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ABSTRACT

The main result of this paper is that given n red, n white, and n green points in
the plane, it is possible to form n vertex—disjoint triangles Al, ..., A in such a way
that Ai has one red, one white, and one green vertex for every i=1, ..., n and the

intersection of these triangles is nonempty.
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Introduction

Let n, d, r with n > (d+1)r be positive integers and consider a finite set 7P, of
n distinct points in Rd which are divided into d+1 subsets Cl’ cees Cd+1’ called
colors, each of cardinality at least r. We say that ’Pn is r—properly colored. If
Py ++» Pyyq are points of 'Pn then we say that {pl, ey pd-l—l} and the simplex
(possibly degenerate) conv(pl, o1 Py +1) which they determine is rnulticolored if, after
suitable relabelling, p; € Ci ,i=1, ...,d+1.

One of the best known elementary results in convex sets is Radon’s theorem [1}:

Radon’s Theorem. Any d+2 points in Ed can be divided into two subsets X, Y with

convXnconvY# ¢.
The famous extension of Radon’s theorem due to Tverberg [2] is:

Tverberg’s Theorem. Any r(d+1)—d points in Ed can be divided into r disjoint sets

T
X, ey X with n coani#qﬁ.

1 1=1

Recently, studies of the well-known k—set problem [3], [4], [8] have aroused consid-

erable interest in the possible existence of a colored version of Tverberg’s theorem. The

i
results of this paper will, in particular, yield the bound O(n3_ / 2T} on the number of pos-

sible ways a set of n points in E3 can be divided in half by a hyperplane. This is an

1
improvement over O(n3 / 5¢) given in [4]. However, by a different method, the better

bound O(n3_1/ 3+E) has been obtained recently [8].



The Colored Tverberg Problem

Determine the least value N(r,d) such thatif n> N(r,d) and 7, is an r—properly

colored subset of Ed then there exists r disjoint multicolored subsets of 7’n ,

I

{pl,j’ .eey p(d+1)’J}J=1 , say,

such that

I
n co e, . )
=1 nv{pl)J’ p(d+1)1.1} £e

For obvious reasons, we call the special case r = 2 the colored Radon problem.

Almost nothing is known about this problem. In [4] it is shown that N(3,2) <7
but for d > 3, r> 3 it is not known that any finite N(r,d) exists.

We make the conjecture that N(r,d) =r(d+1). We shall proveit for d=1,2.
The colored Radon Theorem N(2,d) = 2(d+1) has been proved by many people indepen-

dently and we will reproduce the proof due to Lovéasz [6] here.

Theorem. For positive integers 1 and d

() N(x1)=2r,

(i) N(r,2) = 3r,

(iii) N(2,d) = 2(d+1).
Note. If we have a set 7 in gd which is r—properly colored, we shall say that 7 is
r—divisible if there exist r disjoint multicolored subsets {plyj’ cee pd+1,j}§=1 with
r
n

conv{pl’j, cees pd+1,j} $¢.

=1

We mention further that (ii) of the theorem has been proved (independently) J. Jaromczyk

and G. Swiatek [7].



Proof of the Theorem.
(i) N(r,1) = 2r . This we can do by induction. Trivially N(1,1) = 2. Now assume
N(r,1) =2r for some r> 1. Let 7)2(r-|-1) be an (r+1)—properly colored set of 2(r+1)

points on the real line. Let inf? = A and we suppose that A is colored 1. Let B be the
largest point of 7 which is colored 2. The removal of A and B from ’P2(I+1) yields a
1 properly colored subset which we can divide into r multicolored intervals with a
common point of intersection which can be chosen in the interval [A,B]. The inclusion of

the multicolored interval [A,B] yields the required r+1 multicolored intervals.

(ii) N(r,2) = 3r. We adopt the Tverberg approach of taking points P, Po, ovny P3r
and Q, Poy ooy P3r in algebraically independent positions. Assuming that the set

P, P , P3r is r—divisible we shall prove that the set Q, Poy ouny P3I is r—divisible.

