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1. INTRODUCTION

The most commonly used tests of the null hypothesis of a unit root in an observed time series are deriv-
atives of the Dickey-Fuller tests (Dickey (1976), Fuller (1976), Dickey and Fuller (1979)). The Dickey-Fuller
tests were developed for simple Gaussian random walks and the derivative procedures (notably Said and Dickey
(1984), Phillips (1987) and Phillips and Perron (1988)) are intended to detect the presence of a unit root in a
general integrated process of order one (I(1) process). The Dickey-Fuller tests are based on the regression of
the observed variable (say, y) on its one-period lagged value, with the regression sometimes including an inter-

cept and time trend; that is, they are based on regressions of the form:

ey} Yy = B £

(2) Yo =a + By + &

3 Ye=a+ By tét+ e,

for t=1,2,..,T. The p, p,, and 5 tests are based on the statistic T(ﬁ - 1), where E is the OLS

estimator of 8 in (1), (2) and (3) respectively, while the 7, #, and 7  tests are based on the t-statistics
for the hypothesis 8 = 1 in the same three regressions. The former are coefficient tests, and the latter are t-
ratio tests. Both types of test have time series extensions by the semiparametric correction method of Phillips
(1987) and Phillips and Perron (1988). Only the t-ratio test is extended in the long autoregression method of
Said and Dickey (1984).

Following the empirical work of Nelson and Plosser (1982), a common motivation for testing for a unit
root is to test the hypothesis that a series is difference stationary against the alternative that it is trend stationary.
That is, one wishes to test for a unit root in the presence of deterministic trend. Economists are especially inter-
ested in such tests becausc under the alternative hypothesis of stationarity time series exhibit trend reversion
characteristics, whereas under the null they do not. Unfortunately, the Dickey-Fuller tests are not well designed
for testing trend reversion. This is most obvious in the case of the tests based on regression (1), which does not
allow for trend under either the null hypothesis or the alternative. Regression (2) allows for trend under the nuil,
since when B = 1 the solution for y, includes the deterministic trend term at . However, the tests based on

(2) are still not very suitable in the presence of trend, for two reasons. First, the distributions of the test statistics

(even under the null hypothesis) depend on the nuisance parameter a (Evans and Savin (1984), Nankervis and



Savin (1985), Schmidt (1989), Guilkey and Schmidt (1989)). Second, regression (2) does not allow for trend
under the alternative that B < 1, and therefore tests based on (2) arc inconsistent against trend stationary
alternatives (West (1987)). Finally, regression (3) allows for deterministic trend under both the null hypothesis
and the alternative, but it does so in a clumsy way. Under the null hypothesis the model allows for linear trend
even with § = 0 (and non-zero § generates quadratic trend), whereas under the alternative linear trend requires
non-zero § . Thus the test allows for linear trend under the alternative by including in the regression a variable
that is irrelevant under the nult. This might be expected to result in some loss of power in finite samples, a
conjecture supported by Monte Carlo evidence reported in this paper. Furthermore, the distributions of the test
statistics based on (3) are now independent of a but they depend on § under both the null and the alternative
hypotheses.

This paper provides a new unit root test based on the alternative parameterization

C) =¥+ &+ X, X =X_ + ¢,

which has previously been considered by Bhargava (1986). Once again the unit root corresponds to § = 1.
This parameterization allows for trend under both the null and the alternative, without introducing any param-
cters that are irrelevant under either. Indeed, one of the attractions of this parameterization is that the meaning
of the nuisance parameters ¥ and £ does not depend on whether the unit root hypothesis is true: ¥ repre-
sents level and £ represents deterministic trend, whether 8 = 1 or not. As noted above, this is not so in the
Dickey-Fuller parameterizations. For example, in (2) the parameter o represents trend when 8 = 1, but it
determines level when B < 1 (since y is then stationary around the level a/(1-8) ). In (3), similarly, when
g =1, a reprsents linear trend and § represents quadratic trend, whereas when 8 < 1, a determines level
and § represents linear trend.

The new test is extracted from the score or LM principle under the assumption that the ¢, are
iid N(0, af) , but our asymptotics hold under more general assumptions about the errors. Two forms of the
test (a coefficient test and a t-test) are derived. A valuable property of these tests is that their distributions under
botk the null and alternative hypotheses are independent of the nuisance parameters ¥, £ and o . Thus the
difficulties for the Dickey-Fuller tests caused by nuisance parameters representing deterministic trend do not arise

here.



The plan of the paper is as follows. Section 2 derives the new test statistics and compares them to the

Dickey-Fuller 5, and #_ statistics. Section 3 gives results on the finite sample distributions of the statistics
under the assumption of iid errors. Section 4 provides the asymptotic distribution of the statistics under more
general error assumptions, and gives extensions along the lines of Phillips (1987) and Phillips and Perron (1988)
that are asymptotically robust to error autocorrelation and heteroskedasticity. Section 5 extends the tests to the
case of deterministic trend that follows a higher order polynomial in time. Section 6 provides some Monte Carlo

evidence on the power of the tests. Finally, Section 7 contains our conclusions.

2. NEW UNIT ROOT TESTS

We begin with the model as given in (4) above, where the errors ¢, are assumed to be iid N(0, af)
and where the initial condition X, is taken as fixed. We wish to derive the LM test of the hypothesis 8 = 1
in this model. The derivation is given in Appendix 1, and here we will give only a brief summary. The restricted

MLE’s (that is, the MLE’'s when we impose 8 = 1) of £ and ¥y = ¥ + X; are as follows:
&) ¢ = mean &y = (yp — yD/(T-1)

©) W= =n-f
(The parameters % and X, are identified separately under the alternative hypothesis, but not under the null

hypothesis that 8 equals one.} Note that, as expected, the estimate of § comes from estimation of (4) in dif-

ferences. Now define the “residuals”

N §t-1 = Y1 ;”x - é(t"l) , t=2..T .

These are the (lagged) residuals from the model (4) in levels, but where the parameters have been estimated

from the model in differences. The score vector evaluated at the restricted MLE'’s is proportional to

T

® T (ay, - 68, .
t=2

This is the numerator of the estimated regression coefficient of fit_l in the regression
9 Ay, = intercept + ¢§t-l +error {t=2,.,T).

Denote the least squares estimate of ¢ by ¢.. We then define the test statistics



(10) T

h-1]
1]

~n
L}

(11) usual t-statistic for ¢ = 0 in (9).

