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ABSTRACT

It seems reasonable to suppose that in repeated games in which communication is
possible, play is determined through a process of negotiation and renegotiation as events
unfold. In the absence of a satisfying theory of players’ bargaining power, it is unclear how
to model this process. Symmetric repeated games are an important class in which the
problem is less troublesome. Whatever its source, bargaining power is presumably the
same for all players in a symmetric game. We take equal bargaining power to mean that a
player can mount a credible objection to a continuation equilibrium in which he receives a
particular expected present discounted value, if there are other self enforcing agreements
that never give any player such a low continuation value after anj history. This is
formalized in a solution concept called consistent bargaining equilibrium. The definition
does not imply strongly symmetric solutions: in some games, after some histories, players
will be treated differently from one another. This is commonly the case in games with
imperfect monitoring, for example. But there are modest assumptions under which
consistent bargaining equilibria of infinitely repeated games with perfect monitoring are
strongly symmetric. This counters the intuition that with perfect monitoring, there is
more reason to expect asymmetric treatment following some histories (since deviations
from agreements become common knowledge). Strongly symmetric consistent bargaining
equilibria have an unusually elementary characterization in terms of the payoff function of
the stage game and the discount factor. Some applications to oligopoly are presented. In
the linear Cournot model, for example, closed form expressions for maximally collusive
output in comsistent bargaining equilibria are available for any discount factor and any

number of firms.



1. INTRODUCTION

We are interested in this paper in symmetric infinitely repeated games in which it is
possible, after any history, for players to renegotiate their implicit agreement regarding
equilibrium play. Our focus is on the joint implications of symmetry and renegotiation in
this setting. The symmetry of the supergame makes it reasonable to suppose that players
will receive symmetric payoffs in the equilibrium negotiated at the beginning of the game,
as long as the Pareto frontier of the set of credible supergame equilibria includes a
symmetric element. An asymmetric agreement would seem at odds with the equal
bargaining power associated with the symmetric positions of the players. It is tempting to
extend this reasoning to say that the symmetry of the subgame in which players find
themselves after any history (possibly including deviations from equilibrium play) suggests
that the continuation equilibrium in the subgame ought to be symmetric. We argue that
there should be no such presumption: even in the subgame it may be in the interests of the
worst—off player not to insist on symmetry.

The line of reasoning that supports this assertion is an elaboration of the approach
to renegotiation theory! taken by Pearce (1987). The approach is most easily understood by
thinking first of the simple case of a symmetric two—person repeated game all of whose
(subgame perfect) equilibria are symmetric. The supergame equilibrium value set can be
regarded as a subset of R,say V, with maximum v and minimum 3y. An equilibrium
that achieves v may be supported by the "threat" that after certain histories (for
example, if someone is observed to deviate, or, with imperfect monitoring, an unfavorable
signal arises) the value of the "continuation equilibrium" in the ensuing subgame will be .

Although the threat is subgame perfect, it is not credible in another sense: it seems plaus-

! Quite a distinct theory of renegotiation was initiated by Farrell (1983) and developed by
Farrell and Maskin (1987), Bernheim and Ray (1987), van Damme (1987), Benoit and
Krishna (1988), and others. We neglect the related problem of coalition formation. The
latter is explored by Asheim (1988), whose analysis is based on Greenberg (1988).



ible that the players could convince one another to abandon the worst equilibrium, on the
grounds that it constitutes an unnecessarily harsh punishment. While players understand
that in order to enjoy mutual cooperation they must accept different continuation payoffs
after different histories, they will not accept a "punishment" if there exists another
continuation equilibrium that never needs to use such a severe punishment. In other
words, because players care about the future rather than the past, they ask themselves not
whether a certain punishment was needed to deter deviations earlier in the game, but whe-
ther the punishment is inescapable in the sense that in the future any equilibrium must
inevitably rely on punishments at least as harsh.

