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Abstract: We present a new approach to the theory of imperfect competition
and apply it to study price competition among differentiated products. The
central result provides general conditions under which there exists a pure-strategy
price equilibrium for any number of firms producing any set of products. This
includes products with multi-dimensional attributes. In addition to the proof
of existence, we provide conditions for uniqueness. Our analysis covers location
models, the characteristics approach, and probabilistic choice together in a unified
framework.

To prove existence, we employ aggregation theorems due to Prékopa (1971)
and Borell (1975). Our companion paper [Caplin and Nalebuff (1990)] introduces
these theorems and develops the application to super-majority voting rules.
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The results in this paper are related to the independent and simultaneous work
of Egbert Dierker; we discuss the relationship at the end of Section 5.



AGGREGATION AND IMPERFECT COMPETITION 1

1. INTRODUCTION

We present a new approach to the theory of imperfect competition and apply it to
study price competition among differentiated products. The central result is that there
exists a pure-strategy price equilibrium for any number of firms producing any set of
products. In addition to the proof of existence, we provide conditions for uniqueness. Qur
mode] both unites diverse strands of the earlier literature and opens up uncharted areas
for future analysis. In particular, we expand the traditional one-dimensional framework

to allow for multi-dimensional product differentiation.

Our approach involves twin restrictions on consumer preferences: one on individuals’
preferences, the other on the distribution of preferences across society. These are general-
izations of the restrictions supporting 64%-majority rule presented in Caplin and Nalebuil

(1988).

To prove existence, we apply a new technique of aggregation. This technique is valu-
able in a variety of other problems. In the companion paper, we use the aggregation result
to generalize our earlier work on 64%-majority rule and to characterize the relationship
between the distribution of human capital and the distribution of income [Caplin and

Nalebuff (1990)]. There are additional applications in statistics and in search theory.

We begin with a brief review of the early literature on imperfect competition, de-
scribing in more detail the existence problem and previous solutions. Section 3 presents
our twin assumptions, and shows that they cover many standard cases. In Section 4, we
introduce the aggregation theorem and use it in the analysis of demand functions. The
proof of existence of equilibrium is in Section 5, and uniqueness results follow in Section
6. Section 7 discusses the importance of dimension in models of imperfect competition.
A series of extensions is provided in Section 8. Concluding remarks are in Section 9. All

propositions stated without proof are demonstrated in the Appendix.
2. IMPERFECT COMPETITION AFTER HOTELLING

In his celebrated paper, “Stability in Competition,” Harold Hotelling (1929) built
the pioneering model of product differentiation. Following Bertrand (1883) he believed

that price is the relevant strategic variable in oligopoly competition.” Unlike Bertrand, he

' It may help to set Hotelling’s (1929) work in historical context. The theory of imperfect

competition begins with Cournot (1838). Cournot solved for equilibrium output of a group of
firms producing identical goods at zero cost. Bertrand (1883) objected to Cournot’s model on
the grounds that price was the natural strategic variable in oligopoly situations. This radically
altered the nature of the equilibrium, forcing price to zero in the Cournot model. In his turn
Edgeworth (1897) pointed to an instability in the Bertrand model; once capacity constraints are
added, there may be no equilibrium in prices — at least not in pure strategies. Beckmann (1965)
and Levitan and Shubik (1972) provide an early consideration of mixed strategies; Kreps and
Scheinkman (1983) use this mixed strategy approach to show the connection between Bertrand
competition and Cournot outcomes in the presence of capacity constraints.
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emphasized the importance of imperfect substitutability in mitigating price competition:
a firm does not take all its competitors’ business by slightly undercutting in price. To
capture this, Hotelling modelled the price and location decisions of firms selling goods
differentiated by their location along Main Street. He first calculated equilibrium prices
for given firm locations and then used this solution to study optimal locations. Hotelling
concluded that competitive forces result in too little product diversity — the celebrated
“principle of minimal differentiation.” Unfortunately, Hotelling’s model was a false start.

Firms may pick products for which there are no equilibrium prices.?

The nature of the existence problem is seen clearly if one tries to base a proof of exis-
tence on a standard fixed-point argument. It is straightforward to build models where each
firm’s best response to other firms’ prices is bounded and has standard continuity prop-
erties. Specifically, the best response correspondence is typically upper hemi-continuous,
suggesting that Kakutani’s theorem should be used to demonstrate existence. However
the fixed point argument requires that the best-response correspondence be convex valued.
This condition may fail in the context of imperfect competition. Without any restrictions
on market demand, it may be that two extreme strategies, either charging a high price to
a select group of customers (for whom the product is well positioned) or charging a low
price to a mass market, both dominate the strategy of setting an intermediate price. It is

this issue which has been the major stumbling block in the study of existence.

In response to the existence problem, several different directions have been explored
[Gabszewicz and Thisse (1986) provide a valuable survey]. There are a series of papers
describing the magnitude of the problem; for example, an entire issue of Regional Science
and Urban Economics is devoted to negative results [see Macleod (1985) and Shulz and
Stahl (1985) for an overview]. A second approach looks for a different type of equilibrium
concept; there is the conjectural approach [Eaton (1972)] and price discrimination [Lederer
and Hurter (1986)]. Although no pure strategy price equilibrium may exist, Dasgupta and
Maskin (1986) show there will be a mixed-strategy solution in Hotelling’s model. This
solution has been calculated by Osborne and Pitchik (1987); unfortunately, its complexity

effectively rules out any comparative static analysis.

On the positive side, several authors have explored special conditions under which a
pure strategy price equilibrium exists [Economides (1989}, Gabszewicz and Thisse (1979),
Hauser (1988), Hauser and Wernerfelt (1988), Lane (1980), and Shaked and Sutton
(1982)]. In these models, demand functions are concave in own price (or log-price) so

2 In Hotelling’s model, demand is in fact discontinuous when firms are located close together.
Hotelling recognized this, but chose to ignore it as “adventitious”. The issue was more serious
than he realized. Shubik (1959) and Vickrey (1964) recognized the flaw in Hotelling's reasoning.
d’Aspremont ef. al (1979) then proved that the discontinuity in demand rules out existence
of an equilibrium in the Hotelling model once firms are sufficiently close together. While it is
simple to alter the model in ways that restore the continuity of demand, guaranteeing existence
of equilibrium is far more challenging.
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that there is a unique best-response, and a fixed point argument applies to prove ex-
istence. This approach requires a judicious selection of the utility function and strong
restrictions on the distribution of consumer types. In some cases all incomes are equal;
in the others, all preferences are the same. All are one-dimensional and have consumers

uniformly distributed over the market area.

The restriction to product differentiation along one dimension is a real constraint. It
limits the scope of consumer preferences (see Proposition 8). It also places an artificial
limit on the extent of competition and interaction between firms that is only gradually
relaxed in higher dimensions (see Proposition 9). But primarily, it limits applications.
Most products are naturally multi-dimensional. Computer printers vary in terms of speed,
noise, and clarity of cutput. Cars vary in size, comfort, sportiness, fuel economy, reliability,
and in many other dimensions. The multi-dimensional nature of products is particularly
evident in marketing new products. Frequently, the entrant is differentiated from the
existing brands by introducing a new dimension to the characteristics space; caffeine-free
soda and Jow alcohol beer are two recent examples. This suggests that a multi-dimensional
setting is fundamental to the study of product differentiation.

There are several existing multi-dimensional models of product differentiation. Dixit
and Stiglitz (1977) and Spence (1976) use a multi-dimensional C.E.S. model to consider
whether a competitive market will provide an optimal amount of product diversity. Their
approach relies on a completely symmetric model.® This bypasses any issue of product
design and questions where asymmetries play a prominent role. Multi-dimensional proba-
bilistic choice models have been developed by Perloff and Salop (1985), Anderson and de
Palma (1988), and Anderson, de Palma, and Thisse (1988, 1989). The logit model of An-
derson and de Palma is especially notable for the sophisticated statement of the conditions
for existence, which are far weaker than the concavity condition on demand applied in the
spatial location literature. But once again, the models requires a completely symmetric
specification of competing products; issues of product design cannot be addressed. In con-
trast, the characteristics approach to product differentiation, pioneered by Gorman (1980)
and Lancaster (1966), is well-suited to issues of product design. However, application of
multi-dimensional characteristics models to imperfect competition has been limited by the
difficulty in establishing existence of equilibrium.

Ve present a new resolution to the existence problem. Our model covers each of these
alternative approaches to the theory of differentiated products. Yet there is no imposition
of symmetry nor any restriction to one-dimensional products. Thus our existence result
opens up the possibility of studying multi-dimensional product differentiation and prod-
uct design. Behind these advances lie aggregation theorems due to Prékopa (1971) and

% These authors consider the C.E.S. demand that arises in the limit with an infinite number of

competing firms. They do not consider the issue of whether an equilibrium exists for the standard
C.E.S. model with a2 finite number of firms: Proposition 14 provides this existence result.
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Borell (1975). These results provide ideal mathematical tools for the study of imperfectly

competitive markets.
3. THE MODEL

There are m firms. Firm ¢ produces a single product, z;, at cost ¢;. Product charac-
teristics are fixed at the stage when firms engage in price competition. Given the set of

products in the market, Z = [27,...,2,,), firms simultaneously choose prices.

All products lie in a w-dimensional Euclidean space, X C R*. We use ). to represent
a general element from the set X and yj is its k™ characteristic, x = (X1, -, Xk, -+, X )-
The reason for this additional notation is to differentiate the k™ product, z;, from the

k™ characteristic of an arbitrary product, yx.

Initially, we consider a market where consumers purchase a single unit of one of the
differentiated products, and where all consumers have identical incomes, ¥ > 0. In the
extensions section, we allow for non-exclusive and variable levels of consumption, variable
income, as well as the possibility that a consumer purchases none of the differentiated

goods.

