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ABSTRACT

This paper considers series estimators of additive interactive regression (AIR)
models. AIR models are nonparametric regression models that generalize additive regres-
sion models by allowing interactions between different regressor variables. They place
more restrictions on the regression function, however, than do fully nonparametric regres-
sion models. By doing so, they attempt to circumvent the curse of dimensionality that
afflicts the estimation of fully nonparametric regression models.

In this paper, we present a finite sample bound and asymptotic rate of convergence
results for the mean average squared error of series estimators that show that AIR models
do circumvent the curse of dimensionality. The rate of convergence of these estimators is
shown to depend on the order of the AIR model and the smoothness of the regression func-
tion, but not on the dimension of the regressor vector. Series estimators with fixed and

data—dependent truncation parameters are considered.

JEL Classification Number; 211.

Keywords: Additive interactive regression model, cross—validation, curse of dimension-
ality, generalized cross—validation, mean average squared error, nonparametric estimation,
nonparametric regression, series estimator.



1. INTRODUCTION

This paper considers series estimators of additive interactive regression (AIR)
models. The paper focuses on the extent to which these estimators circumvent the "curse
of dimensionality" that afflicts estimators of fully nonparametric regression models.

AIR models are also known in the literature as inferaction spline models. Their esti-
mation using splines has been analyzed by Barry (1983, 1986), Wahba (1986), Gu, Bates,
Chen, and Wahba (1988), and Chen (1988). A special case of the AIR model is the addi-
tive regression model that has been considered by Orcutt et al (1961, p. 62), Stone (1985),
Hastie and Tibshirani (1986, 1987), and Buja, Hastie, and Tibshirani (1989). AIR models
allow for interactions between the elements of the regressor vector. Such interactions are
precluded in additive regression models.

When the number of regressors d is large, fully nonparametric regression models do
not place enough restrictions on the regression function to permit reasonably accurate esti-
mation unless the sample size is extremely large. This is illustrated by the fact that the

fastest possible rate of convergence of estimators in such models is n_2/ (4+d)

when the
regression function is assumed to be twice differentiable (see Stone (1980, 1982)). This rate
ig very slow if d is in the range of five to fifteen, which is quite common in econometrics.
Furthermore, if one is interested in estimating derivatives of the regression function, then
the best possible rate is even slower.

The difficulty in estimating fully nonparametric regression models is that one has to
estimate a high dimensional surface when d is large. Additive regression and AIR models
allow one to replace the estimation of such a surface with the estimation of several low
dimensional surfaces. This yields large efficiency gains if d is large and the true regression
function is of the additive or AIR form. In consequence, AIR models appear to be well

suited to many econometric applications, since many econometric applications have too

many regressor variables for fully nonparametric regression methods to be effective.



Stone (1985) has shown that it is possible to achieve the same rate of convergence in
an additive regression model with any number of regressors as in a nonparametric regres-
sion model with only one regressor. Based on this result, an obvious speculation is that it
is possible to achieve the same rate of convergence in an AIR model with an arbitrary
number of regressors, but with interactions between at most A of these regressors, asin a
nonparametric regression model with A regressors. If true, one can say that AIR models
circumvent the curse of dimensionality, since the rate of convergence of an estimator of an
AIR model is not necessarily related to the dimension of the regressor vector.

In fact, Chen {1588) has established the above result for a particular form of AIR
model using spline estimators. The model he considers is one in which the errors are inde-
pendent and identically distributed and the regressors are from a non-stochastic "tensor

product design."2

For many applications, however, this regressor design is too restrictive.

In this paper, we establish the above result for a general class of AIR models using
series estimators. The regressors are not restricted as in Chen (1988) and the errors may
be independent non—identically distributed (inid). The criterion of performance used here
for the rate of convergence results is mean average squared error (MASE) as in Chen
(1988). In contrast, Stone (1985) considers mean integrated squared error.

We note that series estimators of AIR models have already been discussed in
Andrews (1989a). The latter paper gives conditions under which such estimators are
pointwise consistent and asymptotically normal.

Regarding the comparison of series and spline estimators of AIR models, little
research has been conducted. Series estimators are much more tractable computationally,
especially when there are multiple smoothing paramters, large numbers of regressors, and

large sample sizes. On the other hand, spline estimators have the attribute of being

solutions to an explicit variational problem and have a Bayesian interpretation.