Consider now the more general case of a symmetric game in which some supergame
equilibrium values are. asymmetric. How should players exploit the equal bargaining power
associated with the symmetry of their roles? Not, we contend, by insisting on symmetric
payoffs in every subgame: in some cases this would result in unnecessarily low payoffs for
both players. Rather, a supergame continuation value pair (a,b) with o < b should be
acceptable to player 1 as long as there is no other subgame perfect equilibrium in which in
all subgames, each player receives at least some value ¢> a. It might happen, for
example, that all "strongly symmetric equilibria" (those that treat players symmetrically
in every subgame) must use continuation value threats of (2,2) or worse, whereas the
asymmetric threats (3,5) and (5,3) sustain-a variety of equilibria whose continuation values
never drop below 3 for either player. (It is easy to find examples of this sort; a simple one
is provided below.) Consequently, if a deviation by player 1 is followed by a path with
value (3,5), player 1 accepts the asymmetry because in a symmetric regime, punishments of
value 2 would be unavoidable. Formally, we say that a subgame perfect equilibrium ¢ is
a consistent bargaining equilibrium (CBE) if the infimum of the values of continuation

equilibria (taken over all subgames and players) of ¢ 1is at least as great as the



corresponding infimum for any other subgame perfect equilibrium. In the context of sym-
metric games, this specializes the definition of renegotiation—proofness given by Pearce
(1987).

While it is intriguing that symmetric bargaining power need not lead to symmetric
punishments, it would be tremendously helpful when analyzing a particular game to know
that one could restrict attention to strongly symmetric profiles. Abreu (1986) showed in
an oligopolistic model that in the traditional perfect monitoring setting without renegotia-
tion, optimization within the class of strongly symmetric profiles yields easily described
equilibria with vivid properties. But he further showed that more severe punishments can
usually be achieved outside the strongly symmetric class, and that the structure of the
optimal punishment tends, unfortunately, to be complex. One of our principal goals is to
provide conditions under which renegotiation and equal bargaining power imply strong
symmetry, and to explore the properties of strongly symmetric CBE’s.

For any finite game G satisfying standard regularity assumptions and having an
equilibrium in pure strategies, the associated infinitely repeated discounted game G*(§)
has a consistent bargaining equilibrium (CBE). While much of the paper restricts
attention to games with perfect monitoring, the definitions apply equally to imperfect
monitoring models. For the latter, we can show that severest CBE punishments are often
not strongly symmetric. By contrast, their counterparts in perfect monitoring models
usually are strongly symmetric.

It is by now well understood that the crucial step in determining what kind of
behavior can be supported in a particular supergame is to compute the worst credible
threats that are available to the players. Theorem 2 of Section 2 provides an unexpectedly
simple characterization of the worst CBE punishment: it is just the maximized value of a
function f defined in an elementary way using the payoff function of the one—shot game

G. Specifically, for any symmetric strategy profile z in G, f(z) is the difference



between l_iﬁ times payoffs when =z is played, and any player’s best response payoffs
against the same profile. If G is the well-known linear Cournot model, for example, this
result produces closed—jform ezpressions (for any value of the discount factor and any
number of firms) for maximally collusive "punishment" values. This degree of tractability
is encouraging for the prospects of the theory being useful in a variety of applied areas.

The worst credible punishments in the class of games whose (CBE) solutions we
characterize have a "stick and carrot" structure similar to that established by Abreu (1986)
for the standard theory without renegotiation. They have two "phases," the first serving
to give the players low payoffs for a number of periods, and the second following the equi-
librium path of the best strongly symmetric (and stationary) CBE.

The assumptions required 1o generate these results are nontrivial restrictions on the
component game. Nonetheless, many games of economic interest satisfy the assumptions.
’fhis is documented in the Appendix, which presents classes of games including Cournot
oligopolies with convex cost functions and a family of demand functions containing the
linear and constant elasticity demands as special cases, as well as price—setting models. A
more novel application, found in subsection 2.4, is to the theory of multimarket collusion,
an issue recently investigated by Bernheim and Whinston (1987). In contrast to their
results, we find that (in symmetric games) given remegotiation with equal bargaining
power, multimarket contact has no effect on the extent of collusion: if markets are
structurally independent (in terms of firm cost functions and industry demand functions)
then, with renegotiation, they will be strategically independent also.