Consumer preferences are defined over the differentiated commodity vector, x, and
a numeraire commodity, z. Preferences vary across consumers as summarized by an n-
dimensional index of consumer characteristics, @« € R™. An individual of type o has

preferences represented by a utility function U(e, x, z).

We introduce two restrictions on the domain of preferences: one on individual pref-
erences, the other on the distribution of preferences across society. These generalize the
restrictions used in our study of voting behavior [Caplin and Nalebuff (1988) and (1990)].
With these assumptions, we will demonstrate the existence of a pure strategy price equi-
librium for any given set of products. We emphasize that these conditions are sufficient,

but not necessary, for existence of a pure-strategy equilibrium.*

THEOREM: Under Al and A2, for any m firms and arbitrary products z, there exists

a pure strategy Bertrand-Nash equilibrium.

ASSUMPTION Al: Preferences are linear in a:

(3.1) Ul x2) = 3 arte() +9(2)tnsr (X) + tuta ()
k=1

where U : R" x X x Ry — R, t : X — R"*%. Additionally, g is a strictly increasing

concave function and t,41(x) > 0.

4 See Champsaur and Rochet (1988), Dierker (1988), Hart (1985), and Salop (1979) for exam-
ples of existence results that fall outside our framework.



AGGREGATION AND IMPERFECT COMPETITION 5

Each individual evaluates a product by a weighted sum of its benefits. These benefits
are determined by a function ¢ which maps the w-dimensions of the product characteristics
into an (n 4 2)-dimensional vector of utility benefits. For example, the benefits from
a car include comfort and speed, which may be complicated functions of the physical
attributes. In our framework, all consumers have a common assessment of product benefits
but may differ over how they value these benefits. The n-vector of preference parameters
« reflects the weights an individual assigns to each of the first n product benefits. The
benefit t,4¢ affects the marginal utility of income; the benefit t,2 is commonly valued
across the population. Note that in most applications, preferences take the simpler form
Ule,x,2) = Y 5—q @xh(xx) + g(2), where h : R — R; the k'* benefit depends only on the

kt* characteristic and w = n.

Under Al, the function describing the distribution of types can be represented by
a density function, f(«), on utility parameters a € R™. This paper focuses on settings
for which f(a) satisfies a weak form of concavity. We first present the definition which

provides a general measure of concavity and continue with our specific assumption.

DeriNiTION: Consider p € [—oo,00]. For p > 0, a non-negative function, f, with
convex support B C R™ is called p-concave if ¥ oq, 07 € B,

Flax) 2 (@) + (1 - N f(ar)?, 0<a <,

where ay = Aag + (1 ~ A)ay. For p < 0, the condition is exactly as above except when
f(eo)f(en) = 0, in which case there is no restriction other than f(a,) is non-negative.
Finally, the definition is extended to include p = 00,0, —oco through continuity arguments

as discussed below.

This definition is discussed in detail in our companion paper. Briefly stated, for p
positive, f” is concave while for p negative, —f? is concave.® The index p is a measure
of the degree of concavity of the density; a p-concave function is also p’-concave for all
p' < p. The limiting case of p = oo requires f uniform over its support. The standard
definition of concavity corresponds to p = 1. The case of p = 0 is another central case
and corresponds to log-concavity of f, In[f(ax)] > An[f(e)] + (1 = A) In[f(ea1)]. Finally,
the limiting case of p = —oo corresponds to f quasi-concave.

AssuMmPTIoN A2: The probability density of consumers’ utility parameters satisfies:
f(a) 1s p-concave, p = ;—;—‘1, with convex support B C R™ with positive volume.

Before proving the existence theorem, we provide a discussion of the two conditions
and show that they cover many standard cases. We begin with examples of probability

% This assumes that f” defines a function. If there are multiple solutions (such as when f(a) =

. ki
a?, f7 = %a) then the statement applies to the unique positive root of f”.
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distributions that satisfy A2 and utility functions that satisfy Al. We then provide addi-
tional examples which exploit the joint nature of Al and A2. Although written separately,
the two assumnptions should be read as one joint restriction: all that is required is that

both A1l and A2 are satisfied for some parameterization of preferences.

Assumption A2 is new to the economics literature. It plays a central role in demon-
strating that the aggregate demand functions are well behaved. To understand this as-
sumption, note first that n—__;—rconcavity is a weaker condition than log-concavity of f.
Hence the entire class of log-concave densities is covered. This includes the multivariate
beta, Dirichlet, exponential, gamma, Laplace, normal, uniform, Weibull and Wishart dis-
tributions. In some of these cases, log-concavity requires restrictions on the parameter
values as provided in Prékopa (1971).

In going beyond log-concavity A2 covers multivariate Cauchy, Pareto, F-distributions
and t-distributions. These are all p = —'#—concave. QOur requirement of p = ;;—11 Imposes
certain conditions on the parameter values. These conditions are provided in Borell (1975)
and reproduced in Caplin and Nalebuff (1990). As an example, we illustrates the appli-

cation of A2 to the multivariate Student’s {-distribution.

ExaMPLE 3.1: The density of the n-dimensional ¢ distribution with a degrees of freedom
1s: '

fla)x {1+ %(a’ — VM e —p)]"@F™/2 0 MY s positive definite.
Note that f=1/("*+) is the square root of a quadratic form and hence convex. In turn, this
implies all functions f* are convex for ¥ < —1/(n 4 a). Thus the ¢-distribution satisfies
A2 provided a > 1. The borderline case a = 1 is the multivariate Cauchy distribution

which therefore satisfies A2 without any additional restrictions.

It is interesting to note that in this example, the restriction on the parameter o
is independent of the dimension n. A2 is neither more nor less restrictive in higher
dimensions. The higher exponent in p = ;—11 is just offset by the addition of another
dimension to the density. In a similar fashion, the parameter restrictions for the Pareto

and F-distributions to satisfy A2 are also dimension-free,

In many cases, economic reasoning requires that o is positive. A truncation of the
density causes no additional difficulty. A2 includes all truncations of the above distribu-
tions provided only that the support set is convex. Other types of transformations must

be excluded; for example the lognormal distribution does not satisfy A2

Assumption Al is also new to the product differentiation literature.® To demonstrate
the applicability of this condition we first provide a partial listing of utility functions

§ It is related to the restriction of intermediate preferences introduced by Grandmont (1978)

in the theory of social choice.



AGGREGATION AND IMPERFECT (COMPETITION 't

which satisfy Al. As is evident from the list, an attractive feature of the assumption
is that it does not place any a prior: restriction on the form of product differentiation.
It can encompass the characteristics approach of Gorman (1980) and Lancaster (1966),
the transport cost approach of Hotelling (1929), the logistic approach of Perloff and Salop
(1985), and the vertical approach of Gabszewicz and Thisse (1979} and Shaked and Sutton
(1982).7

o C.E.S. preferences: Each consumer evaluates a product by a weighted sum of the

utility from the characteristics in each dimension.
Ula,x,2) = Z akX'Z + z2°.
k

There are two special cases of C.E.S. which are of particular interest. When p = 1,
preferences are linear in characteristics. This linear specification leads naturally to a
probabilistic choice model if some of the product’s characteristics are unobservable.
The specific use of logit as a model of product differentiation was pioneered by Perloff
and Salop (1985) and de Palma et al. (1985), and further analyzed by Anderson and
de Palma (1988), and Anderson et al. {1988, 1989). We provide a discussion showing
the general applicability of discrete choice models in Example 3.2.

The other important special case arises as p — (: with the appropriate normaliza-
tions, the C.E.S. approaches the Cobb-Douglas utility function,

n
Ula,x,2) = ZaklnXk +1nz.
k=1
A consumer with preferences & seeks to consume characteristics in proportion to a.
In this sense, the ray from the origin through o can be thought of as the set of a
consumer’s most-preferred bundles as the level of consumption varies. In a similar
spirit, preferences may be Cobb-Douglas in characteristics and linear in income

U(a,x,z) = a-In{x) + z.
In a one-dimensional model, this specification is used by Lane (1980).

e Quadratic Transport Costs: Each consumer evaluates a product by its price and its
location. When location represents where the product is sold, then transportation
costs should be interpreted literally. When the product is located in a characteristic
space, the transport costs represent the consumer’s loss from purchasing a less than
ideal product.

Ule,x,2) = —llx — e’ + =

7 Our model is extended in Section 8 to cover other cases including the Dixit-Stiglitz/Spence

model of product differentiation. In the extensions section, we amend Al and A2 to allow for
variable levels of consumption.
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By expanding the quadratic term, we find that the interaction between y and o is
linear and thus covered under Al. The one-dimensional quadratic transport cost

mode] has been widely studied, see especially Economides (1984, 1989).

e Vertical differentiation: The vertical characteristic, x, may be thought of as quality:
all consumers prefer more to less. The difference in consumers’ preferences, a, is like

an income effect and reflects their valuation of quality:®
Ula,x,z) = x(z+a), a € R".

Valuable insights from this specification have been developed by Gabszewicz and
Thisse (1979) and Shaked and Sutton (1982).

e Direct Translog utility function [Christensen et. al. (1975)]: In the translog utility
model, the a; terms are the coefficients for the linear approximation to a general
utility function, and the a,; represent the second-order terms in the approximation.

n w

Ula,x,z) = g(z) + Zai In(x;) + (1/2) Z Z o In(x;) In(xx)-

=1 k=1

Note that in this case the parameter space is of dimension n = wl[w + 3]/2 since

a_,-k = Oy

The interpretation of a and the meaning of our distributional assumption depend on
the model. In the quadratic transport cost model A2 places a restriction on the distribution
of most preferred locations, while in the translog model, A2 places a restriction on the
distribution of marginal utilities. Qur next example shows the applicability A2 in the

context of the linear utility models.