The remainder of this paper is organized as follows: Section 2 defines AIR models
and series estimators of these models. Section 3 presents a finite sample result in which the
MASE of a series estimator of an AIR model of order A is bounded by the sum of MASEs
of series estimators of several fully nonparametric regression models each with regressor
vector of dimension < A (< d). Section 4 states rate of convergence results for series esti-
mators of AIR models when the estimators are based on fixed truncation sequences. These
results illustrate the circumvention of the curse of dimensionality by AIR models. Section
5 discusses the asymptotic optimality of several data—dependent truncation procedures and
the rate of convergence of series estimators defined using these procedures. Specifically,

generalized Cp , generalized cross—validation, and cross—validation are considered.

2. SERIES ESTIMATORS OF AIR MODELS

An AIR model is defined by

Y, =gx)+U,i=1,...,m, ' (2.1)
where Y, U, €R, x edc R4 , and EU, =0 and where g(+) is known to be of the
form

(= 5 800 22)

glx.) = g.n(x:) . 2.2

Here, g ab(xi) is an unknown function that depends on only "a" (< d) elements of x,
for each b =1, ..., B(a). For example, one might have g;;(x;) = gf},(x;;) and
Bop(X;) = Bop(X;1» Xi) » Where x; = (Xjq9 + - xid)’ .

The order of an AIR model is given by A. If A =1, the model is an additive
regression model. If A > 1, the AIR model allows for interactions between regressors.
For example, a second order AIR model allows for interactions between (some) pairs of

regressors, but not between triplets. If A =d, the model is a fully nonparametric



regression model. When A <d, the model (2.1)—2.2) imposes restrictions on the
regression function g(-) that should permit more efficient estimation of it than in a fully
nonparametric regression model.

Note that our attention here is on the estimation of g(-) rather than the compon-
ent functions {g ab} . Clearly, normalization conditions need to be added to identify the
functions {gab} , if the estimation of these functions is of interest. Also note that A and
B(a) are positive integers not exceeding d and d!/(al{d—a}!) respectively.

A series estimator of g(-) is constructed using a series approximation

k
ab
zlzabc(xi)eab . Of each function g,p(%;) » where {0,pc} are unknown coefficients to be

estimated, z_, c(-) is a known function that depends on the same elements of x; as does
gop(c) forall e=1,...,k,, and k,; is a truncation parameter. Examples of
approximating functions z,, (-) include: trigonometric, Fourier flexible form (see
Gallant (1981, p. 219)), and polynomial functions. The truncation parameter kab implic-
itly depends on the sample size n. It may be fixed, as in Sections 3 and 4 below, or data-
dependent, as in Section 5.

Let I, denote the sets of non-negative integers. Let

+
A ’ D
D= % B(a),k=(kyqs +ees kynrry Koyy oovs K 17,
am (a) (kyys -o-s Kyp(ry Kaps <o Kpp(ay) €14
Y= (Y, ., Y)) , U=(Up, ..., U) , and (2.3)

Z=(Zy(x)); s lxy) e RPEL

where the i—th row of the matrix Z, Z,(x;), is given by the elements of {zab c(xi) :

c=1,...,k,;b=1,...,B(a)a=1,..., A} and 1 isa D dimensional vector of

ones.



Let 6 be the k’l-vector with elements given by {aabc re=1, e, kg

b=1,...,B(a);a=1, ..., A}. Theleast squares (LS) estimator of 9 is
8=(2'2)"2Y, (2.4)

where (-)” denotes some g—inverse. The corresponding series estimator § of g is

B(-) =2, ()’ 8. (2.5)

Various properties of g are investigated in Sections 3—5 below.
For notational simplicity, we adopt the following conventions in the remainder of
A B )ga)
b ; Va,b abbreviates Vb=1, ..., B(a),
a=1 b=l

Ya=1, ..., A; all limits are taken as n-o; ay~ bIl denotes that a\n/b11 is bounded

the paper: X ¥ abbreviates
ab

away from zero and infinity over n>1; and for any function g* from % to R, g*

-~

denotes the n—vector (g*(x,), ..., g*(xn))‘

3. AIR MODELS VERSUS FULLY NONPARAMETRIC REGRESSION MODELS

In this section, we relate the finite sample MASE of series estimators of AIR models
with those of fully nonparametric regression models. The results have immediate implica-
tions regarding the circumvention of the curse of dimensionality by AIR models. They also
have implications for the rate of convergence results given in Sections 4 and 5 below.

