7r)) lies on the line segment joining Ba(w) and f;, and hence, satisfies

gt = 90 + opﬂ(l) . Westack (A.32)for j=1, ..., 2p + Py and write it as

(a33)  JTSamm (0, ) = VToA(mp(6,m), %) + TVT(8, — ).

where by standard arguments 7’ (= Jo(r)) satisfies J‘O(Tr) = J(7) + opn(l) .

By definition of 3a , we have

(A.34) 0 = BYT(d, - 6;) -

r

By (A.8), VIZ(mp(8y,-), %+)) # M(+)'D(-)G(: ). Also, using the nonsingular-

ity of J(7) (see Assumption 2(h)), we get .70( J'O Pre—multiplication

2p+p3 )
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of (A.33) by H7°(-)"} now gives
B/ VTgAE(E,, ), H-)
= B VI (8y,e), 30 + BT, () - 6))
a35) =B VIZAm (8,0, H-))
4 BJ(-YM(-)'D(-)6()
= Halu (- IMa () Da(-)Ga ()
using Assumption 4(ii). Equations (A.30) and (A.35) yield

HI( ) VTGRARL(D,0), () # Badu()7MA() D (-)Ga ()

(A.36) 1
= S By () — 4By (1))

In addition, Assumption 4(ii) implies that

B/ IM(- ) DODM(- )7 B = H, 73 "M, () DD M, ()5 Hy
(A.37) ,
=V () + V()= WC(-)C(-)’ :
By (A.31), LMST(W) is a quadratic form in the vector given in (A.36) with weight matrix
given by the inverse of the matrix in (A.37). Hence, using (A.36) and (A.37), LM1()
has the same limit as that of W (-) in (A.28). As above, this Limit is Qp( ).
For part (b), it remains to show (A.30). With probability -1, 'Ba(vr) is in the

interior of © Vre Tl and there exists a rv A(7) of Lagrange multipliers such that

(A.38) gA(mp(8,,m), 7) + B A(r) =0 ¥rell.

Equations (A.35) and (A.38) combine to give
(a39)  —HPE VTN 2 B0 T g (m(2,m), 3) = O (1)

Since HJO g = Hi(7)" 5 4 op,’r(l) and HJ(w)_lH' is nonsingular, equations
(A.38) and (A.39) imply that yTA(7) = opw(1) and that (A.30) holds.
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We now prove part (c). Suppose that Assumption 6a holds. A two—term Taylor
expansion of d(ﬂJT(ZJa,vr), %) about & (= §(x)) gives
H%ﬂﬂ=?ﬂdmﬂ~mL%—MmﬂEﬂﬁﬂﬁ
(A.40) = 2T3Td (8,7),% (8 ~8)/b + T( ~8) o’
= T(8, - 8)7,(8, -0)/b,

where 6 (=6 (7)) lies on the line segment joining ?a and #, and hence,
0,=0y+ op,n,(l) , J.  (=J.(m) is defined implicitly and satishies J (7)
= 7(r) + o

Applying the mean value theorem element by element and stacking the equations

1),and " =" holds by the first order conditions for the estimator g

yields
TG0, 1), 7) = VIGA(R(B), 3) + JT(E, - D)
(A.41) _ .
?ﬁﬂw,w)

for a matrix JJ[ (= ']'T(W)) that satisfies ]T(‘:‘T) = J(7) + opw(l) . Pre—multiplying (A.41)
by .,T,Fl and substituting the result in (A.40) gives
) £ Tggd(mg(d,, ), 0,7 G (2, ), 2)/b

(1)
-1

— i 1 4
= TA'BIH Afb + o0

= TSuHJI,lH,;[HJ;lH;] p,,..,(1)

Ad2 -1
( ) 4 ( T(Baf’r)ﬁ)ﬂlHi[H*-TIIM*(W)'Dn:n*D*M*(?T)f;IH;]

H. 72 Hid/b + 0

=T ’ L
1’2
=H*J”

QJE‘

)+ Opr (1)

= LMY (n) + opﬂ,(l) ,

where the second equality uses (A.38), the third equality uses Assumption 5a(ii), the fifth

equality uses (A.31), and the fourth equality uses the fact that by Assumption 6a,

(A.43) M4 (7)) Dy (m) Q0 (m)Da (1) My (7) = bM, (1)’ De(m)Mu{7) = bIs(7} Vre II.
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Part (c) follows from (A.42) and the proof above that LMy () # Q)

The proof of part (d) is the same as that of part (b) given in equations (A.29) to
(A39) with the following changes: D(r)=1 , V(r)- civlsmt, g a0,
IMO(r) + LMO(m),  IMyp(m) 2 LMyg(n),  J(r)=M(r), M(r)’DADM(r)-Q,
dg(F,, ), %) 2 pp(By 7 Hm), L 2M(x), where MO(x) = M(m) + 0,,{1), and
M(-)'D(-)G(-} - G(+) . Analogous changes are made to the quantities with a subscript
* _ Note that with these changes, the third equality of (A.31) holds by Assumption 4(ii)

-1 -1 2P+P3
(which in this case says that HM({z) "x = HyMi(#) "xx Vx€R.