EXAMPLE 3.2: Consider the standard qualitative response or discrete choice models used
in the econometric literature, such as multinomial logit, multinomial probit and the ran-
dom coeficients models [see McFadden (1981) for discussion of discrete choice models]. In
all three cases the set of product characteristics are divided into two classes consisting of
observables and unobservables respectively. The utility function for a consumer of type o
is
Ule,x,2)=B-X"+a x"+2,

where x° are the observable characteristics of the good and x™ are the unobservable
characteristics. The logit and probit models further specialize to the case where 3 1s

common across all individuals and there are as many goods as unobservable characteristics.

® This is exactly how we model the case of variable income in the extensions section.
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Each of the goods is then taken to be a unit vector £ = e;. Hence the utility function for

good 1 simplifies to
(3.2) Ula,z;,2) = 20 +a; + 2,

Logit and probit involve distributional assumptions concerning f(a). Logit uses the
Weibull while probit uses the normal; both are covered by A2. The random coefficients
model extends probit to allow for the possibility that # is normally distributed across the
population. Given that 3 enters the utility function linearly, this too is covered.

Sometimes a direct application of Al fails, but with an appropriate change of vari-
ables, linearity is restored. Of course these transformations change the restriction implied
by A2. The example below shows how we may exploit the joint nature of A1 and A2 to

include another interesting case.

ExaMPLE 3.3: A general additive utility specification is proposed by Johansen (1969),

)= B Ok —7e)\ ™ s
U =3 ("—m ) +4(2).

Different restrictions on p; and +; correspond to important special cases [see Barten
(1977)]. To present this in a linear form, we use the transformation a; = 8, ”. But
now, the restriction A2 places on the distribution of £ is different from the restriction on
a. For example, assume that the underlying density of 2 is A(S) = k" over some bounded
range. This translates to f(a) = ka"*?/(1 — p) which satisfies A2 as it is log-concave.
Hence, the original model is covered despite the apparent failure of Al. Note that while
the variables p; and %; may differ across goods, only the & parameters vary across the

population.

Of course, not everything can satisfy A1 and A2. In particular, these assumptions

must rule out Hotelling’s original specification of product differentiation. In Hotelling’s
and the

« parameter has a uniform density over the unit interval. Although the preferences as

model, preferences are based on Euclidean distance, U{a,x,2z) = z ~ |la — x

written are not linear, how do we know whether or not there is an equivalent transformed
representation that satisfies A1 and A2? There is a qualitative feature of the demand
function that tells us no such transformation is possible. In Hotelling’s model, demand
is discontinuous in price, even when commodities are distinct. Proposition 1 in the next

section demonstrates that this is inconsistent with any specification satisfying A1 and A2.
4. AGGREGATION AND DEMAND

In this section, we establish a concavity property for the market demand function
faced by an individual firm. The ability to characterize the shape of the market demand
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function is central to the proof of existence of equilibrium in Section 5. To establish
the concavity property, we exploit a remarkable parallel between our assumptions on
consumer preferences and a mathematical literature initiated by Brunn and Minkowski.
Specifically, we use recent extensions of the Brunn-Minkowski Theorem due to Prékopa
(1971) and Borell (1975); these results are described in detail in our companion paper.”

The analysis of this section begins with two elementary though useful observations: (1)
individual demand for a given firm is of the reservation price variety; (ii) market demand
is continuous. To go further, we introduce the Prékopa-Borell Theorem and show how it
applies to our model. The fundamental result is contained in Theorem 1 which combines
the preference restriction Al with the distributional requirement A2 to characterize the

concavity of demand functions. We provide two examples that illuminate the theorem.

The reservation price property of individual demand results from exclusive consump-
tion combined with the strict monotonicity of preferences in z. With preferences strictly
increasing in z, each consumer has a reservation price for good #: type o maximizes utility
with good i if and only if p, € Ri(a,Z,p—;). Formally, to define the reservation price

function, we first consider type a’s best alternative utility level,
Ai((}', i‘:p—i)) = 1:3( U(C!, xj:Y - pj)

The reservation price is
Y, if U(a,zi,0) > A
Ri(a,z,p-;)) = { Y — 2;, when there exists a solution U(a, z;,2;) = A;;
—00, fU(a,zi,2) < Aj forall z € R.

The advantage of the reservation price approach is that it allows us to view a compli-
cated oligopoly problem from a monopoly perspective. It will enable us to prove existence
of an oligopoly equilibrium without discussing any specific interactions between firms.

The reservation price property also implies that market demand functions are down-
ward sloping. In addition, Proposition 1 shows that unless products are identical, demand
is a continuous function of all prices. While an individual’s demand at a given firm drops
discontinuously to zero at his reservation price, the non-atomic population density (A2)

smooths out these discontinuities.

ProrosiTioN 1: Under Al and any non-atomic density f(«), demand is a continuous
function of the price vector p whenever the m commodities are distinct, t(z;) # t(z;) Vi #
3

According to Proposition 1, demand functions are continuous unless some of the
products are equivalent, t(z;) = t(z;). With equivalent products all consumers prefer the

¥ See Bonnesen and Fenchel (1987) for a presentation of the Brunn-Minkowski Theorem. Das
Gupta (1980) provides more accessible proofs of the recent results and clarifies their relation to
the work of Brunn and Minkowski.
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cheaper good, as in the standard Bertrand model. This complication has no effect on any
of the results that follow. It is covered as a special case in all the proofs, and is assumed

away in the text for ease of exposition.

With continuous demand funections, the reservation price function provides a compact
representation of demand for a given firm’s product. Once the other firms’ prices are fixed,
firm 1’s demand may be viewed from the perspective of a monopolist facing consumers

with the given reservation price function R;(e, z,p_;),

(4.1) Di(p:) = / f(a)der
{o:Ri(n,E,p_:)2>pi}

The simplicity of this expression is in part due to the assumption of unit demand. With
variable demand we must consider both the density of consumer types and the demand

from each type; this is addressed in the extensions section.

The reservation price expression for demand makes the mathematical issue transpar-
ent. How do Assumptions Al and A2 combine to make the integral in equation (4.1)
well-behaved? To answer this we present a statement of the Prékopa-Borell Theorem.
This result shows how concavity properties of a population density are transformed un-
der aggregation. For a proof of this theorem and a historical discussion see Das Gupta
(1980). Further interpretation and application to social choice and income distribution
are provided in Caplin and Nalebuff (1990).

THEOREM (PREKOPA-BORELL): Let f be a probability density function on R™ with
convex support B. Take any measurable sets Ay and Ay in R™ with Ao, N B # § and
AyNB #0. For 0 < A <1, define Ay = AAo + (1 — M) Ay, the Minkowski average of the

two sets. '’

If f(«) is a p-concave function, p > —1/n, then

w IR
S 2 [’\( A0 f(a)d"‘>1m +(1-2) (/A f(a)da> +}

To interpret the theorem, it is helpful to parameterize the region of integration by A
and define the parameterized cumulative integral,
F(A) = fle)de.
Ax
The theorem states that p-concavity of f translates into —&—~-concavity of the cumulative

T+np
integral.

W The Minkowski average Ay is defined as all points of the form z, = Azy + (1 — A)zq, with
Ty € Ao,z1 € Arand 0 <A L1



12 CAPLIN, A. AND B. NALEBUFF

To relate the Prékopa-Borell theorem to our model, recall that demand is given by the
integral in equation (4.1). When firm 7 is considering its optimal response to other firms’
prices, p—;, the region of integration in (4.1) depends only on its own price. Thus it is own
price which plays the role of parameterizing the region of integration. In order to apply
the aggregation result, we need only show that the set of consumers who purchase good
i at p, contains the Minkowski average of those who purchase the good at price p, and
those who purchase at price p;. This is equivalent to the condition that the reservation
price rule is a concave function of (a, p;), which is an implication of Al.

THEOREM 1: Consider preferences satisfying Al and f(«) a p-concave probability
density function on R™ with convex support B. For p > —1/n, all demand functions are

T_;%—concave over the price interval where demand Is strictly positive.

Theorem 1 shows how a combination of A1l and distributional restrictions on f(«)
affects the shape of the demand function. The examples below use the reservation price
function to illuminate the result. The proof of Theorem 1 shows the reservation price
function is concave in a: the examples use the borderline case of linear reservation prices.
For simplicity, we suppress firm subscripts, recognizing that price and demand variables

refer to firm 1.

Example 4.1: The population is uniformly distributed over the n-dimensional unit simplex,
0 € Y ax < 1. Reservation prices are linear, R;(a) = 1 — 5" a,. This corresponds to
p = 00, so that ﬂ%p = 1/n. Theorem 1 shows that the n-th root of demand is concave.
As illustrated in Figure 1 below, a direct geometric argument verifies this result; market
area shrinks linearly with price in each of n-dimensions, so that D(p) = (1 — p)”. In
addition, we see the Minkowski average property. The market area at intermediate price

pa is exactly the Minkowski average of the market areas at py and py.
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Example 4.2. The geometric argument for the case p = co can be extended to cover all

cases with p > 0. We illustrate this extension for p = 1/m, m a positive integer. In this

1
m—+n

case, Theorem 1 proves that demand is | ]-concave.

To provide a geometric insight into the result, we add m extra dimensions above
the support set B, each representing the concave function f'/™. This device produces a
convex set with uniform density that represents the firm’s market area in n+m dimensions,
where the Minkowski-average property of the relation between price and market area is
retained. This indicates why the bound for the case with f'/™ concave in n-dimensions

is 1/(n + m), the same as the bound for f uniform in n + m dimensions.

To illustrate the procedure, take o € [0,1], R(a) = 1 -~ @ and f(e) = 2«. For
0<p<1,

D(p) = /(: - 2ada = (1 —~ p)?.