Consider the following models:
Y, = Eggab(xi) +U, (=g(x)+U),i=1,...,n, and (3.1)

Yiab = 8ap() + Ujgp» i=1, ..., m, Va, b, (3.2)

where Y, = EEYiab and Ui =§§Uia.b for i=1,...,n. {Uia.b} are mean zero,

variance a?ab random variables, independent across i, a, b. {xi} are non—random

regressor vectors in £ ( Rd. The fully nonparametric regression models of (3.2) are



considered for theoretical purposes only. They generate the AIR model of (3.1) by sum-
mation.

Let § be a series estimator of g in (3.1) based on the series functions {z,, (-):
Ve=1, ..., kab; Va,b}. Foreach a, b, let gab be the corresponding series esti-

mators of g, based on the functions {2 (-):Ve=1, ..., k ;}. The mean average

abc
squared error (MASE) of § is defined to be

MASB(E.0) = 0 Bllgg1? [ =072 (&lx) - 800 ] 3

where ||| denotes the Eucﬁdean norm. The MASE of §, for estimating g, is defin-
ed analogously Va, b .

We show that the MASE of g in the AIR model (3.1) can be bounded above by a
constant times the sum over a, b of the MASE of gab in the fully nonparametric
regression model of (3.2). The latter MASE does not depend on the dimension of x;, but
rather, on the number, a, of elements of X, upon which Eab depends Va, b . Thus, the
bound on the MASE of the series estimator g in the AIR model is independent of the
dimension of X, - In this (non—asymptotic) sense, the estimator circumvents the curse of

dimensionality.

THEOREM 1. Let §(-) and g, (-) be as defined above. Assume 0 <7y = ii:fb Uizab

<™ = sup a?
i,a,b

. ™ .
MASE(g,g) < D - ;J % MASE(g,, 8,1,) »

ab <o. Then,

A
where D= % B(a).
a=1

Comments. 1. The upper bound in Theorem 1 is sharp. That is, if D is replaced by any
D’ < D, then the inequality does not necessarily hold. (To see this, consider the case
where U?ab does not depend on i, a, b and the estimators g and gab ¥a, b do not

incur any bias.)



2. Although Theorem 1 is a finite sample result, it has clear implications for asymp-
totic rate of convergence results for series estimators of AIR models. In particular, it
points out those characteristics of an AIR model and its estimator that serve to determine

the estimator’s rate of convergence.
Proof of Theorem 1. MASE(g,g) and L‘EMASE(gab, ga.b) can be decomposed into
a

squared bias and variance terms:
MASE(3,¢) = Hlg — Pg|® + 2E|[P,U[|® and 4
(8.8) = 7llg — Pogll” + ZEIP,U[I" an (3:4)

A 1 2.1 2
%Y MASE(g...8.+)==2X|g,—P, g |“+=E2E|P, U_J|i°, (3.5)
a2 b ab’®ab oy Qab Zabﬁab n. g Zab ab

’

where Uab= (Ulab’ ceny Unab) ) Pzab zzab(za’\.bzab) Zéb’ and Z,, s the
n x k, matrix whose i—th row is (2351 (%)s +- s zabkab(xi)) .

First, we compare the bias terms. We have
-P.gl=|%Xg., —P <%3ig., — P <E3g.. —P, gl 3.6
lg Zgll ”a b(gab Zsa.b)” N b”Sa.b Zgab|| a b”5ab Zab“a‘b (3.6)
using the fact that Z ab COmSists of columns of Z . Therefore,
lg - gl < (Zlig,, — Py g, <D E3llgyy Py gyl (3.7)
. - ab ab ab ab”

using the Cauchy—Schwartz inequality.
Next, we compare the variance terms. Let {1= diag{af, cens ai} and

. 2 2
Q.= diag{c] ;15 -+ -» ayap) - Notethat 2= Egﬂab . We have

2 ,
E|[P,U||* = tr(P,0) = EEtr(PZﬂab) <r* E 5 tr Py =Dr¥k’1. (3.8)

b

On the other hand,



2
LLE|P, U |“=EZtr(P, 9.)2 k1. (3.9)
ab Zab ab ab Zab ab -

Equations (3.4)—(3.9) combine to give the desired result. o

4. RATES OF CONVERGENCE

Next we present rate of convergence results for series estimators of AIR models.
This section considers estimators based on fixed truncation parameters. The results show
that the rates of convergence depend on the order A of the AIR model and the smooth-
ness of the functions g, , but not on the dimension d of x; .