, Vrell), and
hence, no analogue of Assumption 3a(ii) is needed in the proof of part (d). The assertion

following (A.34) that ﬂ-g-o,bT(ﬂ , =, 7(+)) 2 G(-) is verified by noting that

VIS550(8y, -0 7)) = V(@8 + »5()) = Bip(dy, - 170)
(A44) + VTSd(Em(8, -, 7o) ()
2 G() !
by Assumptions 2(d) and (e) and (A.23).
The proof of part (e) is the same as that of part (c) given in (A.40) to (A.43) with
the same changes as in the previous paragraph plus the following changes: LR, ()
+LRyp(m), b~&, J, +M,(n), where M, (7) = M(n)+ 0pr(1), T4+ My(7), where

MT(W) =M(n)+o0_ (1), J+M(7), b=c, and Assumption 6a -+ Assumption £b. O

pr
PROOF OF COROLLARY 1: The process BB(-) = B*(-)~ 4:)B*(1), which appears
in the definition of Qp(-) , 18 a p—vector of independent Brownian bridge processes on
[0,1]. An alternative method of defining such a process is via a p—vector BM(-) of inde-

pendeni Brownian motion processes on {0,@) . In particular, we have
(A.45) {BB(7): 7€ [0,1]} = {(1-m)BM(x/(1~-7)) : m€ [0,1]},

where = denotes equality in distribution. Hence, we have
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P[ sup Qp(vr) < c] = P[ SUp BM[I%]'BM{]—%J/{%} < c]

mE[Ty , 7] ne[x;, 7
Ty6y, T8y [ Tq6
(A46) =¥ [SE[1,1r2(1—7ri1)11;(1rl(1—!2))]BM [1:%] oM [1“—7171] / [T:;lq] < C]

P BM(s) BM(s)/s < c]

up
s€[1,mo(1-7, ) /(71 (1—75))]

forall 0< m&my <l and ¢ 0, where the second equality holds by change of vari-

. T x ME [T 2 »
ables with s = | - | BMGs) = Bm[i_ﬁ]/[ﬁ ‘”1] by definition, and B¥I(-)
is also a Brownian motion on [0,@) (by direct verification).

The result of Corollary 1 is now obtained as follows:

limP[ sup  Wr(m) < c] ¢Tim lim P[ sup  Wo(r) < c]
T-o  1€[0,1] e+0 T-o  ‘7€fe, 1—¢]

(A47) =Tm P[ sup Q (7)< c] =ITm P sup BM(s)'BM(s)/s < c]
40 ‘re[e,1-¢] P -0 sE[l,(l—e)2/52]

= PLEs[g},)m) BM(s)'BM(s)/sJ =0,

where the first equality holds by Theorem 4, the second by (A.46), and the last by well-
known properties of Brownian motion (i.e., the law of the iterated logarithm). The proof is

identical for LMaT(vr), ooy LRy (7). 0

PROOF OF THEOREM 5: Part (a) bolds by the proof of Theorem 2, noting that (A.8)
holds with M(-)*D(.)G(-) replaced by M(-)(D(-)G(-) + p(-)), since the first term of
the rhs of (A.20) has probability limit u(-) rather than 0 under Assumption 2—fp. Part
(b) holds by the proof of Theorem 3.

Parts (¢)—{g) hold using the proof of Theorem 4 with references to Theorems 2 and
3 replaced by references to Theorem 5(a) and (b), with D(:)G(:) and Dy(-)Gy(-)
changed to D(-)G(-) + u(-) and Du(-)Gi(+) + us(+), with the rhs of (A.26) changed to
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C() 5B ,(+) = =By (1) = By (D) + 87207 (i ()
T T
- =5 0 )]

and with the rhs of (A.28) and (A.36) changed accordingly. 0

(A.48)

PROOF OF COROLLARY 2: By Theorem 5(c)~(g) and the nonsingularity of AS™1/2M
in (4.11), it suffices for Corollary 2 to show that

(A.49) [1—;—'”] 1/2J;rn(s)ds = [T%]llzﬁn(s)ds Vrell

does not hold. Note that (A.49) holds iff

T 1
(A.50) J ni(s)ds = WJ n(s)ds Yrell, ¥j=1, ..., p,
07 03 :
where n(7) = (n,(7), ..., np('ir))’ . Thus, it suffices to show that (A.50) does not hold.
1
Suppose (A.50) holds. Then, since FJ. nj(s)ds is twice differentiablein 7 VYre1l,
0
m
¥j=1, ..., p, somust be J nj(s)ds . In particular, we must have
0
F 1 d2 §
(A.51) ﬁJ n.(s)ds =J n.(s)ds and —'EJ n(s)ds=0 ¥rell, ¥j=1,...,p.
0 0 dr” 40 .