It is instructive to compare these statistics to the Dickey-Fuller statistics 5, and 7, based on regression
(3). This is a regression of y on intercept, time trend and lagged y; equivalently, it is a regression of Ay on
the same variables. By the standard algebra of least-squares regression, it follows that this is in turn equivalent

to the regression
(12) Ay, = intercept + pét_l +ermror (1=2.,T),

where §t—1 is the residual from an ordinary least squares regression of y,_;, on an intercept and time trend.
We then have 5, as the estimated coefficient of §!_1 in (12), and f_ as the t-statistic for the hypothesis
p = 0. Comparing (12) to (9), the only difference between the new tests # and 7 and the Dickey-Fuller
tests p, and #_ is the nature of the residual upon which Ay, is regressed. Both §‘_1 in (9) and §H in
(12) are residuals in the levels equation for y, ,, but the parameters used to calculate the residuals are esti-
mated differently: the parameters used to calculate §t_1 are estimated from the model in differences, while
the parameters used to calculate §t_1 are estimated from the model in levels. Given that y is I{(1) under the
null hypothesis, the regression of y,.; on intercept and time in levels is spurious and thus the residual process

§H is I(1). §H is also a detrended I(1) process but the trend is estimated using the information that g = 1,

3. FINITE SAMPLE DISTRIBUTION THEORY

The finite sample distribution of the test statistics p and T arc complicated and will be tabulated by
simulation. However, we first demonstrate the simple but important fact that the distribution of the test statistics
under the null hypothesis is independent of the nuisance parameters ¥, £, X, and o, . Thus the distributions
of the test statistics under the null hypothesis depend only on the sample size (T) .

To prove this result, we define the partial sum

(13) S = L

and note the solution for y, under the null hypothesis:

{14) y, = ¥x + §t+ S,



The restricted MLE’s given by (5) and (6) satisfy

(15) E=¢+2

(16) Y=y —&=¥x + (- F).

Inserting (13)~(16) into the definition (7) of §,_;, we obtain

an R (o)

This does not dependon ¢, ¥ or Xy - Now consider the regression of Ay, = § + ¢, onintercept and §t_1 .
The intercept absorbs € and both the estimated coefficient of §t_1 (i, ¢) and its estimated standard error
are indcpendent of £ (aswellas ¥ and X, ). Finally, the scale factor o ¢ also cancels out of all expressions
for 7 and 7, so that their distributions are independent of o, as well as the other nuisance parameters.

Bhargava (1986) has previously derived a test of the unit root hypothesis based on our model (4) using
the theory of invariance to ensure that the test statistic’s distribution does not depend on nuisance parameters.
King (1981) and Dufour and King (1989) have similarly used the theory of invariance to yield test statistics inde-
pendent of nuisance parameters. Their tests are designed to be point optimal and hence of rather different form
than this paper’s tests or Bhargava's.

Critical values for the test statistics 5 and # are given in Tables 1A. These arc calculated by a direct
simulation using 50000 replications. Random deviates were generated by the routines GASDEV and RAN3 of
Press, Flannery, Teukolsky and Vetterling (1986); more detail on this random number generation scheme can
be found in Guilkey and Schmidt (1989). We note in passing that the lower tail critical values are smaller in
absolute value than the corresponding lower tail critical values for the Dickey-Fuller 5_ and 7, tests.

Under the alternative hypothesis that 8 is not equal to one, the distributions of 7 and 7 are inde-
pendent of ¥, £ and o, , but they depend on X3 = Xo/o, . (They also depend on B and T, of course.)
The proof of this assertion follows the same lines as above, but is somewhat more involved, and is given in

Appendix 2. Some simulation evidence on the powers of the tests will be given in Section 5.



4. ASYMPTOTICS

Following Phillips (1987) and Phillips and Perron (1988), we can relax the assumption that the g, are
iid by considering the asymptotic distribution of the test statistics and correcting for serial dependence. We
assume the same regularity conditions as Phillips and Perron (1988, p. 336); these put some limits on the degree
of heterogeneity and autocorrelation allowed in the ¢ sequence but are otherwise fairly general. We define the

two nuisance parameters

T
(18) o = lim TE( § €2
Tre  t=l
(19) o = lim T'E($%)
T-o

(where Sy is the partial sum as defined in (13) above). We also define the ratio w? = o2/o® . Then as shown

£

in Appendix 3 the following limit theory holds for the test statistics 7 and 7 :
-, 1,271 2
(20) b=l pv) e
21 7 —1/2)(f éyz]'l/ 2.
Here V(r) is a standard Brownian bridge on the interval [0,1] and V(r) is the demeaned Brownian bridge
1
(22) V() = V(1) - [ V(rydr .

The symbol " —+* in (20) and (21) significs weak convergence of the associated probability measures.

It is easy to relate the limit formulae to those of earlier work. Consider the integral

(23) JEVdV = Af3(W(r) - tW())(AW(r) - deW (D)

G JGWAW = W(I)? + (JaWanW(1) - (JWdW(D) + (1/2W(1Y)

A WA - (1/2W(1)%)

(1/2)2{((W(1)? - 1) - W(1)%)

-02/2 .

Also note that



(24) Jpvav = fLve) - fiviav
= [gvav - Vv
= [gvav

since V(1) = 0. Thus, in place of (20) we have

(25) b~ ([ QYA + (1/2)(0” - oD}/ {o?[ (¥ Pdr)

which is entirely analogous to the limit representations given in Phillips (1987) and Ouliaris, Park and Phillips
(1988). The difference is that the standard Brownian motion W(r) that appears in the formulae of the latter
papers is replaced by the Brownian bridge V(r) . The reason for this difference is easy to explain. The new
test statistics 7 and 7 are based on the least squares regression coefficient ¢ in (9). This is the coefficient
of the detrended process E-;t_l given in (17). As shown in Appendix 3, standardized by T2 this process con-

verges weakly to a Brownian bridge. This is as we would expect because
(26) TV = -T2, - 2)~, 0,

andas T, TV 2§T is itself effectively tied down to the origin. Such behavior does not arise in the case
of tests that are based on the coefficients of y,_, in the Dickey-Fuller regressions (1)-(3).

The asymptotic formulae (20} and (21} require only simple corrections to remove the effects of depen-
dent and hetcrogencous errors. Multiplying 5 by a consistent estimate of 1/w® = (az/ai) yiclds a corrected
test statistic whose asymptotic distribution is identical to the asymptotic distribution that 7 would have under
iid errors, so that the critical values given in Table 1 are asymptotically correct. Similarly, multiplying 7 by a
consistent estimate of 1/w = (¢/0,) yields a corrected test statistic for which the critical values in Table 1 are
asymptotically correct. These corrections are very simple in comparison with the corrections given in Phillips
(1987) and Phillips and Perron (1989) for the Dickey-Fuller tests.

Estimation of ¢ and af can be performed along the lines suggested in Phillips (1987), Phillips and
Ouliaris (1987), and Phillips and Perron (1988). In particular, the arguments given in Phillips and Ouliaris (1987)
apply and the consistency of both tests requires that a® and af be estimated from regression residuals rather
than first differences. Thus, let £, be the residuals from a least squares regression on (3). Then by arguments
analogous to those of Theorem 4.2 in Phillips (1987) we find that the following estimates are consistent for the

variance parameters under the null:



T
27 ¢ =T1! é‘f o af
t=1
and
2 15 a2 1£ T
(28) (&) =T e +2T' ) T 88,9,
t= s=1t=st1

In the case of 52(2) we require that the lag truncation parameter £ +« as T+ o, Therate £ = o(Tl/ 2
will usually be satisfactory, as for the case of stationary sequences ¢, (see Andrews (1989)).