Let G be a class of differentiable functions from ¥ to R. Forany g, €§, let

ligyll Qo denote the supremum Sobolev norm of derivative order q, for some q2>0.

That is,
A
lgllqpr=. 5 sup|D7g(x)], (4.1)
Voot ™y 1x¢q xex 1
d d A ol
where A=(A,, ..., Ay) €I, (A= ¥ A,, and D7g,(x) = g.(x) .
1 d j=1 9 1 A Ad 1
Oxy" e kg
If partial derivatives of g,(x) do not exist up to order q, then gl Qod ="
Define the Sobolev smoothness indez of a function g, € ¢ to be
S(g,) =max{v20: llgl, , y <} (4.2)

We consider the AIR model defined by (2.1) and (2.2) and introduce the following

assumptions:

ASSUMPTION A.1. {Ui 1121} are mean zero square inlegrable rv’s with 0 < inf cr?
i1

< sup cr? <o and {x;:12 1} are non—stochastic regressor vectors in & C rd.
i1



ASSUMPTION A.2. Foreach a, b, {z_..(-):c21} satisfiess Forall m>1, there

abc

ezists 0 = (6,17 ) € R™ (which depends on a, b in general) such that

ooy O

T
m "cilzabc(')amc-gab(') 0ug 0 08 mM-E

for some 0¢ a,y < S(g,p)/a -

If the regressors {xi} are random, they can be conditioned on. In this case,
Assumption A.1 and the following results hold conditionally on {xi} for any sequence
{x}.

By Corollary 1 of Edmunds and Moscatelli (1977, p. 28), Assumption A.2 holds for
all 0<ay, < S(g,)/a Va, b, if the series functions are trigonometric or Fourier flexible
form functions, & has closure that lies on (0, 2';r)d , and 7 has minimally smooth bound-
ary. See Edmunds and Moscatelli (1977) for the definition of a minimally smooth
boundary. Examples of sets with this property include all convex sets. Note that if & is
any bounded subset of Rd , the regressors can be rescaled such that 2 has closure that
lies on (0, 21r)d :

When A =1 (additive model), Assumption A.2 holds for all 0< e,y < 5(g,4)

Va, b, if the series functions are polynomials and 4 is a closed, bounded, connected

subset of RS . This follows from Theorem 3.2 of Powell (1981, p. 26).

THEOREM 2. Suppose Assumptions A.1 and A.2 hold.
(a) If ka.b/n =0 and k,p -0 Ya,b, then MASE(g,g)-0.

T
(b) If ky~nm ab for some 0<r, <1 Va,b, then MASE(g,g) = O(n™"), where

r= I:i% min{l —1,.4, 2aabrab} .

(c) The choice of 1, that mazimizes the rate of convergence t in part (b) is

Ty, = 1/(205,41) . In this case, 1= l:ig 2aab/(2aab+1) (< r:ig 2S(gab)/(2S(gab)+a)) .



10

Comments. 1. Theorem 2(a) continues to hold if Assumption A.2 and k ap @ Va, b are

k:e).b
replaced by lim inf | Yz
n-=w kab C=1
6, €R
ab

condition covers the case in which gab(') is a finite linear combination of

6

k

abe(*) —gab(-)“(}’m’1=0 Va, b. The latter

ab®

{zabc(') :c21} and k; ~—o forsome a, b.

2. Theorem 2(b) and (c) shows that the rate of convergence of MASE(g,g) depends
on a,, Ya, b. The latter do not depend on the dimension d of X, but rather, on the
smoothness of g , and on the number of variables upon which g o depends. The latter
may be very much smaller than d . In consequence, the curse of dimensionality, as meas-
ured by the asymptotic MASE criterion, is circumvented by series estimators of AIR
models.