This implies that m; = ¢ almost everywhere (Lebesgue} on II for some constant g
¥j=1, ..., p, whichis a contradiction. o

PROOF OF THEOREM 6: Let u, = c(ll/ 2 and t_= e;/ 2 We will show that

(A.52) u,—t, 0 as a-0.

Then, using Theorem 5, we have



A-15

lim inf inf lim[P (sup W (1r)>c )-P (W (7)>¢ )]
a0 ne= #ell T-ol el T T a

=1lim inf inf[P (sup Q*(1r)1/2> u ) P (Q"‘( )1/2 )}
a~0 nec 7ell Tx

(A.53) s lim inf inf[ Q (1)1/2>u )—P (Q*(,)1/2 )}
a0 neZ well

=0,

where the last equality uses (A.52) and the fact that Q;(%) is a noncentral chi—square rv
and the density of the square root of a noncentral chi—square rv is bounded above uni-
formly over all possible values of its noncentrality parameter.

To show (A.52) we use an argument similar to that of van Zwet and Oosterhoff
(1967, p. 675). Let 7, = inf{r e} >0, let xy= sup{z€ I} <1, andlet v besuch

that P[ sup Q”‘(vr)l/2 >V ] —a. Since t_<u_<v_, to establish (A.52) it
p o a- a” a
mE(7y s 7o)

suffices to show that v —t -0 as a- 0.
By a result of James, James, and Siegmund (1987, eqn. (26), p. 78), we have

(A.54) P[ E[sup ]Qp(vr)l/2 > v&] = vag_zexp(—viﬂ){(vi ~pllog A + 4 + o{1)}
mE[Ty, Mol

as a-0, where Qp(-) is as in Theorem 4, Kp is a constant that depends only on the
dimension p  of the Brownian bridge vector that underlies Qp(-) , and
A=l - m )/ [m(1- m,)] . Taking 7; =1, =7 in (A.54) yields log A = 0 and

=11/2 -2 2
(A.55) P[Qp(vr) 25 ta] = K 2 Zexp(~12/2){4 + (1)} as a0,
The left—hand sides of (A.54) and (A.55) each equal a. Thus, the logs of the rhs of
(A.54) and (A.55) can be equated to yield
(p—2)log v, —v2/2 + log{(v2 — p)log A + 4 + o(1)}

(A.56) 2
= (p—2)log t , — ta/2 + log{4 + o(1)} and
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Caad

2
a

2 2
v o= v;[(p—z)log v, - (p-2)log t , + log{(v — p)log X

R

(A.57) + 4+ 0(1)) —log{4 + 0(1)}]
= 0(1)

as a-0, using the fact that t -o as a-0 and ta$ vy Since |va-ta|

Sva—tilva, (A.57) implies that Vo~ t,~0 88 a-0. 0
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2See Kim and Siegmund (1989), Chu (1989), Hansen (1988), and Banerjee, Lumsdaine, and
Stock (1989) for analyses of structural change with unknown change point in linear regres-
sion models with deterministically or stochastically trendinﬁ rejressors. Also see Zivot and
Andrews (1989) for an analysis of a unit root test against the alternative of a deterministic
trend with an unknown break point. The results of the above papers are quite comple-
mentary to the results given in this paper, because they allow for trending regressors,
which are not allowed here, but they only apply to linear regression models, whereas
nonlinear models are considered here. :

We also note that in the context of a linear regression model with non—trending
regressors the results of the above papers are less general than those of the present paper.
The results of Kim and Siegmund (1989) apply to a simple regression model. The results of
Chu (1989) do not cover tests of partial structural change in the regression parameters.
They also do not restrict the change point to be away from 0 and 1 as is necessary for the
asymptotics to hold for the Wald, Lagrange multiplier, and likelihood ratio statistics. The
results of Hansen {1990) are for Wald tests only. They do not include Wald tests of pure
structural change in the regression parameters—the intercept is taken to be constant
across the sample under the alternative. Nor do they include Wald tests of partial struc-
tural change in a subvector of the regression parameters other than the intercept. The
results of Banerjee, Lumsdaine, and Stock (1989) do not apply to models without one or
more stochastically trending regressors. None of the above papers covers tests of pure
structural change in the regression parameters and error variance parameters, which are
covered by the present paper.