With these estimates we construct 8% = sz/sz(f’,) and the test statistics
(29) Z(p) = B/*, Z(1) = #/v.
Under the null hypothesis we have
1, 271 1,.-1/2
(30) 2()~ -2V, Zn~-a(f )"

These limit distributions are free of nuisance parameters and they are negative almost surely. Under the altern-

ative hypothesis that |8| < 1 we find that
Z(p) = O(T), Z(r) = O(T/2
() = OLT), Z(r) = O,(T?)
as in Theorem 5.1 of Phillips and Quliaris (1987). Thus, the statistics diverge undcr the alternative and the two

tests are consistent, but at different rates as T+ =,

REMARK. As observed above, the construction of a consistent test requires the use of regression residuals
rather than first differences. This means that a regression such as (3) is needed, at least at this stage, to remove
nuisance parameters. Although this does not cause any loss in asymptotic local power, it seems likely that it will

have finite sample effects in terms of some size distortion and power loss.
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5. EXTENSIONS TO HIGHER ORDER POLYNOMIAL TRENDS

We now wish to replace the linear deterministic trend in (4) with a higher order polynomial trend. To

do so, we first consider the more general model

(31) y=a+Zi+ X, X =X +¢,

where Z, is at this point a general row vector of explanatory variables. The pull hypothesisis 8 = 1, as
before, and to construct the LM statistic we need to consider the differenced version of (31), namely

(32) Ay, = AZS + u,

(where u, = ¢, under the null hypothesis). Define the restricted MLE’s: § = OLS estimate of § from (32),
ﬁ:x =y - ZIS ; and define

(33) S =y -¥x~-2Zs.

Finally, run the regression

(34) Ay, = AZy + ¢S, + error .

We again define p = Té , where ¢ is the least squares estimate of ¢ in (34), and 7 = usual t statistic
for the hypothesis ¢ = 0. Essentially the same algebra as in Appendix 1 shows that 7 is the LM statistic for
the hypothesis 8 = 1 when the ¢, are iid normal.

We are specifically interested in the case Z, = [t, %, .., 1], so that the mode allows a p't order
polynomial time trend. In this case the differenced model is equivalent to a (p-1)® order time trend, and it

is convenient to rewrite the above general expressions as follows. The model is

(35) yt=g:a]-tj+X1,Xt=ﬁXl_l+st.
j=0
The differenced model can be written as

ot
(36) Ay, = Z bt +u,.
1=0
Define 4i; = 0 and @, = OLS residual from (36), t = 2,.., T. Then it is easy to show that S as defined

in (33) can be calculated as the partial sum of the 1 :
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t
G7 So= L,
k=1

and the regression (34) that defines the test statistics is simply

|t S
{38) Ay, = hX cjtj + ¢S,y + error.

1=0

From the limit theory given in Appendix 3(ii) we have

1

% R X' IR R e Vo)) [

In the above formulae Xp(r) is a detrended p-level Brownian bridge; i.e.

1
40) %) = Vet~ 1 7
J=
and
. ol Pl o
(41) & = argmin_ | 0[Vp(r) - jzoajr"] dr.

Here V(1) is a Gaussian process which can be defined in terms of standard Brownian motion W(r) as

follows:

V() = W) ~ ([gaWeee)) Qe

where g(s)’ = (1, s, ..., 1), Q is pxp with )" element q; = 1/(i+j-1) and q(r) is px 1 with

i element r'/i. As noted in Appendix 3(ii), Vo(n) is tied down in the [0,1] interval with
Vp(0) = V(1) = 0

just like a Brownian bridge. In fact when p = 1 we have
vl(r) = V(!') ]

a simple Brownian bridge; and when p = 0 we have V,(r) = W(r), a standard Brownian motion. Also as
shown in (A3.8) of Appendix 3(ii), V(1) is the weak limit of a standardized partial sum of detrended innova-

tions. Thus, writing £, as the residual in the regression of ¢, on a time trend of order p-1, viz.
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Pl
&= 1 6jtj * &,
j=0
we have
[Tr}
TV Y & V().
t=1
The detrended process \_/p(r) is most easily interpreted as a Hilbert projection in L,[0,1] of the process
Vp(r) on the orthogonal complement of the space spanned by the trend functions {d;j = 0, 1, ..., p-1} .
The nuisance parameter w, Or variance ratio w?, that appears in the limit formulae (39) may be
eliminated by transformation as discussed in the preceding section, leading to test statistics Z(p) and Z(r) .
Tables 1B-1D give the critical values for the test statistics  and #, for p = 2,3 and 4 (where p

is the order of the deterministic polynomial trend in the model (35)). These are calculated as described in

Section 3,

6. POWER OF THE TESTS

In this section we perform some Monte Carlo experiments to compare the power of the tests proposed
in this paper with the power of the Dickey-Fuller tests. These tests rely on different parameterizations, and so
we begin by considering how the parameters in one parameterization relate to those in another.

We consider the three parameterizations:

@ =9+t X, X = 8%, + g
©) Ve=a+ Byt St+ e
(42) yI =9+ By + Bt + e},

Here (3) and (4) are as previously considered. Equation (42) gives a standardization of (3) used previously by

Nankervis and Savin (1985), DeJong et al. (1988) and others. In (42) we have

(43) yl: = (Yt - YO)/ag ’ E: = Et/ae y
¥ = la+ y(B-D)fo,, &=8/o,.
It is important to note that the parameterizations (3), (4) and (42) are completely equivalent when g

is not equal to one. From any one of these equations we can derive the other two, and there is a clear mapping
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from any set of paramecters to any other set. For example, if we start with equation (4), subtract By, ; from
both sides, and do some algebra, we obtain

49 Yy = [¥(1-B) + €8] + £(1-B)t + By + €,

so that the parameters of equation (3) in terms of the parameters of equation (4) are given by

(45) a = [¥(1-8) + €8], 6 = £(1-P).

Similarly, substituting these expressions into equation (43) we obtain

(46) 7 =§%8 + X§(B-1), @ = £*(1-H),

where as before X§ = Xq/0, and £* = £ /o, . The complete set of relationships between the parameters in (3),
(4) and (42) is given in Appendix 4.

1t is interesting to note in passing the only substantive difference between our parameterization (4) and
the Dickey-Fuller parameterization (3): equation (4) implies equation (3) but it also implies that the parameter
& in (3) should equal zero when g equals one. (This is so because & = £(1-8), as givenin (45).) We earlier
argued that (3) is an awkward parameterization precisely because it allows for trend under the alternative
hypothesis by including a variable that is irrelevant under the null. On the other hand, starting with the param-
eterization (4) forces the coefficient of this variable to equal zero under the null, as it should if trend is linear.