This is identical to the demand in a two-dimensional market with R(a) = 1 — (a1 + a3)
and f(«) uniform over the solid simplex. The representation of a concave density as an
additional dimension makes this case analogous to Example 4.1; the only difference is that

the a, axis in Figure 1 is replaced by an f(a) axis.

The example also provides insight into the case p = 0. In terms of derivatives,
In[f(a)] strictly concave corresponds to ff — f'2 < 0, while f'/™ concave corresponds
to f'f — f'? < —f"?/m. Thus with f twice continuously differentiable over a bounded
support, strict log-concavity implies that f'/™ is concave for some positive m, so that
D(p)"/(»*+™) and hence In(D) are also concave.

In each of the examples, note that the bound of Theorem 1 is tight. More generally,

the bounds in Theorem 1 are the best available.

ProprosiTION 2: There are n-dimensional models satisfying A1 with f(«) a p-concave
probability density function with convex support, p > —1/n, and with D(p) = (1—p)%£

5. EXISTENCE OF EQUILIBRIUM

The heart of the existence problem lies in establishing that each firm’s profit function
1s quasi-concave in own price. A sufficient condition is that 1/D(p) is convex for all firms.
We show that Al and A2 imply this property for aggregate demand. Theorem 2 then
combines our knowledge of the shape and continuity properties of demand functions to
provide the general proof of existence. We continue to suppress firm subscripts where

possible.
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ProrosiTION 3: A firm’s profit function Is quasi-concave in own price provided
D(p)~" is convex and diminishing in p where D(p) > 0.

~' convex is equivalent to ¢P(q)

When the demand function is diminishing, D(p)
concave 1n g, where P(g) is the inverse demand function.’' But concavity of the revenue
function is equivalent to quasi-concavity of the profit function if the firm is allowed an
arbitrary convex cost function. Hence the condition on D(p) in Proposition 3 is as weak

as possible.

In comparison, much of the earlier literature assumes concavity of D(p). To generate
a concave demand function, our model requires that p/(1 + np) = 1. This is possible if
and only if p = o0 and n = 1- a uniform distribution of consumers in a one-dimensional
market. This suggests that an approach relying on concavity of demand can neither go

beyond one dimension, nor allow a non-uniform density of consumers.

To demonstrate the quasi-concavity of the profit function we combine Theorem 1 and

Proposition 3.

ProposiTioN 4: Under Al and A2, each firin’s profit function Is quasi-concave In
own price.

PrRoOF: By Proposition 3, quasi-concavity follows once D(p)~' is convex where pos-

itive. This is equivalent to [-1]-concavity. By Theorem 1, this will follow from Al and a

p-concavity condition on f(«) such that T{n—ﬂ = —1. Solving this equation for p reveals
p=—1/(n+1) which is A2, thus completing the proof. Q.E.D.

THEOREM 2: Under Al and A2, for any m firms and arbitrary products z, there

exists a pure strategy Bertrand-Nash equilibrium.

ProoF: First we assume that no two products are equivalent and ¢; < Y. We
then use the best-response correspondence P = [p1(p—1),...,Pm(p—~m)] on the set Z =
[I[ei, Y] with firms restricted to charge between c; and ¥'. This correspondence is upper-
hemi-continuous, since the range of the best-response correspondence is compact and profit
functions are continuous 1n all prices. By Proposition 4, it is also convex-valued, since the
set of maxima of a quasi-concave function is a convex set. Application of Kakutani’s fixed
point theorem then establishes existence of a fixed point. Note that the restricted range
of the correspondence always leaves firms with at least one global best response, so that

any such fixed point is a Bertrand-Nash equilibrium.

" For twice differentiable functions, this equivalence follows from comparison of the second

derivatives. The equivalence holds more generally, as one may confirm by substituting the implied
inequalities. Jim Mirrlees has suggested the following simpler approach which helps to provide
intuition. Define ¥(z,y) = P(z/y)z. By construction, ¢ is homogeneous of degree 1 in (z,y).
Such a function is concave if and only if ¥(z,1) is concave in z or equivalently, ¥(1, y) is concave
in y. Concavity of (z,1) corresponds to concavity of the revenue function in ¢ while concavity
of ¥(1,y) is equivalent to convexity of 1/P~"(y) since P is a decreasing function.
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We now allow for the presence of equivalent goods. For each group of equivalent
products, #(z;) = t(z;), we select out a lowest cost producer. These selected firms define
an oligopoly problem with distinct goods. We use the best response correspondence above
with the additional condition that a firm which is the lowest cost producer from a group of
equivalent products sets its price no higher than the cost of the next lowest cost producer.
This correspondence has a fixed point which we use to construct an equilibrium as follows.
For all the selected firms use the prices corresponding to the fixed point. For all other
firms, set price equal to cost. At these prices, the higher cost producers of equivalent
products are undercut and receive zero demand. Hence all firms have selected a global

best response.

Finally, if there are firms with ¢; > Y we use the arguments above to establish
existence for a market without these firms, and recognize that this remains an equilibrium

when these firms charge p; = ;. Q.E.D.

At this point it is appropriate to comment on the relationship between the approach
to existence in this paper and the independent work of Dierker (1989). Both papers ex-
plore how distributional assumptions on consumer preferences can lead to quasi-concavity
of the demand function and thus existence of equilibrium. It is primarily in the descrip-
tion of consumer preferences that the two approaches differ. Dierker takes the consumer
valuations for the goods as the primitive; he assumes that the joint distribution of these
valuations is log-concave. Application of the log-concave (or p = 0) version of the Prékopa-
Borell theorem establishes log-concavity of the demand function. Our approach begins
with an explicit model of the commodity space and the distribution of a multi-dimensional
utility parameter for consumers. The consumer valuations are then derived from the util-
ity function. In the context of Dierker’s work, our approach provides a large class of utility
models for which the joint distribution of product valuations is log-concave for any set of

products.
6. UNIQUENESS OF EQUILIBRIUM

In this section, we provide sufficient conditions for uniqueness of equilibrium.’® Three
cases are covered: duopoly competition in any number of dimensions, multi-firm com-
petition in one dimension, and the logit model. These three cases span the horizontal
characteristics model of Lane (1980), the horizontal location model of Economides (1989),
and the logit model of Anderson et. al. (1989). In Section 8, the uniqueness results are
extended to include the vertical differentiation models of Gabszewicz and Thisse (1979)
and Shaked and Sutton (1982)

'? The results in this section have been greatly simplified and improved by the comments of
Paul Milgrom.
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In addition to uniqueness, the cases covered also have a “log-supermodularity” prop-
erty [Milgrom and Roberts (1990a)]. The results from Milgrom and Roberts (1990a,b)
show that the combination of log-supermodularity and uniqueness gives rise to several

desirable properties:
o There are no other equilibria either in mixed or correlated strategies.

¢ The equilibrium strategy vector is globally stable under many learning and adjustment

processes including best-response dynamics, Bayesian learning, and fictitious play.

» The game is dominance solvable so that the equilibrium strategy is the unique ratio-

nalizable strategy for each player.

e Any parameter change that increases the marginal return to price for some firm results
in an equilibrium in which all firms charge higher prices; for example, an increase in

one firm’s cost c; results in all firms charging higher prices.

These results are especially valuable when there is a stage of product design before
price competition takes place. In these multi-stage games, the uniqueness and robustness
of the price equilibrium allows the product designer to predict profits for any hypothetical
product he might produce.

The proof of uniqueness for all three cases is based on a dominant diagonal argument.
If among any given set of firms, |%’I’1"l] > Z_#i |%g;;—[ then there is at most one equilibrium
in which these firms are all active in the market [see, for example, Friedman (1977)]. In

combination with our earlier existence result, this allows us to prove uniqueness.

Dominant diagonal arguments are predicated on the condition that all firms have
a unique best response, and that profit functions are twice differentiable. The first of
these conditions is not an issue when considering active firms: Proposition 4 shows that
provided p is strictly above —=1/(n+1), each firm’s profit function is strictly quasi-concave
where demand is strictly positive, and best responses are unique. But the differentiability
condition is restrictive; it requires that g(z) from Al is twice-differentiable and that the
density f(«) from A2 is differentiable.’® We refer to these additional restrictions as the

differentiable case.

Before turning to the proofs, there is a question about the interpretation of unique-
ness. There is a potential indeterminacy in the price of a firm that gets zero demand in
equilibrium. Such a firm will be content with any price provided it gets zero demand. This
raises the issue of whether there may be multiple equilibria driven only by the alternative

'* QOur reason for studying the differentiable case is that it allows us to use the standard ar-

guments for uniqueness and so simplifies the proofs. The concerned reader can confirm that the
differentiability conditions in Propositions 6 and 7 can be dispensed with by replacing the infinites-
imal dominant diagonal argument with its discrete alternative.
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pricing strategies of inactive firms. Proposition 5 shows, to the contrary, that any indeter-
minacy of equilibrium prices set by inactive firms has no effect on the prices chosen by the
active firms.”® Thus in the proofs that follow, we can adopt the convention that inactive
firms charge prices equal to their marginal costs without influencing the decision of any
consumer or the profits of any firm." Qur claim of uniqueness refers only to uniqueness

of market outcomes.

ProrositioN 5: (Clonsider an equilibrium in which a given set I of firms has zero
demand. Let p, denote a vector of equilibrium prices for the active firms. There exists an
equilibrium which leads to exactly the same demand and profits in which all active firms

continue to charge prices p4 while all firms in I charge their marginal cost.

We now turn to duopoly competition. Our sufficient condition for uniqueness strength-

ens A2 to log-concavity.

ProposiTION 6: In the differentiable case with Al and with In{f(«)] concave where
f(a) > 0, the duopoly equilibrium is unique. In addition, the pricing game is log-

supermodular,

Proposition 7 applies to one-dimensional markets with a log-concave density of con-

sumers. In this case, uniqueness applies to a given set of active firms.