The brief treatment of imperfect monitoring models provided by Section 3
establishes that strong symmetry is not a general implication of the definition of a

consistent bargaining equilibrium. Fudenberg, Levine and Maskin (1988) identify? a large

2 See also the references cited in Section 3 below.



class of games with unobservable actions in which first—best outcomes in the supergame
can be approached asymptotically in equilibrium as é approaches 1. By Proposition 7 of
Pearce (1987) this is true even if one restricts attention to consistent bargaining equilibria.
But we show that imposing strong symmetry leads to inefficiencies that do not vanish
asymptotically. Thus, in imperfect monitoring models with patient players, consistent

bargaining equilibria will usually violate strong symmetry. Section 4 concludes the paper.
2. PERFECT MONITORING

The class of games considered in this section are symmetric repeated games with

perfect monitoring.
2.1  PRELIMINARIES

This subsection develops notation, and presents results for simple strategy profiles
(Abreu (1988)) that will be used below.

The stage game is denoted G = (Sl,...,Sn; Hl""’Hn)’ where N = {1,...,n} is the
set of players, Si is a pure strategy for player i, and I, : 51 X...% Sn" R is player #'s
payoff function. The stage game is symmetric in that

(i) S,= 5 forall i

(ii) for each permutation 7 of {1,...,n}, Hi(s'r(l)""’sf(n)) = H-r(i)(sl""’sn)

forall seS; x.x 5 and all .

In addition we assume that:
(A1) S, is compact.

(A2) I, is continuous.



The associated repeated game is denoted G"(5), where 6 ¢ (0,1) is the discount
factor. Each player ¢ chooses an action si(t) ¢ §; in every period ¢=1,2,.... The perfect
monitoring assumption is that si(t} may depend on the entire history of all players’ pre-
vious choices s(1),...s(t-1). We refer to vectors (zl,...,zn) by the corresponding
unsubscripted symbol 2. Also 2z .= (z By 1y 2 +1,...,zn). A repeated game (pure)
strategy for player ¢ is denoted 0, and o denotes a strategy profile. Throughout we

confine attention to pure strategies. Also,
o
¢« 3= {s(t)}t_l where s(t) = (s, (t),...,s (1)) € S, denotes a path.

w
. v,(3)= 3 Jtl'lz-(s(t)) is the discounted payoff to i from the path 3.
=1

Note that first—period payoffs are discounted.

. v ;(¢) denotes the payoff to ¢ from the strategy profile o.

[11]
. v(3t)= I 6T+1Hz-(s(t+'r)) is the payoff to i along the path 3 from
=0

period ¢ onwards, discounted to the beginning of period ¢ .

1]
Let H =tl:lo'.5‘t be the set of all histories, where S° = {#} and ¢ denotes the null
history. Forall he H, o p, denotes the strategy profile induced by ¢ on the subgame
following the history A By convention a|0 = 0. We will be interested in a subset of

the set of subgame perfect equilibria (Selten (1965, 1975)).
@
Let e=(1,.,1). We adopt the convention that 2z= {z(t)-e}t g z(t) € S50

denotes a symmetric path while 3= {s(t)} s(t) €S, 1is, as previously defined, an

[11]
t=1

arbitrary pathin S. Let



ﬁi(s) = max {ﬂi(sk,s_i} | s} e Si}
®(z) = I'Il(z,...,z)

w(z) =T, (3,..,3) .

DEFINITION: A path 3 is supportable by weR if for each i=1,...,n and each
t=1,2,...,

T (s(t)) - T,(s(t)) ¢ v,(3it+1) —w.
For a symmetric path these conditions reduce to:

w®(z(t)) — n(z(t)) < vl(i'",t+1) —w for all ¢.