In the Monte Carlo experiment we consider the performance of six tests: the new tests p and 7,
and the Dickey-Fuller tests 5, , 7 us p, and 7 . The focus of the experiments will be on power against
trend stationary alternatives, and we do mot expect the p, and #, tests to have much power against such
alternatives. These tests would be expected to be more powerful than the other four tests against level stationary
alternatives, and it is interesting to see how much trend or how large a sample size it takes before the 7 u and
7, tests are dominated by the other tests, However, the main focus of the experiments is to compare the power
of the new tests p and # with the power of the Dickey-Fuller 5, and 7, tests.

The results of our experiments are given in Tables 2-4. The results were generated by a simulation
using 20000 replications; the random number generator was described in Section 3. The tables give percentages
of rejections for 5% lower tail tests; other significance levels would tell essentially the same story.

The parameters that are relevant are sample size (T), 8, standardized trend (§*) and standardized

intitial condition (Xg), though we also present the corresponding values of the Nankervis-Savin parameters { -y
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and &) for case of comparison to other studics. An important advantage of the parameterization of this paper
is that it simplifies the comparisons of the powers of the tests of this paper and the Dickey-Fuller tests. Under
the null hypothesis that 8 = 1, thetests 5, ¥, 5, and ¥ have distributions that are independent of the
nuisance parameters ¥, £%, X§ and o, while the distributions of u and ¥ “ depend on £* but are
independent of ¥, X3 and af . When B is not equal to one, we proved (Appendix 2} that the distributions
of the tests 7 and # dependonlyon T, B and X3 ; forgiven T, § and X§, they are independent of
¥, £€* and o, . Interestingly, though we have not proved that it is so, it became clear in our simulations that
the same is true of the Dickey-Fuller tests 5. and #, . This is somewhat surprising because, for a given T
and p, the power of the Dickey-Fuller tests is known to depend on both v and @ in parameterization (42);
for example, see DeJong et al. (1988). However, the apparent dependence of the power of these tests on two

parameters is just a symptom of using an inconvenient parameterization. From Appendix 4 we have

(47) s = [82 - v(1-8))/(1-B),

and values of v and & that imply the same value of X also imply the same power for the 5, and 7 tests.
(DeJong et al. (1988) have proved a special case of this result. They show that power is constant for values of
v and & that satisfy v = ®8/(1-B8) . From (47), thesc values of ¥ and & correspond to X§ = 0.) Thus
the parameterization of this paper is convenient in terms of analyzing the properties of existing tests, as well as
in terms of yielding new tests.

Our first experiment, called Experiment 1 in Table 2, studies the size of the various tests under the null
hypothesis. Weset T =100, =1, X§ = 0 (its value is irrelevant anyway), and varied £* . Specifically,
we considered values 0, .02, .05, .10, .20 and .50 for £* . All tests except 5, and f, should have size equal
to the nominal critical value (.05), and this is so apart from randomness. (With 20000 replications, a 95% confi-
dence interval around .05 is approximately [.047, .053}) When §* = 0 the 5, and #, tests should also have
size equal to the nominal critical value, and they do apart from randomness. However, the size of the 5, and
7, tests should decrease to zero as £* increases, for fixed T, or as T increases for fixed £*. For
T = 100, we can see in Table 2 that the size of these tests does go to zero as £* increases; it is nearly zero
for £* as large as .50. Results presented in Table 4 for T = ‘200 and T = 500 (Experiments SA and 5B)
confirm that the size distortion of the 5, and 7, tests is larger for larger sample sizes; the larger T, the

smaller the value of £* required to produce substantial size distortions, and conversely.



The values of £€* considered here are empirically relevant. Recall that £* is standardized trend, equal
to £/o, . We can estimate ¢ by & = mean Ay = (yp — y,)/(T-1) ; this is the MLE subject to 8 = 1, but
it is a consistent estimate of £ evenif A is not equal to one. Similarly, imposing the unit root, the MLE of
af is the empirical variance of the Ay’s, and this is a consistent estimate even if y is stationary. Thus a con-
sistent estimate of £* is just the mean of the Ay’s divided by the standard deviation of the Ay’s . Schmidt
(1989) provides values of this measure (which he calls "standardized drift”) for the Nelson-Plosser data, and
values in the range [2, .5] are the norm. Smaller values of £* might be expected in higher-frequency data,
or in financial data, but it is nevertheless clear that the size distortions for the - , and 7, tests are potentially
very serious for values of sample size and trend encountered in economic data.

Experiment 2, reported in Table 2, explores the effect of the intial condition X§ on the power of the
various tests. Consider first experiment 2A, which sets T = 100, f = .90, and £* = 0. (The value of &*
matters only for 5, and 7,.) We consider values of X§ ranging from -10 to 10. Some interesting patterns
emerge. Apart from randomness, the effects of X3 on power are symmetric about X = 0. As X§ increases

in absolute value, the power of the ¥, and 7, tests increases monotonically while the power of the other four

m
tests decreases. The 7, and # u lests arc more powerful than the other four tests, because experiment 2A has
£* = 0 (no trend). A more interesting comparison is between the powers of the Dickey-Fuller 5, and 7
testsand the 7 and # tests. This comparison depends only on the value of X3 . For |X}| = 2, the new
tests are more powerful than the Dickey-Fuller 3. and #_ tests, while the opposite is true for |X¥]| = 5.
The standardized initial condition is a hard parameter to get a feel for; it is not even identified under the null
hypothesis. However, a value of X, that is five standard deviations (of ¢ ) away from zero is rather unlikely.
Our summary of these results is that the new 5 and # tests dominate the Dickey-Fuller 5. and #_ tests
except for values of X} that are unreasonably large, but the reader is of course free to draw his own
conclusions,

We note also that the 5 and # tests have very similar power. The power of the 5 test is higher
than the power of the #_ test (the conventional wisdom), except when X§ is unreasonably large, in which case
this ranking reverses.

Experiments 2B and 2C also vary X{, holding constant T = 100 and g = .90, but they use non-
zero values of £€*, namely £* = 02 and .05. As noted above, the value of £* affects only the powers of the
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p, and 7, tests. A value of about £* = .05 is sufficient to make the 5, and 7 tests less powerful than

[ [

the other four tests.

Experiment 3, made up of parts 3A-3D, is reported in Table 3. This experiment systematically varies
the trend parameter £*, for various values of X§ (0, -2 and -5) and 8 (.90 and .95). Once again the results
are consistent with the conclusion that £* > .05 is sufficient to make the power of the j x and 7, tests less
than the power of the tests that explicitly allow for trend. It should be stressed that, empirically, this is a very
small value of £€*, and these results argue strongly that it is a mistake to apply the 5, and 7 u tests to data
with noticable trend.

Experiment 4, made up of parts 4A - 4C, is also reported in Table 3. This experiment varies f over
the range from one to .80, for X§ = 0 and -2, and for £* = 0 and .05. There are no surprises in the results.
Over this range of Xj, we expect the 5 and 7 tests to be more powerful than the 5, and 7_ tests, and

they are. We expect the 4, and #, tests to be more powerful than the 5 and 7 tests for £* = 0, and

@
less powerful for €* = .05, and they are. A result worth noting, however, is that the loss in power from using

the 5, and f, test in the presence of non-zero trend is larger when B is farther from unity.