3A1though the paper concentrates on statistics of the form (1.1), the results of the paper
apply more generally to statistics of the form g({WT(w) : 7€ I1}) for arbitrary continuous

function g (and likewise for LMq(-) and LRq(-)). Depending upon the alternatives of

interest, one may want to use a function g that differs from the "sup" function. For
example, one might consider test statistics of the form jnh(WT(vr), 7)dA(r) for some

function h and some measure X.

4The existence of the limit uniformly over 91x93xT0 means that

1T
sup T Em (6], by, 77) —m (8, s, -0,
(6,,65,71 V€0 xO5=T

SFor example, see Billingsley (1968, p. 157) for the definition of asymptotically independent
increments.

The two conditions stated are sufficient for a multivariate invariance principle,
because (i) tightness of {wp(-}'@:T 21} for each elementary unit v,+vs—vector «a

implies tightness of {wp(-):T 21}, (ii) asymptotically independent increments plus



F-2

weak convergence of VT(1I'2) —vp(7y) VO < 7 <7y <1 is sufficient for joint convergence
of all the finite dimensional distributions of {uT(-)} , and (iii) weak convergence of
vp(*)’a to  ¥(:)’a Va implies weak convergence of = (vp(mg) —vq{m)) a- to
(V('frz)— v(vrl))’a Vo, YOS <mp<l which, in turn, implies weak convergence of
vp(mg) — vp(my) to 7y) —¥(m;) using the Cramér—Wold device (re the latter, see
Billingsley (1968, p. 49)).

SUnder the assumptions, (M;I-)IMI)—I may exist only with probability - 1. When

Mfﬁer is singular, a g—inverse can be used in place of the inverse. Similar comments

apply elsewbere below.

TFor the third case, note that H(M()-D(x)M(n)) *H- = BM(x)~ID(x) (M(x)-) B
= H M (1) D(m) o (Ma(r) ) B = Ha(Ma () Da(m)M(n)) ' Hs provided

D,‘,(':r)_1 = [D(w)"l]* , where the second equality uses Lemma A—3 of the Appendix.

8By definition, this means that 5 is Riemann integrable on [0,7] ¥z eIl U {1} and
%E']f“n(t/‘l‘) - jgr}(s)ds uniformly over 7€ ITU{1} as T-o.

9For the CUSUM test, there is 1o single critical value since the test rejects if |CUSUMt|

exceeds a line with a given intercept and slope for some t . This test was size corrected by
adjusting the intercept of the rejection line while holding its slope equal to the values used
in Tables 3A-3C.
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TABLE 1

ASYMPTOTIC CRITICAL VALUES
FOR TESTS OF PARAMETER INSTABILITY WITH H = [.15, .85]a

Significance Level

Degrees of Freedom (p;)) 1% 2.5% 5% 10%
1 12.3 10.3 8.7 7.2
2 15.3 13.4 11.7 10.1
3 18.3 16.0 14.2 12.3
4 20.7 18.2 16.3 14.4
5 226 204 18.4 16.4

24.8 22.2 20.2 18.1
7 26.2 23.8 21.9 19.7
8 29.0 26.3 24.1 21.6
9 30.1 27.6 25.5 23.2
10 32.5 29.6 27.2 24.8
11 33.8 31.0 28.8 26.3
12 35.7 32.9 30.6 28.0
13 37.4 34.5 32.1 29.4
14 38.9 35.9 33.5 30.9
15 41.0 38.0 35.4 32.5
16 42.8 39.2 36.7 34.0
17 44.1 40.8 38.3 35.5
18 45.4 42.3 39.8 37.0
19 46.9 43.9 41.3 38.5
20 48.4 45.2 42.6 39.7

8Gee Comment 3 following Theorem 4 {or the definition of these critical values.



TABLE 2

SIMULATED FINITE SAMPLE SIGNIFICANCE LEVELS

Sample Size Test Statistic 1% 5% 10%
T = 30 Sup F 2.3 7.1 11.3
(.07) (.11) (.14)
CUSUM .25 2.5 b.B
(.02) (.07) (.10)
Fluctuation .01 .53 1.9
(.00) (.03) (.06)
T = 60 Sup F 1.3 4.9 8.8
(.05) -(.10) (.13)
CUSUM .49 3.2 7.1
(.03) (.08) (.12)
Fluctuation .20 1.6 4.1
(.00) (.03) (.06)
T = 120 Sup F 1.0 4.6 8.6
(.04) (.09) (.13)
CUSUM .64 .39 8.1
(.04) (.09) (.12)
Fluctuation .40 2.7 6.2
(.03) (.07) (.11)
T = 240 Sup F 91 4.3 8.4
(.09) (.20) (.28)
CUSUM .62 3.8 8.3
(.08) (.19) (.28)
Fluctuation 65 3.4 7.5
(.08) (.18) (.26)
T = 1000 Sup F .96 4.6 9.2
(.10) (.21) (.29)
CUSUM 1.1 4.6 9.2
(.10) (.21) (.29)
Fluctuation .80 4.3 9.3
(.09) (.20) (.29}