3. In a nonparametric regression model with regression function Bap ¢ the pointwise

and 1.9 optimal rates of convergence of a nonparametric estimator are

—25(g,1,)/(25(g,3)+a)
n ab ab , see Stone (1980, 1982).3 The slowest such rate over the func-

tions g, Va, b is n"", where v= mig 25(g,,)/(25(g,;,) + a) . Theorem 2(c) and the

discussion above show that for trigonometric and FFF series, I, ¢an be chosen such that
the rate of convergence of MASE(g,g) is arbitrarily close to this optimal rate.

4. Theorem 2(c) implies that an optimal truncation parameter k;b grows at rate

1/(2a,;+1) _ ;
n - In this case, k*’1 =% T k7, grows atrate n° for § = max 1/(2a pt 1
“ ab ? a,b 2

> 1;1% a/(25(g,y) + a)) .

Proof of Theorem 2. First, we determine bounds on the variance and squared bias of

MASE(g,g) (see (3.4)). We have

LE|P,U|% = L tx(P,0) ¢ sup o2k’ 1/n . (4.3)
i1
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Let denote the approximation of B,p, Biven in Assumption A.2 with m=k_, .

4
kab

Let gi denote the remainder function from approximating 8ab by gy . - That is,
a a

b

1 T r :
g, =8.—8 - Let g =%kg and g, =XLg be the analogous approxi-
kap 80 Tkgp k™ 2b Kb kK" ab Kab

mating and remainder functions for g. Note that P,g, =g, , since g is a linear

combination of the columns of Z. We now have

2 2
1 2 1 2
Y- 2 gl = Y- e < 2]
(4.4)
2 2 2
2{ I 2D I I
2lzsigy 1] <P | <z )
Blab ~Kab D 5 bi"kab abll Eap logr
Combining (3.4), (4.3), and (4.4) gives
- 2 I 2
MASE(8,g) < sup o2 k’1/n + 2D B E“gk ol (4.5)
i1 ab' "ab 0,04

Theorem 2(a) follows from (4.5) and Assumption A.2, since the latter implies that

||S]r;ab(')”0,m,; =o(1) if kab “o.

T

Theorem 2(b) follows from (4.5), Assumption A.2, and k_\ ~n 8b , since the latter
imply that
r,—1 =2a,,T 2a 2
MASE(§,g) < T % O[n ab ] + O[n ab ab]kabab"gi ) =0@™). (4.6)
ab ab 10,0,d

Theorem 2(c) holds because r is minimized by taking 1, such that
1—1.4 =2, Ty, Va, b. This  yields Tob = 1/(2a,;, + 1) and

r= r;lig 20, /(20 + 1). Since 0¢a, < S(g,p,)/a by Assumption A.2, we obtain

r< I:.‘Elﬁ 25(g,,},)/(25(g,;,) +3) - ©
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5. AUTOMATIC TRUNCATION METHODS

In this section, we consider three automatic (i.e., data—driven) methods of deter-
mining the truncation vector k: generalized C; (GCj), generalized cross—validation

(GCV), and cross—validation (CV). Let X denote the collection of vectors from which
D,
L
k’1<n}. Let gk denote the estimator § when g is based on the truncation vector k

the automatic method chooses when the sample sizeis n. X is a subset of {kel

n

and let MASE(k) denote MASE(g,,g). It is shown below that under suitable assump-
tions each of the above automatic truncation methods is asymptotically optimal in the

sense that

—£,1 and (5.1)

MASE (k)

min MASE(k)
kel

-1, (5.2)

where k is the vector k chosen from Kk, by GC;, GCV, or CV. These resulis are
obtained by applying results of Li (1987) and Andrews (1889b).