Table 4 gives the results of some experiments done for T = 200 and 500. We have already commented
on the results of Experiment 5, which considers the size of the tests under the null hypothesis. The other exper-
iments consider power under the alternative: Experiment 6 varies X§ for T =200, £* =0 and g = 90 ;
Experiment 7 varics £* for T = 200 and 500, X3 = 0 and § = .90 and .95; and Experiment 8 varies f
for T = 200 and 500 and X§ = £* = 0. The results are in line with the previous discussion and so their
detailed analysis is left to the reader.

Two clear conclusions emerge from our experiments, and bear repeating. First, the Dickey-Fuller 5,
and 7, tests are more powerful than the other tests we considered against level-stationary alternatives, but they
have little power against trend-stationary alternatives and therefore should not be used in the presence of dis-
cernible trend. Second, the 7 and # tests proposed in this paper are about equally powerful, and they are

more powerful than the Dickey-Fuller 7, and 7, tests except when the initial condition term (X§) is unreas-

onably large.
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7. CONCLUDING REMARKS

This paper has proposed two new tests of the unit root hypothesis. They are based on a different par-
ameterization than the Dickey-Fuller tests. The choice of a parameterization is to some extent a matter of
taste. However, the parameterization we use has two important advantages. First, the meaning of the param-
eters governing level and trend is independent of whether or not the unit root hypothesis is true. Second, the
analysis of the distributional properties of both the new tests and the Dickey-Fuller 5, and #, tests is
simplified.

Although the new tests were not derived on the basis of considerations of invariance, they do have the
property that their distributions under the null hypothesis are independent of the nuisance parameters reflecting
level, trend and variance. Because they were derived as LM tests, they should be expected to have good local
power propertics. OQur simulation results indicate that the comparison of their power to the power of the
Dickey-Fuller 5, and f_ tests hinges on an initial conditions parameter (X3), and that they should be more
powerful than the Dickey-Fuller tests except for unreasonably large values of this parameter,

The LM test procedure used in this paper can be used in other settings, with appropriate modifications
to the distributional theory. Essentially we have tested the hypothesis that the error in a regression has a unit
root, where the regressors form a deterministic trend. This could be extended to accommodate stochastic trends.
Thus, if the regressor is an I{1) variable rather than a deterministic trend, the unit root test becomes a cointe-
gration test. In both cases the change in the nature of the regressors will change the asymptotic distribution of
the test statistics, but in ways that are presumably straightforward.

Another reasonable extension of this paper would be to follow Said and Dickey (1984) in developing the
asymptotic theory for "augmented" versions of the tests proposed here. It is intuitively reasonable that, as in the
case of the Dickey-Fuller tests, we can correct {asymptotically) for the effects of autocorrelated errors by the
inclusion of lagged values of Ay in the regression (9) that generates the test statistics. The necessary asymptotic
theory is not worked out here but the limit theory will correspond to that given in Sections 4 and 5 for the Z(r)

statistic.



18

APPENDIX 1
DERIVATION OF THE LM TEST

We begin with the model as given in equation (4) of the main text. It implies

y1=¢+ﬁx0+f+£1
yt=ﬁyt-1+\b(1‘.8)+5(t+ﬁ_tﬁ)+5t t=2.,T.

(A1)

We assume that the ¢, (t = 1,.., T) areiid N(O, %) and we treat the initial condition X, as fixed. Since

the Jacobian from (;, .., &) to (¥}, « ¥y) is unity, we obtain the log likelihood

(A12) InL = constant ~3In o =37 SSE ,
where
2 T 2
(A13) SSE = (v ~ ¥ - BXq - €)? + Zz[m - By - $(1-B) - £(t+5B)] .
L=

At the maximum &° = SSE/T and so the concentrated log likelihood is
(Al4) InL* = const, — 3 In(SSE/T) .

To derive the MLE’s subject to the restriction 8 = 1, we note that, when g = 1, SSE simplifies to
2 T 2
(AL3) SSEp = [y, —¥x — &I + Ez(ﬂy-t') » Py =¥+ X
t=

and this is minimized by the restricted MLE’s

£ =y = (yr— )/ (T-1)
(ALS)

Px =y - & = (Ty, —yp/(T-1),
as given in equations (5) and (6) of the main text.

To derive the LM test we need to calculate the efficient score, evaluated at B=1:

InL*(~) _ =1 3dSSE
(A1'7) B - 202 ag -’



It is casy to calculate that

T
(A1) B8° - o= = FXo= =2 vy =¥ - €]

[, — Byi-y) — ¥(1-B) — £(t+8-18)] .
Define

(AL9) Sieq = Yeup — Px - €t-1),

as in equation (7) of the main text. Then (A1.8)}, evaluated at the restricted MLE'’s, becomes

T -
(AL10) 5—%%& - -222(% -85,

and the score becomes

T T _ T - - =
(AL oL Y - 88 = Ty - 9G-S
0% =2 g% t=2

(The last equality holds since (Ay, — £) sums to zero. Therefore, without loss of generality, we can treat the
§t_1 as centered at zero.)

The term Z(Ay, — é )gt-l in (A1.11) is the numerator of the estimated coefficient (say ¢ ) in the
regression

(Al.12) Ay, = intercept + ¢§t_1 + error ,

as given also by equation (9) of the main text,

To construct the LM test, we also need the information matrix. We calculate

s _ T
(AL13) % =2l Ll-¥- E(-DI%} -

Evaluating (A1.13) at the restricted MLEs, and ignoring X, (which will be negligible asymptotically), we have

2 . T
(A1.14) ﬁ_lnL_:_[_) = _1_ E Sz_ .
a3 5t 2
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We show below that the information matrix is asymptotically block diagonal between § and [y, €] . Therefore

the LM statistic becomes

. 2 2T #(
(AL15) IM = [ ‘n{;ﬁ ] /&;—g—l

and using (A1.11) and (A1.14) we have

T na 12
[T @y - 658y
(A1.16) IM = 22 :

2 % e
&} S
=2

This is the t-statistic for the hypothesis ¢ = O in the regression (Al.12) above.

Finally, it remains to show that the information matrix is block diagonal. A straightforward calculation

yields
2 ey _ T . N
(AL1Y) = o2 + LIt HED + 8
& t=2
2 ..
(AL18) %’}%} - -xY/a?.