We now review some definitions and results from Abreu (1988). As noted there, a
strategy profile of G®(§) may be viewed as a rule specifying an initial path, and
punishments for any deviation from the initial path or from a previously prescribed punish-
ment. The next definition identifies a particularly elementary class of strategy profiles.

"

DEFINITION: Let s, i=0,1,..,n, bepathsin S. The simple (strategy) profile

77(30, ?;'1,...,'3"') specifies

(i) play according to ?O until some player deviates singly from ?0,

(ii) for any 7 e N, play 3/ if the b player deviates singly from 3
1=0,1,...,n, where 3! is an ongoing previously specified path. Continue
with $* if no deviations occur or if two or more players deviate simultane-

ously.

Let ;(3,3) denote the simple profile (see Abreu (1988)) with initial path 3 and a
single symmetric punishment Z. Any single player deviation from an ongoing path (3 or

Z) is responded to simply by (re)starting Z.



DEFINITION: For each strategy profile ¢, C(o)= { %(alh) | he H} is the set

of "continuation values" of ¢ , including the value of o+  itself, and

l(c)= inf{ min {w,...,w,} | (w ,...,‘wn) € C(a)} .
From Abreu (1988) we have:
(R1) Let o be an equilibrium and 3 be its initial path. Then 3 is supportable by o).

(R2) The simple profile ’a\r(.'s', Z) is a subgame perfect equilibrium if and only if the paths
S and 7 are supportable by v, (2).

(R3) The simple profile '&'(30 ,3'1,...,?") 5 a subgame perfect equilibriuvm if and only if

I'Ij (si(t))—ﬂj(si(t))s vjﬁi; t+1)- vJ(QJ) for all j=1,..n,1i=0,1,.,n and
t=1,2,...

Henceforth, we will typically refer to subgame perfect equilibrium simply as equilibrium.

We assume that:
" (A3) G®(5) has a (subgame perfect) equilibrium.
A simple sufficient condition on G which guarantees (A3) is

(A3) G has a Nash equilibrium in pure strategies.



2.2 BARGAINING POWER AND RENEGOTIATION

Our main definition is motivated as follows. Players do not care about symmetry
per se. Rather, a player exploits his bargaining power by refusing to accept a continuation
payoff, say w, unless all (subgame perfect) equilibria rely on punishments at least as harsh

as w.

DEFINITION: An equilibrium ¢ is a consisent bargaining egquilibrium (CBE) if for
any equilibrium v, {(v)< {(c)

If ¢ is a CBE, it is impossible for any player i to object, following some history
h, that his continuation payoff vz-(a| h) is intolerably low (and to demand renegotiation of
the agreement). "Punishments" of at least this severity are an inevitable part of any
self—enforcing implicit agreement. Conversely, we interpret equal bargaining power to

mean that a player may demand {(c) after any history .

THEOREM 1: (Ezistence) Under (A1), (A2), and (A8)', a consistent bargaining

equilibrium ezists.

PROOF: Let r = sup {{{c) | ¢ is an equilibrium}. By (Al) to (A3) r is wel
defined. We complete the proof by exhibiting an equilibrium ¢ with {(o)=1r Let
{a""}“"}r___1 be a sequence of equilibria such that (r— £(e")) < % For each ¢” there exists a
history h and a player ¢ such that (l(a")—"f)i(a”|h))5%. Since ¢” is an equilibrium,
§0 also is o”7| h. Furthermore, by symmetry there exists an analogous equilibrium in which
player ¢ and player 1 are interchanged. That is, w.l.o.g. we may in addition assume that