TABLE 3-A
SIMULATED POWER USING 5% ASYMPTOTIC CRITICAL VALUES (T = 30)
b\p= 0 36° 54° 90° 0 36° 54° 50°
(a) Sup F Test (b) CUMSUM Test
7 = .15 4.8 18 A7 .18 DY A7 .09 05 .01
7.2 .36 .34 .35 37 .35 .18 .08 .01
9.6 .59 .60 .60 .59 b1+ .32 11 .00
12.0 .82 .83 81 .82 .80 .48 .15 .00
=.3 4.8 .39 .33 32 .35 .16 .09 .04 01
7.2 .68 .64 62 67 .38 18 .07 .01
9.6 .90 87 .87 .90 .62 32 .09 .00
12.0 .99 .89 .88 .99 .83 - .46 11 .00
™ = .5 4.8 .43 40 .40 41 .09 .05 02 .01
7.2 a7 .76 .76 .74 22 A1 .03 .00
9.6 .96 .86 .96 .96 .39 .16 .04 .00
12.0 .99 1.00 1.00 1.00 .58 23 .05 .00
=7 4.8 .35 .35 .39 .34 03 .02 02 01
7.2 .68 .71 .68 .66 05 03 01 .01
9.6 91 .92 .93 91 10 04 .01 .00
12.0 .99 .89 .88 .99 14 05 01 .00
= .85 4.8 .18 A7 16 A7 .02 02 .02 02
7.2 37 .35 34 .35 .02 02 .02 02
8.6 61 .08 58 .57 02 01 .01 .01
12.0 .82 .82 81 81 02 01 .01 .00
(c) Fluctuation Test (d) Midpoint F Test
™ = .15 4.8 .00 .00 .01 .01 .08 87 .08 .07
7.2 .01 01 01 .01 .09 .09 10 .09
96 01 01 01 .02 11 A1 11 10
12.0 .02 01 01 .02 12 A3 A3 i
= .3 4.8 .04 .02 02 05 19 18 A7 18
7.2 .14 .05 05 .14 .34 30 31 .32
9.6 3T 12 A1 Ry 50 A7 45 A48
12.0 67 21 .20 .66 67 61 .62 B4
=5 4.8 .16 10 A1 16 54+ 83+ 53+ LBl+
7.2 .53 31 .26 .49 87+ .89+ 87+ .85+
9.6 87 .59 .54 .84 98+ .98+ .89+ .90+
12.0 .98 .83 81 .99 1.004+ 1.00= 1.00= 1.00=
=.7 4.8 .10 07 07 .09 .20 20 .20 A8
7.2 .32 .20 19 33 39 .36 37 33
9.6 .69 42 41 .65 .01 .53 .54 .50
12.0 91 .67 .65 .90 67 .69 70 .65
= .85 4.8 .01 .01 01 .01 07 06 07 07
7.2 .02 .01 01 02 .09 .08 .08 .09
9.6 .04 .01 .02 05 10 .09 10 11
12.0 .06 .01 .02 .08 13 10 11 12
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TABLE 3-B
SIMULATED POWER USING 5% ASYMPTOTIC CRITICAL VALUES (T = 60)
b\p= 0° 36 54 80’ 0° 36 54 90
(a) Sup F Test (b) CUMSUM Test
x* = .15 48 17 .15 15 .18 194 A1 .07 02
7.2 37 .35 34 .36 414 24 A1 .02
9.6 .65 .60 .59 B85 BT+ 41 .18 .01
12.0 .88 84 B4 87 .86 .61 27 01
™ =.3 4.8 33 34 32 31 21 .13 .07 .02
7.2 67 .69 67 .69 .49 27 13 .01
.6 93 93 02 .92 .78 48 19 .01
12.0 1.00 .99 99 .99 .94 .67 27 .00
™=.5 4.8 41 41 40 .40 .13 .07 .04 02
7.2 77 ST RO .79 31 186 .06 .01
9.6 .08 97 96 .96 .60 .29 10 .01
12.0 1.00 1.00 1.00 1.00 .BD 47 14 .00
=7 4.8 32 32 33 34 .04 .03 .02 02
7.2 67 67 69 .69 10 05 03 .01
9.6 92 .92 90 92 .20 .09 .03 .01
12.0 99 .99 a9 .99 .33 14 .03 .00
7 = .85 4.8 17 19 20 A7 .03 .03 .03 .03
4.2 37 .42 41 37 03 03 .02 02
8.6 65 71 71 .66 .04 .03 02 01
12.0 88 .91 a1 .88 05 03 .02 .01
(c) Fluctuation Test (d) Midpoint F test
™ = .15 4.8 02 .03 .03 .04 .08 .08 .08 .08
7.2 D6 .04 .05 07 A1 .10 11 12
0.6 13 .07 .08 .13 .16 .14 .15 17
12.0 .25 .10 .10 .24 21 18 .20 .24
7 =.3 4.8 .15 .12 12 .16 .20 .22 .22 .22
7.2 46 .33 31 .46 43 42 42 A1
9.6 .81 .63 .63 .80 .63 .66 .66 .64
12.0 97 BT .86 97 81 .B3 .83 .85
™ =5 48 .32 .24 .24 .32 .56+ OB+ LGRS .h6+
7.2 73 .59 58 .76 904 90+ B804+ 014
9.6 96 .87 .88 .95 894+ 894 994 1.004
12.0 1.00= .99 .98 1.00= 1.00= 1.00= 1.00= 1.00=
™ =1 4.8 .20 .16 J14 .20 .20 .22 22 22
7.2 54 .39 .40 .58 .42 42 42 42
9.6 .86 .68 .70 87 .63 .65 £5 .65
12.0 .08 .80 .90 .98 Bl .83 .83 .B5
™ = 85 48 03 .04 .05 .05 .08 10 10 .08
7.2 .11 .09 10 12 2 .14 .14 13
96 .25 .20 .16 .26 .16 21 21 .19
12.0 .49 .33 .32 .50 .23 .28 .29 .24