The optimality results (5.1) and (5.2) imply that one does as well asymptotically in
terms of average squared error and MASE using the automatic truncation procedure k as
one would do if one knew the true function g (but one was restricted to the use of the

linear estimators §, ). A consequence of (5.2) is that provided {£ :n>1} is such that

there is a sequence {k €X } for which k.p~D

Ya, b, the rate of conver-
gence to zero of MASE(k) is at least n™ "~ for r asin Theorem 2(c). Furthermore, this
convergence rate is obtained without the use of knowledge of {a,, :Va, b} . Note that the

latter usually depends on the smoothness of Bab Va, b, which typically is unknown.
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5.1. Generalized CL

The Cy, criterion is a generalization of the well-known Cp criterion and is due to
Mallows (1973). It is suitable when the errors are homoskedastic. This criterion has been
generalized straightforwardly to the case of heteroskedastic errors by Andrews (1989Db).
The generalized criterion is called generalized C} (GCp). It selects k, denoted by f‘M ,
that achieves

min o LY - )% + 207 tr 2 (2(2,) %0, (5.3)

kern

where Zk denotes the n x k'} matrix 7 when the latter is based on the truncation
vector k.
We introduce the following assumptions:

ASSUMPTION A3. sup EUIDH <o

i>1

1]
ASSUMPTION Ad. Either (i) for each fied keI, 5 (g(x)—g(x))* == or
i=1

(ii) min k’l 2.
kExn -

ASSUMPTION A.5. Some sequence {kn :n > 1} for which k € K, ¥n satisfies

knab ~ 1 Va, b, where ag, is as in Assumption A.2.

Assumption A.4 is such that either (i) one needs to choose a truncation sequence

{kn} such that k’1- @ in order to obtain a consistent estimator § of g or (ii) one is

forced to choose such a sequence by definition of K. In either case,
min MASE(k) ¢ O(n-l). Assumption A.5 requires that K = be defined so as not to
keX

n

exclude all sequences {k_€ Kn} that yield fast rates of convergence of § .
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THEOREM 3. (a) Under Assumptions A.1, A.3, and A 4, GCy, is asymptotically optimal in

the sense that (5.1) and (5.2) hold with k = ftM .

(b) Under Assumptions A.1-A.5, MASE(ky) = O(a™) for 1 = mig 20, /(2a,, + 1) .
a,

Comments. 1. In practice, the covariance matrix 0 typically is unknown, so the GCL
criterion is infeasible. If the errors are homoskedastic, however, 2 can be replaced by
(= diag{&z, . &2} , Wwhere & s any consistent estimator of Var(U;), and the
results of Theorem 3 still hold (see Li (1987, Corollary 2)). On the other hand, if the errors
are heteroskedastic and € is unknown, no feasible version of GC;, is available (for which
the results of Theorem 3 hold). In this case, the CV criterion discussed below needs to be
used instead.

2. For trigonometric and FFF series, Theorem 3(b) yields MASE(ky,) = O(n™)
for all s <v, where v is defined in Theorem 2 Comment 3 and corresponds to the

slowest optimal rate of convergence over Eab Va,b.

Proof of Theorem 3. Theorem 3(a) holds by Corollary 2.1* of Andrews (1989b) provided

Assumption A.4 implies min nMASE(k)-wo. The latter holds under Assumption

kexn

A 4(ii), since

1 2_1 . 2.,
MASE(k) 2 <E||P,U[|" = - tr P,02 > il)li' o; k’l/n (5.4)

using (3.4). To show that it holds under Assumption A.4(i), suppose lim inf nMASE(k)
- keln
< w. Then there exists a sequence {k_€ X } and a subsequence {n,} of {n} such that
. e 2

Iimn_MASE(k )<w. Since n_MASE(k_ )>infoiEXk by (5.4),
b O m m Im" "i>1 'ab Ilma'b )
l'iEkn ab <B VYa, b for some B <. Thus, by (3.4),

fno m
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Timn MASE(k ) Tim 3 (g(x)—gk (x))? > Tl min % (g(x )8, ()% (55)
D-o m mHe i=1 n_ n-o kElB i=1

where KB is the set of vectors k in IE such that ka.b <B Va,b. Since KB is a finite
set, Assumption A.4(i) implies that the right—hand side of (5.5) is infinite, which yields a
contradiction.