(r— v (3°7)) ¢ % . where 3°7 is the initial path of o”.
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The rest of the proof mimics Proposition 2 of Abren (1988). We endow Q= $°
with the product topology. By (Al) and (A2) v: Q-+R"™ is continuous, and by
Tychonoff’s theorem  is compact. We may w.lo.g. take {3°7} to be a convergent
sequence. Let 3° =lim 3°7. By definition, v:-(.'s’oﬂ;t)z (o) forall i, t Hence we also

have 'ui(é'o;t) >r foralli,t Let 3% be obtained from 3° by interchanging the roles of

players 1 and ¢. That is, writing = {(sf(t),...,sﬁ(t)}} k=0,1,.,n we have,

o
i=1

s;{t).= sg-(t) j# 1,4, s:(t) = sf(t} , and s;(t) = s?(t). Clearly ui('s") =r, and
vj(é'z;t) >r forall ijt We now argue that (3%3!,...,.3") is an equilibrium. Suppose

not. Then by (R3), ﬁj(so(t)) - Hj(so(t)) > vJGO;HI) —r for some jt Since 3°743°

and {(¢")> r, by continuity for 5 large enough ﬁj{san(t))— Hj{son(t)) > vjﬁon;ﬁlj—
{c"). But then by (R1), o7 is not an equilibrium, a contradiction. Hence
'5(30,5'1,...,3n) is an equilibrium. Since its minimum continuation value is r, it is a
CBE.
Q.E.D.
Recall that a repeated game strategy for player i is a sequence of functions

o;=(0,1), 0,(2),...) where o,(t): S48,

DEFINITION: A strategy profile o is strongly symmetric if for all ie N:
(1) o1)=0,(1); and (2) o,(t)(k) = oy(t)(h) forall £>2 and heST.

Does the equal bargaining power assumption imply equal treatment in the sense of

identical behavior after all contingencies? Not necessarily, as the following simple example

shows.
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EXAMPLE: Consider the two—player stage game

U D
u 20,20 5,30
d 30,5 7.7

Set §=1/,. Given that the one—period gain from cheating at (u,U) is 10, it is clear
(see (R1)) that for any strongly symmetric equilibrium o, {(c) ¢ 1_1520 —10 = 10. But
there exist equilibria which are not strongly symmetric, with a higher infimum value. Let
st= (d,U) and s?= (u,D), and consider the following strategy profile o . Start with st
If players use s! in period ¢, s? is to be played in (t+1), and vice—versa. If row deviates
in ¢, s? is to be played in (t+1), and if column deviates in ¢, st is played in t+1. It

~

may be checked directly that o is an equilibrium. Furthermore,
A 2

Z(a)=%—i—-%gi=ig> 10 » {{¢) for any strongly symmetric equilibrium ¢. Thus, in
this game it is in the players’ self-interest to permit themselves to be treated

asymmetrically.
2.3 CHARACTERIZATIONS

While the preceding example demonstrates that strong symmetry cannot be
guaranteed ¢ priori, it is analytically an extremely attractive restriction, and leads to
tractable characterizations. The next assumption plays a central role in establishing that

strongly symmetric CBE’s exist.

(A4) Forall s¢S thereezists z ¢S such thal
() w(@)25IN0)
i
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)  F(zia(z)< [n (6)-1,0s) | -

ﬂl""‘

This assumption implies that in the stage game asymmetries do not, of themselves, in-
crease aggregate payotfs or reduce aggregate temptations to cheat. While (A4) is a non—
trivial assumption, it is satisfied, as we show in the Appendix, in a variety of natural

economic settings.

LEMMA 1 (Smoothing): Given Assumption 4, for any path 3 supportable by w ¢ R

there ezists o symmetric path T supportable by w such that

1 n
Y (z:t) > 5 i§1 'ui(é';t) for t=12,...

PROOF: Consider 3= {s(t)}u:=l supportable by w. Then for all i

'ITi(s(t)) —’Hi(s(t))g v-(.'s';t+1)— w. Hence,

Ly [n (s(t)) =TI (s(t))] %z v, (3t41) — w.
By (A4) there exists a symmetric path z = { z(t)-e }M such that

n(o(t) 2 33 Ts(t)) sad

RCORLCOR M RFCORICO
Hence v, (zt+1)2 ;LE_. v:—(é';t+1), and E(z(t)) —=w(z(t)) < vl(:'z':;t+1)— w for all &.

i

Q.E.D.
The next assumption appears in the proof of Theorem 2. It is used there to resolve
an integer problem (time is discrete), and may be dropped if public randomization is
allowed. It should be viewed more as a convenience than as an essential component of the

basic argument. Note that (A3) and (A4) imply that G has a symmetric Nash
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equilibrium. Denote by zt"

By (A1) and (A2), z°" is well defined.

the symmetric equilibrium which yields the highest payoff.