TABLE 3—C
SIMULATED POWER USING 5% ASYMPTOTIC CRITICAL VALUES (T = 120)
b\p= 0° 36° 54° 80° 0* 36° 54° 90°
(a) Sup F Test (b) CUMSUM Test
™ = .15 4.8 14 .16 16 a7 A9+ 12 07 .03
7.2 .35 35 .38 .40 A3+ .27 14 .03
9.6 .64 .65 .66 .68 89+ .47 .23 .03
12.0 .88 .88 .89 .89 89+ 67 .34 .02
™=.3 48 .30 .30 .33 .33 21 12 07 .03
7.2 67 67 .68 .70 52 29 13 .03
9.6 91 .93 .93 .93 81 06 .24 .02
12.0 1.00 .99 1.00 .99 .95 .78 .36 .02
=5 4.8 37 37 .38 38 13 08 .05 .03
7.2 .78 .78 7 .78 .36 21 .08 .03
9.6 87 87 97 97 67 .39 15 .02
12.0 1.00 1.00 1.00 1.00 .88 .61 24 01
7% =7 4.8 31 .32 31 .30 .06 .05 .04 .03
7.2 67 68 67 70 12 .07 .05 .03
9.6 .94 .93 .93 .92 .26 .13 .06 .02
12.0 .99 .99 .99 1.00 A5 22 .07 .02
™ = .85 4.8 14 14 15 A7 .04 .03 03 .03
7.2 .36 .38 38 .39 04 .04 .03 .03
9.6 .66 .65 .66 87 .06 .04 .04 .03
12.0 .88 87 87 .88 .08 .05 .03 .02
(c) Fluctuation Test (d) Midpoint F Test
™= .15 4.8 .06 06 .06 .06 07 08 .08 08
7.2 12 A1 A1 14 A1 A2 13 12
9.6 27 18 .20 31 18 .19 .19 .20
12.0 50 .35 37 54 .26 27 27 .29
™=.3 4.8 .22 19 18 24 .19 21 .21 .23
7.2 .58 46 A1 .61 43 43 44 45
9.6 .88 .76 78 .89 .69 .68 .67 .68
12.0 .89 .85 .95 99= 87 .86 .88 .86
™ =.5 4.8 38+ 31 .30 40+ 554+ 54+ 544+ b4+
7.2 .80+ .66 .67 .80+ .90+ .90+ .91+ .91+
9.6 97= .92 92 98+ 99+ 1.00+ 1.004+ 1.00+
12.0 1.00= 1.00= 1.00= 1.00= 1.00= 1..00= 1.00= 1.00=
™ =.7 48 .25 .20 19 .20 A9 .20 .20 22
7.2 .64 48 A48 .65 42 43 .44 .45
9.6 91 .80 .79 .90 .69 .68 .67 .68
12.0 9= .06 .95 1.00= 87 87 87 .86
™ = .85 4.8 .07 .06 .06 .08 .07 .08 .09 .08
7.2 .16 12 A3 .16 12 12 12 13
9.6 .38 24 24 .39 18 18 .18 19
12.0 .65 .44 42 .66 .26 27 .28 .29