ProrosiTiox 7: Consider the differentiable case with Al and with In[f(a)] concave
over an interval B C R. If there is an equilibrium in which a given set of firms are active,
then there is no other equilibrium with the same set of active firms. In addition, the

pricing game among these active firms is log-supermodular.

QOur final result is based on the logit model of Example 3.2. Here the utility of good

i for a consumer of type o is
Ule,zi,2) =B 2] + oy + 2,

where f(a) represents the product of n identical Weibull distributions. Uniqueness and
log-supermodularity in the logit model follow directly from differentiation of the profit
function. The uniqueness of equilibrium in the logit model was first noted by Anderson
and de Palma (1988) for the case of duopoly.

9 Note that this does not mean that the presence of inactive firms has no effect on the equi-
librium prices charged by the active firms. However, it follows from Proposition 5 that if adding
a new firm changes the equilibrium prices among the pre-existing firms but leaves the new firm
inactive, then the new firm must be charging marginal cost in the equilibrium.

' Proposition 5 requires that inactive firms never charge a price below their marginal cost. Hence

in characterizing the unique equilibrium, we rule out strategies that yield losses in the event that
demand is positive.
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Our characterization of uniqueness is still incomplete. The results in this section either
place restrictions on the number of firms or the dimensionality of consumer preferences, or
impose strong symmetry requirements. Assumption A2 on the distribution of preferences
has been strengthened to log-concavity. While these conditions are sufficient, there may
be other cases of interest which satisfy the dominant diagonal criterion for uniqueness. In
addition, there may be more general examples of uniqueness which do not fall under the

dominant diagonal argument or log-supermodularity.
7. THE IMPORTANCE OF DIMENSION

A feature which distinguishes our approach is the consideration of multi-dimensional
models. How can we assess an appropriate dimension for modelling a particular market?
At one level, we could list all potentially relevant attributes of the product. But consumers
may evaluate products according to only a few attributes, or according to a real valued
function of all the attributes. It is the dimension of the space of utility parameters rather
than the number of product characteristics which is of greater economic interest. For this
reason we refer to n as the dimension of the market.

There are two economic features that help distinguish an appropriate dimension for
a given market: variety of preferences and the scope of competition. Proposition 8 shows
that a low n imposes strong a priori restrictions on preferences. Proposition § shows that
the number of a firm’s competitors is greatly restricted in low dimensions.

ProrosiTioN 8: Under Al with o € R", consider m firms selling goods at prices p:

(a2) For m < n + 1 no value restriction is implied; all m! preference orderings of the m

products can coexist;'®

(b) For m > n+ 1, value restrictions are implied; some of the m! orderings are ruled out.

In a one-dimensional model, Proposition 8 implies that preferences are restricted as
soon as there are three products. Consumers in a one-dimensional market act exactly like

voters who see an election solely in terms of the traditional left-right spectrum.

A second limitation of the one-dimensional model is that no firm faces more than
two competitors regardless of the number of firms in the market. In higher dimensions
the corresponding limitation is more subtle. Even in two dimensions, it is possible for one
firm to be competitive with all other firms. Nevertheless, Proposition § shows that the
average number of a firm’s competitors is bounded above by 6.7

Given prices p, consider all active firms, and define firm j as a competitor to firm i if
a marginal reduction in the price of firm 1 reduces demand for good j. Let C; denote the
number of firm 1’s competitors at the given prices.

' We require that a linear independence condition is satisfied, as seen in the proof.

V7 Archibald and Rosenbluth (1975) demonstrate a similar result for the Lancaster model: when
goods are represented in a three-dimensional space of characteristics, the upper bound on the
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ProrositioN 9: Under Al and A2 with o € R?, the average number of competitors
per active firm Is bounded above by 6: {5, Ci]/m’' < 6, where m' represents the number
of firms with D;(p) > 0.

An example where each firm has exactly six competitors is when market areas tile
the plane into regular hexagons as in Losch (1954)." Our proof also implies that as the
number of firms rises, for a generic distribution of product characteristics and prices, the

average number of competitors converges exactly to six.

Proposition 9 suggests that the dimension of the product space will affect the com-
petitive structure of the market. This issue was first addressed in the pioneering analysis
of Stiglitz (1986). In his model market areas are n-dimensional cubes. The first-order
conditions imply that the markup of price over marginal cost is inversely proportional to
the ratio of market surface area to volume, which falls with dimension. Markets become
more competitive as the dimensionality of the product increases. Of course these conclu-
sions rely on the fact that the first-order conditions characterize an equilibrium; this is
established in Section 8.3.

8. EXTENSIONS

The results of the earlier sections are robust to various changes in the underlying
assumptions. We allow for income differences, variable demand, and non-exclusive con-
sumption. The consumer is also given an option to purchase none of the differentiated
goods. Finally, the model extends to cases with an infinite number of firms and unbounded

markets.

8.1 Egual Incomes

We relax the assumption that all consumers have equal income. Income is treated as
one of the parameters of preference orderings over differentiated commodities. Thus it is
required to enter the utility function linearly, and the restriction on the joint distribution

of parameters extends to the income term.

average number of competitors per firm is six. While our result relates to cases of exclusive unit
consumption, theirs relates to goods which are freely divisible and combinable. This similarity
in results breaks down in higher dimensions, Archibald and Rosenbluth show that there are no
bounds on the number of neighbors per firm in four dimensions, a result which is not valid in
the three-dimensional version of our model. There is a direct geometric explanation for this:
the number sought by Archibald and Rosenbluth in their n-dimensional model turns out to be the
average number of sides in any partition of an (r—1)-dimensional surface into polygons, regardless
of whether or not the polygons are convex. Hence their n-dimensional bound must be at least as
big as our (n — 1)-dimensional bound. The numbers agree in two dimensions only because the
restriction to convex polygons makes no difference for two-dimensional partitions.

¥ Proposition 9 is related to the fact that no regular polygon with more than six sides can tile
the plane [Grunbaum and Shepherd (1987)]. In three dimensions, space can be tiled with regular
14-sided figures although this is not necessarily the maximum. In higher dimensions, the general
bound is not known.
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AssuMPTION Al’: Preferences satisfy A1 with the additional restriction that g(z) =

A special case of Al' is U = xz considered by Gabszewicz and Thisse (1979, 1980)
and Shaked and Sutton (1982) in their models of vertical product differentiation.

AssuMPTION A2': The joint probability density of consumers’ utility parameters and
income, f(a,Y), satisfies f(cz,Y)—?JT2 is a convex function over its support, B, which is

a convex subset of R™*' with positive volume. In addition, Y' = SUP ((a,v)eR} ¥ IS finite.

With these assumptions we have placed the problem of existence in the framework of
Al and A2. It is readily seen that the reservation price rule is now concave in (e, Y),

Ri(ax,Yy) > ARi(ao, o) + (1 = A)Ri(e, Y1).

To apply the existence result in Theorem 2, we replace the upper bound Y on prices with

the new bound Y'.

ProrosiTioN 10: Under A1’ and A2, there exists a price equilibrium.

The linearity of preferences in income allows us to extend the uniqueness arguments
of Section 6. The one-dimensional result of Proposition 7 corresponds to the case of
pure vertical differentiation; all preferences are identical and only incomes differ. Thus
the duopoly uniqueness result holds even when consumers differ both in income and in
preferences. With A1’ and In[f(a,Y)] concave and differentiable where f(a,Y) > 0, the

duopoly equilibrium is unique and the pricing game is log-supermodular.

8.2 Unit Demand

The simplest extension i1s to permit each consumer the option of purchasing none
of the differentiated goods. In many instances, purchasing the good x = 0 at price zero
corresponds to dropping out of the market. Thus if we create a fictitious firm 0 which sells
zo = 0 at py = 0 the consumers then have the option to purchase none of the differentiated
goods. Note that this has no effect on the arguments for existence of an equilibrium; all
the real firms still have convex-valued best response correspondences and the 0 firm has

its price fixed at Q.

There are some subtleties involved in introducing the fictitious firm. Equilibrium
prices may be affected since the market is more competitive. Additionally, the uniqueness
argument for duopoly does not apply; the reason is that the presence of the fictitious firm
takes us from a duopoly to a three firm oligopoly. Finally, there are models where the
zo = 0 approach is not an appropriate way to model non-consumption. For example, in

location models, the 0 good does not correspond to zero consumption of the differentiated



AGGREGATION AND IMPERFECT COMPETITION 21

commodity, but rather a differentiated commodity located at the origin. [Even so, it is
still possible to allow the consumer to purchase none of the differentiated goods if we
specify a utility loss, concave in «, for choosing not to purchase any of the differentiated
goods.]

The extension to variable demand is more difficult since we lose the ability to apply the
reservation price method. However the Prékopa-Borell Theorem continues to play a central
role in extending the results to cases with variable and/or non-exclusive consumption.
Here we require a version of the theorem which applies when the integrand is a function
of both @ and p.

In the case of general demands,
(8.1) Di(p)) = / fle,Y)Di(a, Y, p;) dad,
Rt

where D;(a,Y,p;) measures the demand for good 7 at price p; from an (a,Y) type. Since
we are integrating a product of two terms, we require properties on this product. If each
term is log-concave, then the product of two log-concave functions is itself log-concave.
Prékopa’s theorem show that this log-concavity property is inherited through the integral

sign.

THEOREM [PREKOPA (1973)]: Let h(a,p) be a log-concave non-negative measurable
function on R™ x R with non-empty support B:

h{ax,pa) > h(as, p1 ) A(eg, p2)' 7,

where ay = Aoy + (1 — A)ag and py = Apy + (1 — A)pe, 0 < A < 1. Then

D(p) = h{a,p)da

/{oe R™: {a,p)€R)

is log-concave in p.