91 ve
Since there certainly are positions for P, Poy vty P3I which are r—divisible, (ii) will be
established if we can prove the above result.

In fact it will be convenient to prove the stronger result that when the points are in
algebraically independent positions then the interiors of the r multicolored triangles
contain a common point of intersection. As in Tverberg’s approach we consider the set
(1—t)P + tQ, P2, ceny P3r , 0<t<1, and consider the set T of those t in [0,1} for
which (1-t)P + tQ, Py, ..., Py is r—divisible. T is a non—empty, since 0€T,
closed set and let t; be the maximum of T. We show that ty =1 (and the result
follows) by showing that if t(] <1 then there exists t > tO with t € T. Now suppose

that t. < 1 and consider the situation at tO .

0
Since we are unable to continue using the subdivision of

{(1-t)P +1Q, Py, ..., Py }

used at tO one of two possibilities must have occurred:
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(i) Two of the multicolored triangles used at t, will intersect in a degenerate way,
i.e. if the triangles are T1 , T2 , then '1‘1 and ’.[‘2 are weakly separated by a line £ and
a vertex of T, will lie on an edge of T, . All other triangles will contain this vertex of
T2 in their interior.

(ii) Three of the multicolored triangles used at t; will intersect in a single point 0
say which lies in the relative interiors of their edges. All other triangles will contain 0 in
their interior.

We fist consider possibility (i).

Let T1 have vertices A, B, C and T2 have vertices A, B’ , C’ where A’
is the point (1 — tO)P + tOQ S , £ are the two half planes determined by ¢ we
suppose that T, liesin £ and T, liesin £ . We suppose that A’ lies in the edge
BC and as t increases from tg» A’ moves to a position A { in the interior of £ and
hence the triangles ABC AEB'C’ do not intersect. Another possibility is that B lies
on the edge A’C’ but the arguments for this possibility are similar and will therefore be
omitted.

What we shall show is that it is possible, as A’ moves slightly to A, to rear-
range the six points A, B, C, A{: , B, C’ into two multicolored triangles whose
interiors meet within any given neighborhood of A’ (of B if B lies in the edge A'C’ )
by varying the distance between t and tg accordingly. This ensures that for t > tg and
t close to t;, the r multicolored triangles (the two newly distributed triangles and the

-2 remaining triangles in the r—division at t, ) have a common point in their interiors.
Case 1. Intheline { the three points A’ , B, C do not have distinct colors.

Let us suppose that the color 3 is not amongst the colors of A7, B, C. Then A
has color 3 and we suppose that B‘ has color 3. Then AA%C' , B’BC are the required

triangles.



3N A
B/\C
B'Q
3 C

Case 2. In the line { the three points A’ , B, C have the distinct colors 1, 2, 3

Ny

If the line through AA‘ meets the interval (B/C’) then the triangles AB'C’,

respectively.

A%BC will do.

Otherwise suppose that B“C’ lies on the same side of the line AA’ as does B.




If B’ is colored 2 then B’AC, BC'A’ will do. If B’ is colored 3 then B’'BA‘ |

AC'C will do. So,if t; <1, (i) cannot arise.

We now consider the possibility (ii):

There are three multicolored triangles T1 , T2 , T3 , with the point
(1 -—tO)P +1,Q in T;, whose intersection is a single point 0 say belonging to the
relative interiors of the sides of T,, T,, T,. Further, if Tl(t) is the multicolored
triangle with (1 —1t,)P + t,Q replaced by (1-t)P +tQ, an increase from t; to t
means that Tl(t) » To, T, nolonger have a common point of intersection.