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TABLE 4-A
SIMULATED POWER USING 5% SIZE ADJUSTED CRITICAL VALUES (T = 30)
b\p= 0° 36° o54° 80° 0° 36° 54° 90°
(a) Sup F Test (b) CUMSUM Test
™ =.15 4.8 13 13 14 14 244+ 164+ .09 04
7.2 .30 28 .28 .30 494+ 29+ .14 02
9.6 .53 .53 .53 .53 124 .46 .20 .02
12.0 .78 .78 .76 a7 86+ .62 25 .01
=.3 4.8 .30 27 26 .29 24 15 .08 03
7.2 .61 .57 1) .60 48 28 A1 01
8.6 .88 .83 .83 .86 72 44 .16 01
12.0 .08 .98 .87 97 .88 . .58 .19 .00
™ =.5 4.8 .35 .35 .34 33 14 .09 05 .03
7.2 .72 .70 .69 .69 - .30 .16 .05 01
0.6 .93 .94 54 .94 .49 .24 .08 .01
12.0 .99 .99 99 1.00 .69 .34 .08 .00
=7 4.8 .28 .29 .29 26 .06 04 04 .03
7.2 .62 .64 .62 o8 .09 .05 .03 01
9.6 .88 .88 .90 .89 15 .07 .03 01
12.0 .98 .98 .98 98 21 .09 02 .00
7 = 85 4.8 .13 12 12 13 .04 .08 .0 .05
7.2 .30 27 27 .30 .04 .04 .04 .04
9.6 .54 .53 .52 .52 03 03 .03 03
12.0 a7 a7 .76 76 02 02 .02 02
(¢c) Fluctuation Test (d) Midpoint F Test
= .15 4.8 07 07 07 .07 .08 07 08 .07
7.2 .08 .08 .08 .08 .09 09 .10 09
9.6 11 10 .09 A1 11 11 A1 10
12.0 13 10 11 12 12 13 13 A1
™ =.3 4.8 23 16 17 21 19 18 17 18
7.2 .51 .34 .32 51 34 .30 31 32
9.6 81 .05 56 .78 .50 A7 45 A48
12.0 .95 .79 75 .95 87 .61 62 .64
™ =5 4.8 47+ 38+ 36+ .43+ B4+ 83+ B3+ 51+
7.2 82+ a2+ 70+ .80+ 87+ .89+ .87+ 85+
9.6 97+ 92 .92 98+ 98+ 58+ 98+ 99+
12.0 1.00+ .89= .99= 1.00= 1.06+ 1.00+ 1.00+ 1.00+
=.7 4.8 32+ 314 S+ 33+ .20 20 20 .18
7.2 14+ 61 .89 66+ .35 .36 37 33
9.6 92+ .84 .86 93+ 51 .53 .54 .50
12.0 99+ .97 9T .99+ 67 69 70 .65
= .85 4.8 .09 .08 09 10 07 .06 07 07
7.2 15 12 A3 16 .09 .08 .08 .09
9.6 28 16 A7 28 .10 .09 10 A1
12.0 48 .23 .22 .46 13 .10 11 12