The critical stage in proving existence of equilibrium is showing that the profit func-
tion is quasi-concave. From (8.1), log-concavity of aggregate demand follows from the
generalized Prékopa theorem when both In[D(e,Y,p;)] and In[f(e,Y)] are concave in

their arguments. Quasi-concavity of profits then follows from Proposition 3.

However, the condition that In[D(a,Y, p;)] is concave is not satisfied for many stan-
dard demand specifications including C.E.S.. We must employ a significantly weaker
condition on demand and prove quasi-concavity of profits through a sufficient condition
other than convexity of 1/D(p). Proposition 13 employs a change of variables to establish
a new sufficient condition for quasi-concavity of profits. For simplicity of notation, we
drop the 1 subscripts where it is understood that price and demand both refer to firm 1.

ProrosiTioN 11: A firm’s profit function is quasi-concave in own price where profits
are strictly positive provided that InD(p) is concave in Inp where demand is strictly

positive,
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ProoF: Since the logarithmic and exponential functions are both monotonic, it suf-
fices to show that In =(p) is concave in In p where profits are strictly positive. We rewrite
profits as

Inw(p) = In[p - ¢] + In D(p).
The first term is directly concave in In p, and the proposition follows. Q.F.D.

Although this may appear unfamiliar, the condition that In[D(p)] is concave in Inp
is equivalent to an increasing elasticity of demand. It is satisfied for all C.E.S. demand
functions and other cases discussed below. Although the condition in Proposition 11 is
more restrictive than the condition in Proposition 3, Cobb-Douglas demand, D(p) = 1/p,
stretches both to their limit: 1/D(p) = p and In D(p) = — In p, the two linear cases.

Prékopa’s theorem suggests a way to generalize Assumptions A1’ and A2’ to generate

a market demand function with the increasing elasticity property required in Proposition

11.

AssuMPTION Al": For 1 < i < m and any given p—,, In[D;(e,Y,p;)] is concave in

(a,Y,In p;) over the convex region where demand is strictly positive.

AssuMPTION A2': The joint density of consumers’ utility parameters and income,
In[f(e,Y)], i1s a concave function in (a,Y) over its support, B, which is a non-empty
subset of R™*7,

ProrosiTioN 12: Under A1" and A2', the profit function is quasi-concave where

profits are strictly positive.

Proor: By A1” and A2", the product D(e,Y,p)f(a,Y) is log-concave in (o, Y,In p).
Thus application of Prékopa’s Theorem shows that

D(p) = / Di(e,Y,p)f(e, V) dadY
{{a,Y)ER" ' :(a,Y,p)ER}

is log-coneave in In p. Note that concavity is in Inp, not p because the integrand is log-
concave in In p. The result follows directly from Proposition 11. Q.E.D.

To show how to A1 applies to economic problems, we consider Cobb-Douglas pref-
erences, relaxing the assumption of unit demand. Consumers purchase only one of the

differentiated commodities, but may do so on any scale, u, consistent with their budget.

n n—1
(8.2) Ula,px,2) = [ [ (pxe)**2? with o € R* "0, = 1= o, and 8> 0.
k=1 k=1

The preference parameters now reflect the consumer’s ideal mix of characteristics:

if all characteristics were available separably and at equal prices, the consumer would
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purchase a good proportional to his a vector. The actual choices are more complicated
since characteristics come in bundles. Even with bundled characteristics, consumers with
Cobb-Douglas preferences spend a fixed fraction 1/(1 + ) of their income on the differ-
entiated commodity. In addition, the optimal differentiated commodity 1s independent of

income. These observations allow us to verify A1” directly.

ProprosiTioN 13: Cobb-Douglas preferences (8.2) satisfy A1".

Thus when the distribution of Cobb-Douglas parameters satisfies A2, Proposition 12
applies and each firm’s profit function is quasi-concave where profits are strictly positive.
The remaining barriers to existence of an equilibrium are that prices may not be bounded
and that continuity may be viclated. Given the non-atomic density, continuity is not a
problem. On the other hand, while boundedness frequently holds, it is hard to establish.
We return to the Cobb-Douglas example as this forces us to confront the unboundedness
problem head on. Without unit demand, bounded income need not lead to bounded
reservation prices A monopolist facing Cobb-Douglas demand would like to charge an
infinite price. Thus in an oligopoly model, the bounding of the best response function
must depend on competitive forces. In the appendix, we show that once two or more
firms compete, it is possible to find a compact set on which to apply Kakutani’s fixed

point theorem.

THEOREM 3: Under Cobb-Douglas preferences ( 8.2) and A2, there exists a pure
strategy Bertrand-Nash equilibrium for n > 2 firms, each with strictly positive costs,

¢; > 0; for the duopoly, this equilibrium is unique.

This extends the Caplin-Nalebuff (1986) existence result for 2-firms competing in
1-dimension. Existence and uniqueness results apply to the Cobb-Douglas model with
variable but exclusive demand for any number of firms competing over any number of
dimensions. This captures an important feature of many markets; for example, most PC-
consumers choose between IBM or Macintosh compatibility, but their level of consumption

is widely variable.

Our approach is specifically designed for models without a representative agent.
Recently, Anderson et. al. (1988, 1989) have illuminated the connection between rep-
resentative agent models of imperfect competition, such as the C.E.S. model of Dixit-
Stiglitz/Spence, and models with heterogeneous consumers. Here we follow up on their

approach, and apply Theorem 3 to prove existence of equilibrium in the C.E.S model.

In the C.E.S. model there exists a representative agent with income Y and preferences

n 1/~
U= (Z p;’) 27,
k=1
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where p; represents the aggregate amount of good i consumed. As before, each good
is produced by a separate firm. In this model, utility is maximized subject only to the

standard budget constraint
ZPk#k +z=Y.
k=1

In particular, there is no restriction either to unit demand or to exclusive consumption.

There is a reformulation which places the C.E.S. model in our framework. Anderson
et al. (1988) demonstrate that C.E.S. demand functions are obtained in a logit model
where consumers choose variable quantities of a single commodity. Specifically, C.E.S.
demands arise when the indirect utility of consuming good i at p; for a consumer of type

o is
(8.3) vila,ps) = —lnpi+ (1 +B)In[Y/(1+B)]+ B8 In B + oy,

and the o; coordinates are independently and identically Weibull distributed. We use this

equivalence to prove existence of equilibrium for the C.E.S. model.

ProPosITION 14: In the representative agent C.E.S. model, there exists a pure strat-
egy Bertrand-Nash equilibrium for n > 2 firms, each with strictly positive costs, ¢; > 0;

for the duopoly, this equilibrium Is unique.

ProoF: The indirect utility function in (8.3) is exactly the indirect utility arising in
our variable consumption Cobb-Douglas preference model above, specialized to the case

with n goods, where goods are of the form,
z1=(e,1,..,1),...,zn = (1,1, ...,€).

In addition, the Weibull distribution is log-concave in «. Hence the C.E.S. demand func-
tions arise in a model which satisfies the requirements of Theorem 3, so that the existence

and uniqueness results apply also to the C.E.S. model. Q.E.D.

The issue of existence is side-stepped in prior versions of the Dixit-Stiglitz /Spence
model. The earlier work makes the approximation that an index of prices including the

firm’s own price is unaffected when the firm increases its own price."”

Our final example shows how we can combine both variable and non-exclusive demand

when there is no representative consumer. We specify homothetic preferences according

" In an early version of their paper, Dixit and Stiglitz (1974) explicitly work with a continuum
of firms, so that own price does not affect the price index. With a large but finite number of firms
in the market, the effect of own price on the index will be “close” to zero. Ignoring one’s own
effect is surely inappropriate when there are a small numbers of firms. In all cases, to compare the
approximate equilibrium to the true equilibrium requires that the true model has an equilibrium.
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to an Indirect Translog Model [Christensen et. al. (1975)]. This gives rise to the demand

functions

w

Di(a,Y,pi) = (Y/p:)(o: + Y i In[p;)),

J=t
where the number of firms equals the number of characteristics, w = m. Direct calculations
show that In[D;(e,Y, p;)] is concave in all arguments {«, Y, Inp;} provided o;; is constant
across the population. With this restriction, quasi-concavity of the profit function follows

from Proposition 12 provided that f(«,Y) is log-concave over. its support.

8.3 Unbounded Markels

Qur approach also applies to models with an infinite number of firms distributed over an
unbounded space. There is a possibly infinite set, I, of products, located in R*. In this

setting, we return to the case of unit demand.

We no longer prove existence of equilibrium. We show that any joint solution to
the first-order conditions is an equilibrium. In this approach, we need only consider
preferences at the candidate price vector. Here, all the relevant information 1s provided

by the reservation price function.

Al(p): All consumers have an optimal choice at p. The reservation price function

for firm i’ product is concave across o at the given p_;, for all 1.

AssUMPTION A2(p): The measure of consumers’ utility parameters has a density
that satisfies: f(«) is p-concave, p = n‘—+11, with convex support B C R™ with positive

volume. In addition, given p_; and p; > c¢;, demand for firm i’s product is finite.

With these assumptions, quasi-concavity of the profit function follows by Theorem 1.

This justifies using the first-order approach.

ProposiTioN 15: Consider a price vector p* where all first-order conditions are
satisfied. With Al(p*) and A2(p*), p* is an equilibrium.