We consider the nine vertices of T1 , T2 , T3 , three colored 1, three colored 2,
and three colored 3 which we try to rearrange as the vertices of three multicolored triangles
whose intersection still contains 0 but also contains an interior point. Thus when
(1- tO)P + tOQ is moved to (1-t)P +1tQ, t> tg but t—t, small, the rearranged tri-
angles still have a non—empty intersection. In fact we will try to rearrange two of the
three triangles so that one contains 0 in its interior and the other contains 0 on its
boundary. We may not always succeed but we gain information about the arrangement of
points.

The triangles T, T T3 have three edges AB, DE, GH, one each respec-
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tively, passing through 0, with third vertices C, F, I respectively. We regard the
nine vertices as arranged circularly around 0 with each edge AB, DE, GH carrying a
normal direction to indicate the halfplane containing the third vertex. Of course, the
intersection of the three halfplanes is precisely 0.

Consider two of these edges AB, DE. Two of these vertices say B, E will be

given the same color, say 3. Consider first the case when A, D have different colors say

1,2. Figure 1 indicates the three different possible arrangements.



FIGURE 1

(a)If Fe AD (the circular arc between A and D taken clockwise) and the segment FC
does not meet the sector DOB then FCB, ADE are the required triangles. If FC
meets DOB then FEC, ABD are the required triangles.

Consequently in case (a) we may suppose that F lies in EA the common arc of

intersection of the triangles T, and T,.
(b) If C liesin DB and the segment FC does not meet the sector BOE then FCE,
ABD are the required triangles. If FC meets the sector BOE (and C lies in ﬁﬁ),
then ACE, FDB are the required triangles. Consequently we may suppose that C lies
A . . A . .

in AD. If F liesin EA then BCF and AED are the required triangles. So F also
lies in @ .

Consequently, in case (b), we may suppose that both C and F liein AD, the

common arc of intersection of the triangles T, and T2 .

(c) If the segment FC does not meet the sector BOE then ADB and CFE are the

required triangles.



Consequently, in case (c), we may suppose that the segment FC meets the sector

BOE , the common sector of intersection of the triangles T, and T, .

Now suppose that A, D have the same color 1 say. Figure 2 indicates the two

possible arrangements.

FIGURE 2

(d) If F isin AD then we may change the region of intersection from E0A to DOB by
interchanging F and C i.e. using the triangles ABF, DEC. The intersection

T3 n ABF n DEC contains 0 and an interior point, as required. So we may suppose that
. - A . . .
F and C liein EA the arc of intersection of the triangle T, and T, .

(e) If C lies in OB and F liesin EA we may change the region of intersection AQD
to BOE by using the triangles ABF , CED. The intersection T3 n ABF n DEC con-

tains 0 and an interior point, as required.

If C liesin DB and F liesin AD we may change the region of intersection AOD

to DOB by using the triangles ABF, CED . The intersection T3 n ABF n DEC con-

~
tains 0 and an interior point, as required. So we may suppose that C liesin AD .



So we may suppose that F and C liein AD the arc of intersection of the tri-
angles T, and T, .
So in the cases (a), (b), (d), (e) (at least) one of the points F and C lies in the

sector of intersection.

Now comnsider the three diameters AB, DE, GH as in Figure 3.

FIGURE 3

There will be three regions of pairwise intersections of the triangles T, Ty, T3
determined by the arcs DB , fir , AQ. Consider the pairs EA, GD, BH. Suppose

E and A receive the same color 1 say. Then, by (b) and (e) we see that the arc DB con-
tains both points C and F . The other two regions of pairwise intersection will contain at
least one point of C, F, I, and hence an obvious contradiction, unless one of the pair-
wise intersections, corresponding to AB, GH say falls into case (¢). Thus A, G are
labelled with the same color 1 and B, H receive different colors, necessarily 2, 3 (say B

receives color 2). Now either D has color 2 and (a) applies or D has color 3 and (d)

applies. In both cases fif contains 1. Consequently C, F and I liein the arc bR

and hence the chord CI does not meet the (interior of) the sector AOG as required by (c)

applied to AB, GH.