Theorem 3(b) follows from Theorems 2 and 3(a). 0

5.2. Generalized Cross—validation
The GCV criterion was introduced by Craven and Wahba (1978). It selects k,
denoted by EG , that achieves:

. -1 -2
min o LY — g, [1%/(1 =k 1/m)?. (5.6)
kexn

The following assumptions are used to ensure the asymptotic optimality of GCV:

ASSUMPTION A.6. Some sequence {k } for which k €k Vn satisfies k ., /n-0,

k .. 2w Va,b, and Assumption A.2 holds for {k }.

nab

ASSUMPTION A.7. max k’l/n< v Vn for some 7<1.
kek

ASSUMPTION A 8. a‘i? =2 Vi1,

Assumption A.6 requires that xn is defined such that some fixed sequence
{k, € K} satisfies MASE(k ) -0 . This is not overly restrictive, since X needs to be
redefined if it is violated. Assumption A.7 is easy to verify (or to impose) and is not
restrictive. On the other hand, the homoskedasticity Assumption A.8 is restrictive. Unless
the errors are homoskedastic, the GCV criterion is not asymptotically optimal in general
(see Andrews (1989b, Sec. 3)). Thus, neither GCy nor GCV is both feasible and asymp-

totically optimal in the case of heteroskedastic errors.
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THEOREM 4. (a) Under Assumptions A.1, A.3, A4, and A.6—A.8, GCV is asymptotically

optimal in the sense that (5.1) and (5.2) hold with k = EG :

(b) Under Assumptions A.1-A.8, MASE(k;) = O(a™) for r = min 2a,, /(2a,, +1).
a,b a

Proof of Theorem 4. Theorem 4(a) holds by Theorem 3.1* of Andrews (1989b), since it is
straightforward to show that the given assumptions imply those of Theorem 3.1*.

Theorem 4(b) holds by Theorems 2 and 4(a} of this paper. o

5.3. Cross—validation
The CV criterion was first analyzed by Allen (1974), Stone (1974), Geisser (1975),
and Wahba and Wold (1975). It selects k, denoted by f‘C , that achieves:

— n ~
wnn ligltvi—gk(xi))2/(1-—mi(k)F, (5.7)

where § (x;) is the i~th element of §  and m,(k) is the i~th diagonal element of
2, (Z{2,) 7 -
Let A(A) denote the largest diagonal element of the matrix A . The following

assumptions are used to ensure that CV is asymptotically optimal:

ASSUMPTION A.9. Tim sup A(Z,(%{Z,)72{) <1.
N-w kEIn
ASSUMPTION A.10. X(Zk(ZéZk)_Zf‘) CAk’l/n VkeX Vo for some constant

0<A<uw.

Assumption A.9 requires the self—weights, {my(k):i<n}, to be bounded away
from one. (They are necessarily <1, since Z2,(2{Z,) Z{ is a projection matrix.) This
condition is not overly restrictive, since it is easy to impose and its failure indicates poten-
tially extreme overfitting of the model. Assumption A.10 prohibits highly unbalanced

designs. It is equivalent to requiring the ratio of the maximum to the average diagonal
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element of Z,(Z{Z,) Z{ to be bounded above by some A <w. It too is not overly

restrictive and is easy to impose, since Z; is observed.

THEOREM 5. (a) Under Assumptions A.1, A.3, A4, A6, A9, and A.10, CV is asymp-
totically optimal in the sense that (5.1) and (5.2) hold with k = EC :
(b) Under Assumptions A.1-A6, A9, and A.10, MASE(RC) =0(m™) for

Comment. Theorem 5 shows that CV is both feasible and asymptotically optimal when the
errors are heteroskedastic. It is the only one of the three criteria considered that has this
property.

Proof of Theorem 5. Theorem 5(a) holds by Theorem 4.2* of Andrews (1989b), since it is
straightforward to show that the given assumptions imply those of Theorem 4.2*.

Theorem 5(b) holds by Theorems 2 and 5(a) of this paper. o
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FOOTNOTES

1The authors gratefully acknowledge the financial support of the Alfred P. Sloan Founda-
tion and the National Science Foundation through a Research Fellowship (to the first
author) and grant numbers SES—8618617 and SES—8821021 respectively.

h particular, Chen (1988) assumes the regressors are of the form

{xi=(xi11, ...,xidd)|ij=1, ...,nj,j=1, Y |

d *m,j m
where n = II n. and x_ . is determined by J Jw{tddt== for m=1, ..., 1.,
=1 J m,) ] n. J

i=1, ..., d—, and {Wj :j=1, ..., d} are functions on [0,1] that are bounded above
and away from zero.

3'I‘hjs holds provided Stone’s index p of smoothness of Eaby is integer valued.
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