TABLE 4-B
SIMULATED POWER USING 5% SIZE ADJUSTED CRITICAL VALUES (T = 60)
b\p= 0° 36° b4* 90* 0* 36° 54° 80°
(a) Sup F Test (b) CUMSUM Test
=.15 48 a7 .15 .16 .18 24+ 15= .09 .05
1.2 .38 .35 .34 .36 4B+ 31 15 .03
9.6 .63 .61 .59 .65 144+ 48 .23 .02
12.0 .88 .84 .84 .87 90+ .67 33 .02
™ =3 48 .33 .34 .33 31 .26 16 .09 04
7.2 67 .69 67 .69 .54 .32 15 02
9.6 .83 .83 .92 .93 a9 .95 24 .02
12.0 1.00 .99 .99 .99 .94 12 .33 .01
™ =.5 4.8 41 41 40 40 17 10 06 03
7.2 7 17 80 79 37 20 08 02
5.6 98 97 96 .96 .65 35 12 01
12.0 1.00 1.00 1.00 1.00 84 53 18 01
=.7 4.8 33 32 33 35 07 05 04 04
7.2 67 67 69 .69 13 07 04 02
9.6 92 92 80 .92 24 11 04 02
12.0 99 99 99 .99 .39 18 05 01
= .85 4.8 17 19 20 17 .05 05 04 04
1.2 37 42 41 37 05 04 04 04
9.6 65 71 71 67 05 04 03 03
12.0 88 91 91 88 06 04 03 02
(c) Fluctuation Test (d) Midpoint F Test
= .15 48 .08 .07 .08 .09 .08 .08 .08 .08
7.2 .15 A2 12 16 d1 10 11 12
8.6 .29 .19 18 .29 .16 .14 15 A7
12.0 46 .28 .26 A7 21 18 .20 24
=.3 4.8 .30 27 .29 31= .20 22 .22 22
7.2 .66 .06 .06 67 43 42 42 41
9.6 91 .84 .83 81 .63 .66 .66 64
12.0 1.00= .96 .96 98= .81 .83 .83 .85
=.5 4.8 48+ 43+ 42+ 494 56+ B8+ .56+ .56+
7.2 85+ .77= .79 87+ 0804+ .90+ .90+ 914
9.6 994+ .97=  .96= .08+ 99+ .99+ .99+ 1.00+
12.0 1.00= 1.00= 1.00= 1.00= 1.00= 1..00= 100= 1.00=
=7 48 a1+ 31 30 .38+ 20 22 22 22
7.2 Ti+ 60 63 15+ 42 42 42 42
9.6 94+ 86 87 95+ 63 65 65 65
12.0 1.00+ 98 97 1.00+ 81 83 83 85
= .85 4.8 13 12 12 A2 .08 10 10 08
7.2 25 25 24 .25 a2 14 14 13
9.6 46 40 40 49 .16 21 21 15
12.0 72 60 61 13 23 28 28 24
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TABLE 4-C
SIMULATED POWER USING 5% SIZE ADJUSTED CRITICAL VALUES (T = 120)
b\p= 0 36 54  90° 0° 36 54 90°
(a) Sup F Test (b) CUMSUM Test
7™ = .15 48 14 A7 A7 A7 22+ .15 .09 .04
7.2 37 .36 .38 42 A7+ .30 16 .03
9.6 .65 .67 .67 .69 a3+ .50 .26 .03
12.0 .88 .89 .90 .90 A1+ .71 .38 .03
™=.3 4.8 31 31 33 .35 24 15 08 04
7.2 68 68 69 a1 55 32 15 03
8.6 92 93 04 93 82 60 26 03
12.0 1.00 1.00 1.00 .99 96 79 40 02
™ =.5 4.8 38 38 39 .39 15 10 07 04
7.2 79 75 78 79 40 22 10 03
9.6 97 97 97 98 .69 43 17 03
12.0 1.00 1.00 1.00 1.00 .89 65 26 02
™ =1 4.8 32 33 32 .32 07 06 05 04
7.2 68 69 69 71 14 09 06 03
9.6 94 83 93 .93 29 15 07 03
12.0 1.00 89 09 1.00 48 25 09 02
= .85 4.8 15 15 16 17 .05 04 04 04
7.2 38 39 39 40 .06 05 04 04
- 9.6 68 66 67 .68 07 05 04 03
12.0 89 88 88 .88 .09 06 04 03
(c) Fluctuation Test (d) Midpoint F Test
= .15 4.8 .09 10 10 11 .07 .08 .08 .08
7.2 .20 A7 18 .22 11 12 13 12
9.6 .39 .30 32 42 .18 .19 .19 .20
12.0 .64 48 50 .68 .26 27 27 .29
=.3 4.8 324+ .27 27 .34 19 21 21 23
7.2 .68= .58 .60 124 .43 .43 44 45
9.6 93+ .87 87 94+ .69 .68 67 .68
12.0 .99 .98 .99 1.00+ 87 .86 .88 .86
™=.5 4.8 A7+ 434+ 404 4B+ 554+ b4+ B4+ 54+
7.2 86+ .78 a7 87+ .80+ .80+ 914+ 91+
0.6 89+ .96 96 99+ .89+ 1.00+ 1.004+ 1.00+
12.0 1.00= 1.00= 1.00= 1.00= 1.00= 1.00= 1.00= 1.00=
= .7 4.8 .35 .29 28 .39 19 .20 .20 .22
7.2 734+ 61 .62 T3+ 42 43 44 45
9.6 95+ .88 .88 95+ .69 .68 67 .68
12.0 1.00= .08 .98 1.00= 87 87 87 .86
= .85 4.8 1 A1 d1 .13 .07 .08 .09 .08
7.2 .25 .21 .20 25 A2 A2 12 13
9.6 .50 37 37 .52 .18 .18 18 .19
12.0 .76 o7 .58 i .26 27 .28 .29