So we may suppose that none of the pairs EA, GD, BH receive the same color.
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Suppose that two of the diameter pairs say AB, DE are similarly colored. Say

A, D colored 1and B, E colored 3. Then, by (d), both C and F lie in DB . Unless

case (c) arises amongst the other two sets of diameter pairs an immediate contradiction

arises since AE and AG will both contain at least one point of C, F and I. So
suppose that DE, HG fall into case (e) i.e. H is colored 3. But then B and H have
the same color, contradiction.

So we may suppose that none of the diameters are similarly colored. Now only cases
(a) and (c) can arise. Let us suppose that case (a) arises for the diameters AB, DE

colored 1, 3, 2, 3 respectively. Then G is colored 1 and H is colored 2. Consequently C

lies in arc DB and as the pair DE, GH also falls into case (a), I liesin arc HE . The

pair AB, GH falls into case (c) and so the chord CI must intersect the interior of the

sector AOG which contradicts C, I lyingin bE .

Finally, we suppose that only case (c) arises. Let A, B, D, E be colored 2, 3,
3, 1 respectively. Then H is colored 1 and G is colored 2. The triangle CFI meets the
interior of each of the sectors DOB, HOI, AOG and so contains O in its interior. Con-
sequently CFI, AHD , BEG are the required triangles.

This completes the proof that if t5 <1, (ii) cannot arise and hence completes the

proof of (ii) of the theorem.

Remark. It is not possible to carry through the argument in E® as we have done in EZ.
Notice that in EZ , when the intersection of (say) two multicolored simplices S, and S,
became a single point 0 it was possible to rearrange the vertices of S; and Sy soas to
form two other multicolored simplices T, and T, with O in their intersection. We give
an example of two tetrahedra S1 = conv{A, B, C, D} and Sy = conv{A’, B, C’, D"}
where this is not possible. Let the points A, B, C, D, A, B, C’, D’ be

colored 1, 2, 3, 4, 3, 4, 1, 2, respectively, and let
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A=(1,00), B=(-1,0,0), C, D closeto(1,1,1),
A’ =(0,-1,0), B’ =(0,1,0), C, D close to (1,1,~1) .

Then S, N S2 is the origin 0. Assume T, and T, are two multicolored tetrahedra with
vertices from A, B, C, D, A, B, C’, D’ and 0€T10T2. As
0¢conv{A,C,D,B",C’,D’}, A’ and B must be in different tetrahedra, A’ € T,

and BeT,, say. Then A€T, since Of conv{B, C,D, B/, C’, D"}, and similarly

2 )
B e T, . But now the only way to have all colors in T1 and T, is to have

T, = conv{A’, B/, C’, D’} and Ty = conv{A, B, C, D}.

(i) N(2,d) = 2(d+1). In gd+1 consider the cross—polytope X with vertices, e, ,

i=1,...,d+1, where s ++rs g q 3I€ the unit coordinate vectors. Let
?={1, ...,d+1;1’, ..., (d+1)’} be a 2—properly colored set in B of 2(d+1)

points such that points i and i’ are colored i, i=1, ..., d+1. We define
o(ei)=i, a(—ei)=i' , i=1, ..., d+1.

We can extend ¢ to a continuous map of X into Ed by taking

d+1 d+1
o(x) = izl)\ia(vi) where x = iilz\ivi € 9X
d+1
,\izo, % Ay=1,0=1, ..., 441, v, are vertices of X .
i=1
By the Borsuk—Ulam theorem [5] there exists x and -x in dX with

o(x) = o(—x). If {vl}?:% are the vertices in the facet of X containing x then

{-Vi}?ii are the vertices in the facet containing —x and {a(vi)}?:i , {o-(——vi)}‘ii:i are

the vertices of two multicolored d—simplices which intersect in the point o(x) .
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