A direct application is to the symmetric case of products distributed over a uniform
grid in R™.*" When consumers have a quadratic transportation cost, and using a rectan-

gular grid, Stiglitz (1986) demonstrated that the equal price solution to the first-order

2% Unbounded markets offers one route to model complete symmetry; the circle model provides

an alternative for the case with a finite number of firm. The applicability of our {ramework to
the circle model [as in Economides (1989)] is outlined in our working paper, Caplin and Nalebufl
(1989).
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condition was dependent on dimension in an interesting way.?' Integrating this with a
model of entry, he argued that in low dimensions there will be excess product diversity,
while in high dimensional markets, too little diversity. These conclusions require that
the solution to the first-order conditions is in fact a price-equilibrium. For quadratic

transportation costs, this is a correct hypothesis by Proposition 15.
9. CONCLUSION

This paper presents a new approach to imperfect competition. We provide conditions
under which there exists a pure strategy price equilibrium in a multi-dimensional model of
product differentiation. The primary innovation is the move away from one-dimensional
products and a uniform distribution of consumer types. The existence result extends
to any number of products with any number of characteristics; the permissible multi-
dimensional distributions of consumer types include the Normal, Pareto, Weibull, and
Beta distributions. Our analysis covers location models, the characteristics approach, and

probabilistic choice together in a unified framework.

Our existence results are based on competition between a fixed (but arbitrary) set
of products with a given set of characteristics. The natural next question is: how will
firms choose the characteristics of their products, rationally anticipating the ensuing price
competition? This has been studied by Prescott and Visscher (1977) in a mode] with
sequential entry and fixed prices. Having established the existence of a price equilibrium,
we may begin to examine the pattern of sequential locations in the presence of price

competition.

The logit model of consumer choice provides a framework for addressing this ques-
tion. We have shown both the existence and unigueness of equilibrium given any number
of competing products. This means that firms have a precise prediction of profits given
the choices of competing products. A second arena in which we have both existence
and uniqueness is duopoly competition. This is the setting in which Hotelling originally
espoused the principle of minimum differentiation. Here we can investigate how the dis-
persion of consumer preferences affects the distribution of product locations, either in

physical or in characteristics space.

Our multi-dimensional framework also brings us closer to marketing applications. For
example, Feenstra and Levinsohn (1989) use a variant of our mode] to map out consumer

preferences for the characteristics of cars. Given the existence of a price equilibrium,

“1 In the Stiglitz model, each firm has 2n neighbors in n-dimensions. Demand elasticity is

measured by market surface area to volume, which is proportional to 2n. Hence demand is more
elastic in higher dimensions. This leads to greater competition and endogenously lower profits. With
a fixed cost of entry, fewer firms can cover entry costs despite the fact that in higher dimensions
consumers have further to go and so the efficient solution would have more firms per unit area.
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they proceed to analyze the competitive structure of the automobile industry and make

predictions about optimal pricing policies.

To prove existence, we introduce an aggregation technique due to Prékopa and Borell.
Our companion paper provides a more detailed discussion of the theorem, showing how 1t
applies to generalize our earlier results on 64%-majority rule. We also use it to characterize
the income distribution arising in a Roy model of self-selection in the labor market. These
different applications suggest the value of p-concavity conditions in diverse branches of
economic theory. In the present case, p-concavity and the Prékopa-Borell Theorem are
ideal mathematical tools to handle the complications inherent in imperfectly competitive
markets. The generality of this approach opens up the possibility of studying product
design. Given that there exists a price equilibrium, we may begin a systematic study of

how firms choose products, along the lines envisioned by Hotelling.
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10. APPENDIX

ProrosiTION 1: Under Al and any non-atomic density f(a), demand is a continuous
function of the price vector p whenever the m commodities are distinct, t(z;) # t(z;) Vi #
J-

Proor: Under Al, the consumers indifferent between i and j are defined by
(10.1) a - n;; = by,

where the k' -coordinate of the n-vector n;; equals tx(z;) — tx(2;), and bi; = t,q2(z;) —
tnt2(2;) + tap1(zi)9(Y — pi) = tnia(25)9(Y — p;). By assumption, ny; # 0 so that equa-
tion (10.1) defines a hyperplane in R™. Hence the set of indifferent consumers has zero
population. Continuity of demand then follows from the continuity of g. QE.D.

THEOREM 1: Consider preferences satisfying A1 and f(«) a p-concave probability
density function on R™ with convex support B. For p > —1/n all demand functions are

ﬁL—concave over the price interval where demand is strictly positive.
np

ProoF: Assume that a consumer of type o purchases good i when it is priced at
p; and a consumer of type o purchases the good when its price is p; > p;, with other
goods priced at the fixed levels p_;. We show that good 7 at price p, is among the most
preferred goods for type a*. Consider the comparison between good i and any other good
j. Substitution in the utility function from A1l gives the following inequalities,

Eaktk(ri)+g(y_pi)tn+1( i)Htnta(z Eakfk(%)-f-g(} —p; Jtnt1(2;)+tnsa(2;),and
k=1 k=1

Zaktk )4+ 9(Y —pi)tnta (z:) Htnsa(zi) > Zaktk )+ 9(Y —pjati(z;) +tata(T;).

As g(z) is concave and t,1y(z;) > 0, these inequalities combine to give,

Y apti(z) + 9(Y —pa)tnsr(2:) Haga(2s) 2 Y odte(2;)+9(Y —pi)tasi(2;) +tnta(z;).
k=1 k=1

Thus good i at price py is among type the most preferred goods for type o?.

When goods ¢ and j are distinct, the mass of consumers for which the final inequality
is an equality is zero so that the reservation price expression from equation (4.1) is valid.
Hence the Prékopa-Borell Theorem applies and the result follows.

There is no problem of breaking ties when goods ¢ and j are equivalent, since good :
must be strictly preferred to good j at p). The reason is that py < p! by definition and
pi < p; as otherwise o’ would have strictly preferred good 5. Hence the set of consumers
at price p) contains the Minkowski sum of the consumers at prices p; and p! and the
Prékopa-Borell Theorem applies directly, completing the proof. Q.FE.D.

PropPosiTION 2: There are n-dimensional models satisfying A1 with f(«) a p-concave
probability density function with convex support, p > —1/n and with D(p) = (1 —p)1 ’
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Proor: We show the bounds are tight for a specific case of duopoly competition.
Let a consumer of type o have utility function U(a,x,2) = o x + z. Good 1 has
characteristics (1,1,...,1) and good 2 is the zero vector, (0,0,...,0). The density of
types is f(a) = ¢(3 ax)'/? over the unit simplex. With p; = 1 the reservation price
function for good 2 is 1 — Y aj. Thus demand for good 2 is

1_I’2 14n
D(pg):/ f(a)da:/ k" kV 2 dk :(l——pg)"iﬂ—ﬂ.
{o:z ax<l—pa} 0
Q.E.D.

ProprosITION 3: A firm’s profit function Is quasi-concave in own price provided that
D(p)™" is convex and diminishing in p over the region where D(p) > 0.

Proor: The profit function is monotonically increasing for all prices below marginal
cost: an increase in price reduces sales and per-unit losses. Hence we can restrict attention
to prices above cost. A failure of quasi-concavity requires there exists ¢ < pg < py, and
0 < A < 1 such that

(pa — ¢)D{(pa) > (p»r—c)D(ps);
(pr =) D(p) > (pr—c)D(py).

If D(p1) > 0, we may divide both sides of the first inequality by the product D(po)D(pa)
and both sides of the second inequality by D(p1)D(pa) and then add the weighted average
to show:

(pr = ©)/D(px) > A(pxr—¢)/D{(po) + (1 — A)(pr — ©)/D(m)-

This inequality contradicts the assumption that D;(p;,p—;)~" is convex in p;. If D(p1) = 0
then the second inequality requires py < ¢, contrary to the assumption. Q.E.D.

ProprosiTION 5: Consider an equilibrium in which a given set I of firms has zero
demand. Let ps denote a vector of equilibrium prices for the active firms. There exists
an equilibrium which leads to exactly the same demand and profits which all active firms
continue to charging prices p4 while all firms in I charge their marginal cost.

Proor: First observe that no firm in I can become active at the new lower price vec-
tor. The reason is that even with other inactive firms charging their original higher prices,
market shares at marginal cost must have been zero or else the firm could have achieved
positive profits. With zero demand, charging marginal cost 1s still profit-maximizing. For
the active firms, their profits cannot have been improved by the price reduction of inactive
firms. The fact that they can still achieve their earlier profit levels demonstrates that the
old prices must still be optimal. Q.E.D.

ProrosiTION 6: In the differentiable case with A1 and with In[f(«)] concave where
f(a) > 0, the duopoly equilibrium Is unique. In addition, the pricing game is log-
supermodular.
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Proor: We use a change of variables to make the dominant diagonal argument trans-
parent. Let each firm choose u; = g(Y — pi)tp+1(z;:) instead of p;. Then

In[m; (w1, uz)] = Infh;(u;) — ¢;] + In[D;(uy — uy)],

where h;(u;) =Y — g7 " [u;/tnt1(2,)] is concave. Note that the first term is strictly concave
in u; since it is the composition of an increasing strictly concave function with a concave
function. To complete the dominant diagonal argument, it suffices to show that

62 lnD,‘ 62 lnD,- < 0
Ou? t Ouifuj ~—

with the first term negative and the second term positive. In the duopoly problem, the
same conditions yield log-supermodularity [Milgrom and Roberts (1990a)].

Both conclusions follow from the observation that
8%In D, _ 6% In D;
ou? Ou;0u;

3

< 0.

This is a consequence of the log-concavity of D in u; (by Prékopa-Borell) and the fact
that demand depends only on u,; — u;.

This demonstrates that there is at most one equilibrium in which both firms are
active. Additionally, there can be at most one equilibrium with an inactive firm. If there
is an equilibrium with firm 1 inactive, then it must receive zero demand at price equal
to its marginal cost. But then to become active, it would have to charge a higher price
which cetainly leaves firm 2 a positive market share if it charges its marginal cost. In
addition, Proposition 5 shows that all equilibria with a given inactive firm are equivalent.
Finally, it is impossible for there to be two equilibria, one where both firms are active
and the other where one firm is inactive. The reason is that the firm active in both cases
must increase its u; by more than the change in u; when moving to the solution where
both firms are active (as otherwise the other firm would still have no market share). This
cannot be optimal since the diagonal dominance argument implies that the reaction curves
have slope less than one. Q.E.D.