(A5) Foraeny zeS, and ¢ such that w(z") < a < ®(2), there exists ye S, such that
a=x(y), and ®(y)—=n(y) < x(z) —=(z).

DEFINITION: f ¢ and 7 are CBE's, it follows that {(c) = {(v). Let r={{o)
for any CBE o.

The key result of this section is Theorem 2. If one sets aside questions of
"openness," the argument is roughly the following. Symmetric CBE paths exist,? because
by Lemma 1 any asymmetric CBE path can be "averaged" across players while preserving
incentive compatibility. It is easy to show that among the best symmetric CBE paths
there is at least one that is stationary. For any action z, let f{z) be the greatest value
that would support the st#tiona.ry symmetric path on which action z is always chosen.
Such a punishment would be just sufficient to deter a deviation, therefore
i—i—a'n(:r,) = x(z) + f(z), thatis, flz)= l—iaw(z)—E(z). Let z be the action chosen on
some best stationary symmetric CBE path. We know that r< f(z). Let £ maximize f
The proof of Theorem 2 exploits (A5) to construct a strongly symmetric SPE with value
f(z*) and continuation values at least f(z*). Thus, r< fz) < f(z*) < r, the last inequality
following from the definition of r. This characterizes r as a simple function of é and the

data of the component game.

THEOREM 2: Let f(z) =T%'5 w(z)—7(z). Then r= ma:é f(z).
Te
1

! We refer to a path 3 as a CBE—path if there exists a CBE 7 with outcome 3.
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PROOF: From the definition of a CBE it is clear that any CBE—path is suppor-

table by r. Hence by Theorem 1 and Lemma 2 there exists a symmetric path

1] @
7= {y(t)- «z}t 1 which is supportable by r. Let Y cl{y(z,‘)}t 1 (where "cl" is "closure")
satisfy ®(3)> ®(y(t)) for all ;. Then Tf_ﬁ w(¥)2 v (Kt+l) , t=12,.. By the

continuity of =« and = it follows that =(y)—=(Y) < -1% x(y)—r.  That is,
r< 1—15 T(y) — T(y) < max f{z). Let z* be any solution to the problem max S, and define
T

ot = Lo w(zt).
Observe that f may be rewritten as f(z) = T—Qﬁ x(z)— (x(z) — x(z)), and

™) = 1) < f2) = Ly () - Ge) —n(2)) < of

Assume that f(z¥) > f(zcn). Since £ is a payoff maximal symmetric Nash equilibrium
(NE), this implies that z* is not an NE. Hence v > f(z*). Also, «w(z*)> w(z°"). Let
T = max {‘r | (64 &+ ..+ ) n(z™) + 67 v 2f(z*)} .
By the continuity of = and (A5) there exists e such that
(6+..+87) 1(z"™) + 6T x(a) + 6T+1 v = fiz*),

where T(a) - w(a) < ®(z*) - w(z*). Let = {;(t)-e}::l be the symmetric path where
z(t)=2" t=1,..T; z(T+l)=a ; gzg(t)=2* t=T+2T+3,. . Then v (%) =
f(z*) and vl(_i':;t-i-l) > flz*) all t=12,... Also from above, (z*)— n(c*) = l—fsn(z*)
— f(z*). Since T(@")=w(z"), and %(a)—w(a) ¢ T(z*)—n(z*), it follows that 7 is
supportable by v, (3) = f(z*), and hence by (R3), ;@,E) is an equilibrium. Since
t(;@,:z')) = f(z*), r2 f(z*). Combize this with the earlier inequality r < max f to com-
plete the proof for the case f(z*) > f(z°"). The case where 2™ maximizes f is trivial.