The appropriate normalization for the information matrix is T2, since T2 times (A1.14) approaches a limiting

distribution, in light of the convergence
1 t
(AL19) T2yS,,» o [yW()dr, S, = ); £ .
t

Here W(r) is the standard Wiener process {Brownian motion) on [0,1]. It is obvious that T? times (A1.18)

approaches zero. The same is true of (A1.17). We have

(A120) T2 te, » o W(1) - [W(r)dr |
t

(A1.21) T2y S, - af%'W(r)dr .
t

Therefore T/% times (A1.17) has a limiting distribution, and T? times (A1.17) approaches zero.
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APPENDIX 2

INVARIANCE RESULTS

We consider the regression coefficient
-~ T - - — T - = 2
(A2.1) $= L= SNay,— &)/ L (S-S
t=2 =2
and its associated t-statistic. We wish to show that their finite sample distributions are independent of ¥, £
and o, , though they depend on X§ = X,/o0, when B»=1. |

The model is as given by (4) of the main text. The solution for y, is

(A22) y, = ¥+ £t + B'Xy + 8§(8),
where
t-1
(A23) §(8) = _ZO Py
]=
This implies
(A2.4) Ay, = € + (B-1)B""Xy + AS(B)

=€+ (B-DB Xy + £ + (B-1)S((B) -

Furthermore,

(A2.5) E=ly=¢-pX(1-F)/(T-1) + E+ (B-DS(P) -

Therefore,

(A26) Ay - &y = [(B-D)B' - AL = BT HNT-DXy + (¢~ ) + (B-D)I[S1(8) - S(B)]

Thus Ay, - by isindependent of ¥ and £ . It depends on X, except when 8 = 1. Given T, 8 and X},
it has the same scalc as o, .

We proceed similarly with the terms involving S . We have
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{A2.7) Px=v—-¢
=% + AXIL + (1= BT H/(T-D] + (¢, - E) + (B-DS(B)
(A2.8) Siep = Y1 — Px — (1)
and, using (A2.2), (A2:5) and (A27),
(A29) S = Set(B) + BXIB 2 -1 + (=2)(1 - BTH/(T-D)] ~¢ 1 = (t-2)% = (--2)(B-DS(H) -

From (A29), it is clear that E-;t_l is independent of ¥ and €. It depends on X; unless g = 1; and, given
T, B and X}, it has the same scale as o .

Since both ¢ and its associated t-statistic depend only on Ay, - &y and §t_1 (t=2.,T), theyare
independent of ¥ and £, but their distribution depends on X; when B 1. Also, since the scale factor
o, enters the numerator and denominator of @ and the t-statistic in exactly the same way, the distributions of

@ and the t-statistic (for given T, f and X} ) are also independent of o .
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APPENDIX 3
ASYMPTOTIC THEORY

(i) Linear Trends

We employ the functional limit theory used in Phillips and Perron (1988) and some of the subsidiary
limit results on partial sums given there. Let W(r) be a standard Brownian motion on the [0,1] interval,
V(r) = W(r) — tW(1) be a standard Brownian bridge and define ¥(r) = V(1) - I (1)V(r)dr = W(r) +
[-% - r]W(l) - féW(r)dr . Observe that in 1,[0,1] , ¥(r) is the projection of V(r) on the orthogonal
complement of the constant function. Thus V(r) is simply a demeaned Brownian bridge.

From (17) we find that §_; = Bj(e, — ) so that
TV = T2, - (Tr)/T)T V28,
=+ a(W(r) - rW(1)) = aV(r)
With this in hand it is easy to see that
(A3.1) TTE,, - §)2- o lv()dr
+ 1 t_l 0_ »
Further
T - - 1T .z = _
TL, Gy~ ey = TL Gy = S)e - )
- e P Ny e I WP
= (/2T Q@ (e, - 2) Lile =)
(A32) -+, (-1/2)0? .
Now
. T,z  F2-1 Tz T
p=AT2L, Sy = Y HTL Gy — Oey)
(A33) +, (<1/2)02 /0 N (Y dr
by joint convergence of the numerator and denominator.
Next observe that

(a34) P AT G - 90/
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where s is the estimated standard error of the regression (9). Since s -, o, we obtain from (A3.1), (A3.3)

and (A3.4) the following limit for 7 :

F =+ ((1/2)(0 /o) [Fpueeyar) .

(ii) Higher Order Trends
As in the linear trend case, the asymptotics are determined by the behavior of the partial sum process

S'it in (37). Note that from the regression
P2l

(A3.5) Ay, = Z bjtj + 1
j=0

we have, under the null hypothesis,

Pzl | .
(A3.6) i, =¢- L (b-bpr.
j=0
Let X be the trend regressor matrix in (A3.5) and define
Dy = diag(T, T, .., TP ) .
Then, in conventional regression notation, we have
- - ) - -1 - []
DI/%(b - b) = (D72’ XDy (DT X €)
(A37) + 6Q7 [V ()
where Q = (qij) with g = 1/(i+j-1) and g(r)' = (1,1, ..y Py . The weak convergence to (A3.7) follows
in a straightforward way using the methods in Phillips (1987). Next, we observe that
T T e mit ey » /G ey

Hence
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T—lfz Tx} . -1
DICTRR S 3 6 s
1=

= V257, ~ (DY - by DA /2 11T )
+ aW(r) - o[ dW()e(s))Q la(r)
= o{W() - ([ dW(E)29))Q 40}

(A38) = aVy),

where q(r) is px 1 with j'th clement t/j. We shall call the Gaussian process Vp(r) a p-level Brownian
bridge. Like a conventional Brownian bridge, this process is ticd down on the [0,1] interval since Vo (0) = 0

and
Vo(D) = W) - [dW(s)e(s)' Qo)
= W) - [ AWEEE)'e;
= W) - [(aW(s)
=0

where we usc the fact that Q71q(1) = €, , the first unit vector.

From (38) in conventional regression notation we have
(A39) ¢ = (§'0x8) ' 0xty)
wherc Qy denotes the usual projection matrix on the orthogonal complement of the range of X . Now
(A3.10) T%'0yS » o[V, (0)dr
where

7 S
V() = V(- L &
j=0
and
-1
. 1 P .
& = argmin, [,V () - jEO orl) dr .
The process _Yp(r) is a detrended p-level Brownian bridge and is the asymptotic equivalent of the regression

projection Ox§ .



We also find that
T_lé’QxAy = T1§'0x€ = T_1§’£

where £ = Qye . But from (A3.6) we have

§ = E;{‘s - Iop_l(sj - bj)sj} = Ztlés .

Thus
T8 - T
= e 20 - ) £D)
(A3.11) » -(1/2)c% .