ProrosiTioN 7: Consider the differentiable case with A1 and with In f concave over
an interval B C R. If there is an equilibrium in which a given set of firms are active, then
there is no other equilbrium with the same set of active firms. In addition, the pricing
game among these active firms is log-supermodular.

ProOF: Because the consumers lie along a line, it is possible to order the firms
according to their market positions. For any given set of active firms, each firm must have
the same neighbors even in distinct equilibria. The linear market reduces the number of
neighbors to one or two. We look at the case for a representative firm with two neighbors;
the argument for a firm with one neighbor is analogous.

As in Proposition 6, we change variables from p; to u; and reduce the proof to
properties of In D. Firm ¢ with neighbors j and k has demand function D(u; —u;, u; — uy)
over the range where j and k remain active competitors. Using this change of variable
ensures that

8?InD 6*lnD  06*mD _

du? + Ou;0u; + Ou;fur

0.
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When all firms raise u; equally, demand is uneffected. Thus diagonal dominance, unique-
ness, and log-supermodularity all follow provided that each cross partial is positive. Dif-
ferentiation yields

8’InD  —(Dyn1 + D2y )D + D1(Dy + Do)

Ou;du; D2 ’

where subscripts denote partial derivatives.

Because there is no interaction between firms j and k (as they are separated by i),
the D9 term 1s zero. The sum —DyD 4 Dy D, is positive because In D it is concave
in each of its arguments by the Prékopa-Borell theorem. The remaining term, Dy Dy, is
positive because demand for firm 7 is increasing in both u; and u;. Q.E.D.

ProprosiTION 8: Under Al with o € R™ consider m firms selling goods at prices p:

(2) For m < n 4+ 1 no value restriction is implied; all m! preference orderings of the m
products can coexist.

b) For m > n + 1, value restrictions are implied; some of the m! orderings are ruled out.
J:4

Proor: (a) With Al, those who prefer (z;,p;) to (x;,p;) lie in a half-space. With
m < (n + 1), any preference ordering is possible since there exists a solution to any n
linear inequalities with independent gradient vectors.

(b) For m > (n + 1), the social choice results of Greenberg (1979, Theorem 2) trans-
lated into this setting imply there exists a product which captures at least 1/(n + 1) of
the market in duopoly competition against each of the other (m — 1) products. If there
were no value restrictions, consider a population of m individuals, one with each of the
cyclic preferences

{(zr,p1) > (z2,p2) > .. > (T, Pm) s 5 {2, Pm) > (21, 71) > o > (Tmm1, P—) )

Here, no firm captures at least 1/(n + 1) against each of its rivals in duopoly compe-
tition, a contradiction. Q.E.D.

- ProposiTioN 9: Under Al and A2 with o € R?, the average number of competitors
per active firm is bounded above by 6: [5_; C;]/m’' < 6, where m' represents the number
of firms with D;(p) > 0.

Proor: Under Al and A2, at any prices p, firm #’s customers lie in a convex subset
of B. This collection of convex market areas form a partition of B. If there is a tie for the
best commodity, we break this arbitrarily in favor of the good with the lowest index. This
is irrelevant to demand as the set of indifferent consumers is generally of measure zero.

Let each market area be a convex polyhedron. This involves no loss of generality since
the number of neighbors is unchanged when we replace B by the convex hull of the points
on the boundary of B where some consumer is indifferent between two products. The
number of a firm’s competitors then equals the number of sides of its polyhedral market
interior to B. The average number of sides, s, is bounded by counting angles.

At any vertex of the market partition interior to B, the consumer is indifferent be-
tween at least three products: hence the average interior angle is 120° or less. At vertices
in Bd(B), the average interior angle is 90° or less. It is easy to confirm that for any
s-sided polygon, the sum of the interior angles is (180°)(s — 2). Thus the average over
the m' active firms is (180°)(s — 2)/s. This is increasing in s and equals 120° when s = 6
yielding the result. Q.E.D.

ProposiTION 13: Cobb-Douglas preferences (8.2) satisfy A1".
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PROOF: Since revenue is constant over the region where demand is positive, D(a, Y, p) =
[p(1 + B)]" and thus In[D(a,Y,p)] = k — Inp, a linear function of log price. The only
remaining issue is to show that demand is positive over a convex set of o types. This
follows as the log of indirect utility is linear in o and Inp: if type g purchases good 7
when Inp; = ¢; and type «a; purchases good 7 when Inp] = ¢!, then type o) will choose
to purchase good 7 when the log of the price equals gj. Q.E.D.

THEOREM 3: Under Cobb-Douglas preferences (8.2) and A2, there always exists a
pure strategy Bertrand-Nash equilibrium for n > 2 firms, each with strictly positive costs,
¢; > 0; for the duopoly, this equilibrium is unique.

ProoF: Once again, we use Kakutani’s fixed point theorem to prove existence. Note
that Proposition 1 extends to this model; demand is continuous unless goods are identical.
Hence, the proof will go through exactly as in Theorem 2 once we establish that there exists
a best-response mapping which takes a compact set Z into itself. This is demonstrated in
Lemma 1 below.

To prove uniqueness, we reconsider the first-order conditions (6.2) and (6.3). Unique-
ness for duopoly follows exactly as in the proof of Proposition 6, where b(p;) is linear in

In p,. Q.E.D.
Given a price vector p, let p;(p_;) be the best response correspondence. Define
m_; = minp; and M_,;, = maxp;.
Jai i T
For convenience, we set Y = (1 4 ) so that total market revenue equals 1.
LemMMA 1: There exists a vector z € R™ and corresponding set Z = [],[c;, z;] such
that forallpe Z
pi(p—i) Nlei, z] # 0.

ProoF: The proof of Lemma 1 itself uses Lemmata 2 and 3. Lemma 2 demonstrates
the existence of a scalar & such that for any 7 and p_;,

(10.1) pi > km_; = Di(pi,p-:) = 0.
Lemma 3 defines firm specific scalars r; with r;r; < 1,7 # j and a constant p* such that,
(10.2) m_; > p* = pi(p-i) N e, M_ir;] # 0

We take ry = max; r;, and set r = Maz[r;, 1].

With (10.1) and (10.2), set z; = kp*r and z; = kp*, ¢ # 1. With this vector z,
consider a p € Z. We separate cases according to the value of m_; to show that firm i
always has a best response below z;.

(i) If m_; < p*, then (10.1) above shows that for p; > kp*, D!(p:,p~;) = 0. Hence
profits are zero for p; > z; and it is immediate that p; = ¢; is as profitable as any
price outside [c;, 2]

(ii) If m_; > p*, firm 7 has a best response in the set [c;,, M_;r;] by Lemma 3. Hence
we need only confirm that M_;r; < z;. For all firms other than firm 1, M_;r; <
kp*rr; < kp*, where the second inequality follows from the definition of r and the
fact that r;r; < 1,7 % 3. For firm 1, M_yry < kp*r, by the definition of r. Q.E.D.

To prove Lemmata 2 and 3 we note that with Al’, a type (,Y) chooses z; over z;
if and only if

(10.3) a- f(zi)+ h(z;) —In[ri] > - f(z;) + h(z;),



AGGREGATION AND IMPERFECT COMPETITION 33

where ry = p,-/pj.

LEMMA 2: There exists a scalar k such that for any i and p_;,
(i) pi 2 km_; = Di(pi,p—:) = 0;
(i) pi <m_;/k = piDi(pi,p-:) = 1

Proor: Equation (10.3) shows that for any two firms (7, j) there exists some number
kij such that if p; > k;;p; then firm 7 gets zero demand. It is then clear that picking

k = max(; j) ki; establishes the Lemma. Note that we have normalized income so that a
firm that captures the entire market has revenue equal to 1. Q.E.D.

Lemma 2(ii) establishes that any firm can capture the entire revenue by undercutting
its rivals suficiently. Furthermore the necessary level of undercutting can be made inde-
pendent of other prices. Lemma 3 establishes that once the minimum price of other firms
is high enough, a firm does better undercutting its rivals and capturing the entire market
rather than accepting at most (1/2) the revenue at the higher price M_;r;.

LeEmMa 3: There exist scalars r; with ryr; < 1,i# j and a constant p* such that,

m_; >p" => pi(p_i)N[c;, M_;r,] £ 0

ProoF: We define p* = max, 2kc; and scalars r; so that,
r,-Di(l,l,...,r,-,l,...,l) = 1/2

By Lemma 2(i), with r; high enough, firm #’s revenue is zero. By Lemma 2(ii), with r,
low enough, firm 7 has revenue 1. The existence of r; follows by the continuity of I} under
Al

To establish (10.2) we first note that for p; > M_;r; revenue and hence profits are
below (1/2). In contrast, a price p; = m_,/k generates revenue of 1 and costs of c;k/m_;,
which are below (1/2) as

cikfm_; < ik /p* < cif(2¢:) = (1/2).

Note that the first inequality follows by assumption and the second from the definition
of p*. Finally, observe that only one firm can have strictly more than 50% of the total
revenue when all firms charge the same price. If such a firm exists, it is labelled as firm
1. Fori # 1,

1/2=rDy(r,1,..., 1) = 1D5(1, 1 /rq, .. Yy, 1/ m) S DL, L, 00, 1m0, 1),

This implies that r,D,(1,1,...,1/r,...,1) < (1/2) so that r;ry < 1 as required. If no
firm has more than 50%, then r; <1 for all 7 and the lemma follows directly. Q.E.D.
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