From (A3.9)-(A3.11) we deduce that

5 = Té~ -1/ (VD) = -[of )2,

and in a similar fashion the limit of the t ratio 7 in (38) is found to be

# » /200, (AN =~ e



(SP)

(DF)
(NS)

(A4.1)

(A42)

(A43)

(A44)

(A4.5)

APPENDIX 4
ALTERNATIVE PARAMETERIZATIONS

Vo= b+ Gt Xy X = BXy + g

Y=+ 6t + By, + g

yE =7+ O+ By, + e}, Vi = (Yoo, €f = &fo, .

rs of {DF) in terms of (SP

a=yp-Ps + &P
§ = £(1-8)
Yo=¥+ X,

Parameters of (NS) in terms of (SP)
v = [§8 + X(B-1))/o,
& = £(1-B)/o,

Parameters of (SP) in terms of (DF)
¥ = [a(1-p) - B61/(1-5)
¢ = 6/(1-p)
X, = ¥p - [2(1-B) - B81/(1-p)

Parameters of (NS) in terms of (DF)
7 = e + y(B-Dl/o,
®=6/o,
rs of {SP) in ter f (N
¥ =y + o2{v(1-p) - BBY/(1-B)
¢ = 0,2/(1-8)
Xo = 0,[8% — ¥(1-A)}/(1~B)’

27



P rs of (DF) in terms of (N
o7 + yo(1-8)
§ =02

(A4.6) a
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50
100

500
1000

50
100
200
500

1000
2000

.01
-3.90
-3.73
-3.63
-3.61
-3.59
-3.58

-3.56

01
-204
=228
-23.8
-248
=253
-25.3
-25.2

025
-3.50
-3.39
-3.32
-3.30
-3.29
-3.28

-3.27

025
-17.9
-19.6
-20.4
=209
<213
-21.3

-21.2

-3.18
-3.11
-3.06
-3.04
-3.04
-3.02

-3.02

05
-15.7
-17.0
-17.5
-179
-18.1
-18.1

-18.1

=277
2.7
2.7
-2.75
=275

10
-134
-14.3
-14.6
<149
-15.0
-15.0
-15.0

.20
-2.48
-2.46
=245
-2.45
-2.44
-2.43

-2.44

-109
-114
-11.6
-11.8
-11.8
-11.8

-11.8

TABLE 1A

CRITICAL VALUES FOR

30
2.24
224
224
-2.24
-2.22
)

-2.22

A0
-2.05
-2.06
-2.06
-2.06
-2.05
-2.05

-2.05

S0
-1.89
-1.90
-1.90
-1.91
-1.90
-1.90

-1.90

-1.75
-1.76
-1.76
-1.77
-1.75
-1.76

-1.76

i)
-1.60
-1.62
-1.62
-1.62
-1.61
-1.62

-1.62

CRITICAL VALUES FOR p

30
-9.27
-9.62
976
-9.86
9.7
-9.78

-9.85

A0
-8.02
8.26
8.34
842
832
-8.32

-8.3¢9

50
-6.98
-1.12
117
-1.23
-1.15
-1.15

-7.19

-6.05
-6.14
617
6.20
£.14
©.14

-6.15

70
-5.21
-5.24
-5.23
-522
-5.19
-5.19
-521

80
-1.45
147
-147
147
147
147

-1.47

-4.35
-4.35
-4,32
-4.30
-4.29
-4.29
-4.30

90
-1.28
-1.29
-1.29
-1.29
-1.29
-1.29

-1.29

-3.43
-3.37
-3.35
-3.31
-3.31
=331

-3.32

95
-1.17
-1.16
-1.17
-1.16
-1.16
-1.16

-1.16

95
-2.89
-2.78
=275
2R
-2.70
-2.70

-2.68

975
-1.08
-1.08
-1.07
-1.07
-1.07
-1.07

-1.07

975
-2.51
-2.39
-2.32
-2.30
-2.28
-2.28

-2.27

31

-1.00
£0.9%
-0.97
0.97
-0.98
-0.98

-0.97

-2.16
-2.03
-1.92
-1.89
<150
-1.90

-1.87



50
100

500
1000
2000

50
100
200
500

1000

.01
-4.52
-4.28
-4.16
-4.12
-4.08
-4.06

-4.06

01
246
284
-304
-318
324
-325
-326

025
-4.09
-3.93
-3.84
-381
-3.80
-3.78

-3.718

025
-22.2
<251
-26.6
=275
-28.2
-28.2

-28.3

05
-3.77
-3.65
-3.60
-355
-3.55
-3.53

-3.52

-20.1
-224
-23.7
-24.2
-248
-24.6
-24.7

10
341
-334
-3.31
-3.28
-3.26
-3.26
-3.26

10
-17.8
<195
-20.4
-20.7
-21.0
-21.1

-21.1

CRITICAL VALUES FOR 7, p

.20
-3.03
-2.99
=297
-2.96
-2.94
-2.94

-2.94

CRITICAL VALUES FOR 5, p =

20
-15.2
-16.2
-16.8
-17.1
-171
-17.2
-172

30
277
-2.75
-2.75
-2.14
-2.73
-2.73

-2.73

30
134
-14.1
145
4.7
148
1438

-148

TABLE 1B

40
-2.57
-2.57
-2.56
-2.56
-2.55
«255
-2.55

40
-12.0
=125
-12.8
-12.9
-12.9
-13.0

-13.0

>0
-2.40
-2.40
-2.40
-241
-2.40
-2.40

-2.40

50
-10.7
-11.1
-11.3
-11.4
-114
-114
-114

50
-2.23
-2.24
-2.25
-2.25
2.4
-2.25
-2.25

.60
957
-9.81
-9.98

-10.1
-9.98
-10.1

-10.1

=2

0
-2.08
-2.09
-2.10
-2.10
-2.10
-210
-2.10

70
-8.48
-8.62
-8.72
876
87
874
8.76

2

80
-1.90
-1.92
-1.93
-1.93
-1.93
-1.93
-1.93

-1.31
-1.36
-7.46

-1.42

-1.39

1.4

90
-1.70
-1.71
-1.73
172
-1.73
-1.72

-1.72

-6.04
-5.98
-6.00
-5.93
-5.92
-5.90
-5.91

95

-157
-1.58
-1.57
-1.58
-1.57
-1.58

95
-5.15
-5.05
-5.03
495
-4.96
-4.89

-4.95

975
-1.46
-1.46
-1.46
-1.46
-146
-146

-146

975
-4.57
-4.38
-4.35
-4.25
-4.23
-4.20

-4.22

32

-1.35
-1.35
-1.35
-1.34
-1.34
-1.34

-1

-3.99
-3.77
-3.70
-3.60
-3.58
=333

-3.58



50
100

500
1000

50

g 8 B 8

1

Q1
-5.07
-4.73
4.59
453
-4.50
-4.49

444

01
-28.1
-331
<363
=380
-39.1
-39.5

-39.7

025
-4.62
437
-4.29
4.24
-4.20
-4.19
-4.16

025
-25.8
-29.8
=323
-33.6
-34.4
-34.6

M4

05
4.26
-4.08
-4.03
-3.99
-3.96
-3.95
-3.93

05
-238
-27.0
-29.1
-30.1
-30.6
-30.8

-30.6

.10
-3.89
A7
-
-3.69
-3.68
-3.68

-3.67

.10
-215
40
254
-26.1
-26.6
-26.7

-26.7

CRITICAL VALUES FOR 7, p=3

.20
-3.48
-3.42
-3.39
-3.38
-3.36
-336
-3.35

CRITICAL VALUES FOR 7, p=3

20
-18.8
-20.6
=215
<220
-223
-22.3

224

.30
-3.21
-3.17
-3.16
-3.15
-3.14
-3.14

-3.13

30
-17.0
-182
-19.0
-193
-19.5
-19.6

-195

TABLE 1C

A0
-2.99
-2.98
=297
-2.97
-2.96
-2.96

-2.95

40
154
-164
-16.9
-17.3
-17.3
<174

-174

50
-2.80
-281
-2.80
-2.80
-2.719
-2.79

-2.79

S0
-141
-14.9
-15.2
-15.4
-155
-15.5

-15.5

60
-2.63
-2.64
-2.65
-2.65
-2.64
-2.64
-2.64

.60
-12.8
-134
-13.7
-13.8
-138
-13.9

-13.9

70
-246
-248
-248
-2.49
-248
249
-2.49

70
-11.6
-12.0
-12.2
-123
-122
-123

-123

80

-2.28

-2.31
231
230
231
231

.80
-10.3
-104
-10.6
-10.6
-10.6
-10.6

-10.6

90
-2.05
-2.07
2.09
-2,08
-2.09
-2.09
-2.09

867
-8.68
874
-8.66
870
8.66
.67

95
-1.90
-1.91
-1.93
-1.92
-1.93
-1.92

-1.92

95
-158
-7.48
-748
-1.39
~7.42
<133

-7.32

975
-1.78
-1.78
-1.80
-1.79
-1.719
-1.79
-1.78

975
£.79
£57
655
-6.45
£.41
£.35
634

33

-1.65
-1.65
-1.67
-1.65
-1.65
-1.65
-1.65

-5.99
-5.66
-5.68
-5.49
-5.42
-542

-5.42



50
100

500
1000

50
100
200
500

1000
2000

01
=557
-5.13
-4.99
490
-4.85
-4.83

481

.01
-31.0
-374
418
-44.0
45.3
-45.7

458

025
-5.09
478
4.66
4.60
-4.56
454
452

025
-23.8
-34.1
-374
-39.2
-40.3
-40.6

-4.70

" 447

-4.39
-4.33
-4.31
-4.31
-4.29

05
-26.9
-31.2
-34.0
-35.2
-36.2
-36.6

-364

10
-4.30
-4.15
-4.10
-4.06
-4.03
4.03
401

10
=247
-28.1
-30.2
-31.2
-318
-32.0
-31.9

CRITICAL VALUESFOR 7, p=4

20
-3.86
-3.78
-3.75
-3.73
-3
37
3N

.30
-358
<354
=352
=351
-349
-348
-3.49

TABLE 1D

40
335
334
-3.33
33
-331
-3.30

-3.30

S50
-3.15
-3.16
-3.15
-3.16
-3.15
-3.14
-3.14

60
-2.97
-2.99
-2.98
-2.99
-2.99
-2.98
-2.98

J0
-2.79
-2.81
-2.82
-2.83
-2.82
-2.82
-2.82

CRITICAL VALUESFOR 5, p=4

20
220
=245
-26.0
-26.7
-27.1
=212
=273

30
-20.1
-22.1
-23.2
238
-24.1
4.1
-24.2

40
-185
-20.2
-21.0
-214
=217
-21.7

=217

S0
-17.1
-184
-19.1
-195
-19.6
-19.6

-19.6

.60
-15.8
-16.8
-17.2
-17.6
<177
177
-17.7

70
-145

<152

-158
-158
-158
-15.9

80
-2.59
-2.63
-2.63
2.4
-2.64
-2.64

-2.64

.80
-13.0
-135
-13.7
-13.9
-139
-139
-139

90
-2.36
-2.39
-2.39
-241
-2.40
-2.40
-241

90
-11.3
-114
-11.5
-11.6
-115
115

-11.6

95
-2.19
-2.21
-2.22
-2.24
-2.23
-2.22
<223

95
-10.0
-9.96
-9.94
-10.0
-2.92
-9.84

-9.92

975
-2.05
-2.07
-2.09
-2.09
-2.09
-2.08
-2.09

975
-9.02
-3.87
-8.80
-8.77
-8.73
-8.60

-8.69

-1.92
-1.92
-193
-1.54
-1.95
-L93

-1.94

99
-8.09
-7.69
-7.60
~758
-157
-744

-1.46
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TABLE 2

SIZE AND POWER, 5% LOWER TAIL TESTS, T = 100

BRERRRRER "mmUce Zp

=~

100

100
100
100
100

100

100
100
100
1060
100

100

100
100
100
100

100
100
100
100

160
100
100
100

8888 8888 888888888

Ee ]

e

& X3 v 4 u Py . Py 7 p
0 0 0 0 049 048 048 050 051 052
02 0 0 050 046 048 050 051 052
05 0 05 0 046 045 048 050 051 052
10 0 a0 0 041 034 048 050 051 052
20 0 20 0 022 008 .48 050 051 052
50 0 50 0 006 000 048 050 051 052
0 -0 1 0 686 317 304 120 032 (033
0 55 0 413 421 211 198 161 165
0 22 0 334 459 191 234 248 252
0 S| 0 32 465 188 239 260 267
0 0 0 0 321 467 18 239 264 270
0 1 -1 0 321 464 187 237 259 265
0 2 -2 0 333 457 191 234 243 249
0 5 -5 0 410 419 215 202 164 167
0 10 -1 0 681 319 306 124 032 033
02 5 5180 00 363 302 211 198 161 165
02 2 2180 002 201 371 191 234 248 252
02 1 118 002 281 393 188 239 260 267
02 0 018 002 281 409 186 239 264 270
05 -5 545 005 219 112 211 198 161 165
05 -2 245 005 154 160 191 234 248 252
05 -1 145 005 144 178 188 239 260 267
05 0 045 005 140 198 186 239 264 270
02 5 269 00 127 102 083 (085 08 088
02 2 119 001 113 149 082 095 101 104
02 -1 069 001 110 162 083 097 104 106
02 ¢ 019 001 113 Q72 082 098 105 108
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SIZE AND POWER, 5% LOWER TAIL TESTS, T = 100

é'
0

02
05
10
20

0

.02
05
10
20

0

02
05
.10

O oo oo Q

TR G
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coocoo

218
245

518
059

019

0475
095
.19

cooo

ER SR

0475
045
04

[=]

0025
005
01

TABLE 3

120
321
87

049
J121
34

140

279

Py

A67
409
198
014
.000

459
3N
160
009
000

421
302
J12
005
000

190
72
J12
098
000

048
190
467
950

046
181
A59
952

045
JA12
198
400

186
186
.186

186

191
A9
191
191
191

211
211
211
211
21

082

082
082
082

.082
186

082
191
658

082
.186

052

765

052
104
252
707

052
108
270
765
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SIZE AND POWER, 5% LOWER TAIL TESTS, T = 200, 500
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TABLE 4

oo oo ocoOoOcooo [: ]

cooo

2

577

946
1.00

051
1.00

178

051
819
1.00

051
897

049

910
1.00

37

.050
050
050
050
050
050

051
051
051
051
051

763
52
720
526

763
763
763
763

914
914
914

050

763
997

051
914
1.00