Then T=o and Z is the constant symmetric path z°" forever.

Q.E.D.
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Before we comment on this rather striking formula it is useful to have some further
results. Let 2 be as defined in the proof above. First note that the strongly symmetric

simple profile ;@,}) is a CBE, and yields the payoff r. Furthermore,

LEMMA 2: A path 3 is a CBE path if and only if

(i) 3 is supportable by r, and

(i) vi(.'s';t) >rfori=1..n and t=12,.. .
Under these conditions the simple profile 3‘(3,:5) is a CBE.

PROOF: (Necessity) Let ¢ be a CBE with initial path 3. By the definition of a
CBE, {(c)>r. This establishes (ii). Finally, by (R1) 3§ is supportable by {(v), and
therefore by r. |
(Sufficiency) By (R2) ;G,E) is an equilibrium. Its continuation values are
{ vgt) | e = 5,z and t=1.2,.. } . Hence, {(c(3,2)})2r, and G(é','_i) is a CBE.
Q.E.D.

An immediate consequence of Lemmas 1 and 2 is:

THEOREM 3: For eny CBE ~ there ezists a strongly symmetric CBE o such that

~ law
Y (0) 2 ﬁ% vz‘('T)-

Thus, under our assumption players’ self—interest does not force them to accept
asymmetries (recall the example and the earlier discussion). The minimum payoff {(o) is
not improved by permitting asymmetric treatment. Our principle of equal bargaining
power therefore implies that players may, without loss, insist on symmetric payoffs both
prior to and following a deviation. We therefore restrict attention to R = {?:1 (c)]| o isa

strongly symmetric CBE}. It is straightforward to show that R is a compact set.
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LEMMA 3. R is compact.

PROOF: From {Al) and (A2), R is bounded. Consider a sequence of symmetric
CBE—paths {z'} such that lim vl('z'ﬂ) = a. We need to show that a¢¢R. Endow
0 =5" with the product topology. By Tychonoff’s theorem, ! is compact. Assume
w.lo.g. that 27+ Z*. By continuity, vi(i*;t) = lim u’-ﬁn;t) >rdorall i and t>1. By
(R1) and the definition of a CBE 2" is supportable by r. Hence by Lemma 2 T isa
CBE-path with v (2*) = a. '

Q.E.D.

Two numbers of special interest are 7= min R (= {(s) for any CBE ¢), and
r=max R. The former is the worst credible punishment payoff, and the latter the best,
or most "collusive,” payoff. It is remarkable that both these numbers which emerge from a
potentially complex intertemporal incentive compatibility problem, may be expressed in
terms of explicit, trivially computable formulae.

Let 2* satisfy z* cargmax f and =(z*)2 w(y) for all yeargmax f This

notation is useful in characterizing 7.
THEOREM 4: 7= tJon(z).

PROOF: Let y be a symmetric CBE path with payoff 7. By Lemma2, § is
supportable by r. Let yecl{y(t)} satisfy n(y)2 =(y(t)) forall t. By continuity of «
and w (this step is analogous to the proof of Theorem 2), T(y) — w(}) ¢ % x(y) - r.
Hence, r< ﬁﬂ@)—i@). It follows from Theorem 2 that ¥ maximizes f Thus,
x(z*) > x(y), and vl(:'r':*} > 1—_%11(3})2 vl(i}). Since 7* is supportable by r, it follows
from Lemma 2 that z* is a CBE path. Therefore, 7= v (z*) = T_% w(z*) as required.

Q.E.D.
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To summarize, r=max f, r= l—faw(f ), and Z*, the comstant path z* forever,
is the most collusive symmetric CBE—path.

m

Let z'" denote any maximizer of x. The proofs of the next two results assume

that S1 is an interval, and use the following regularity assumptions:
(AB) The functions x and ® are continuously differentiable.

(A7) The points 2%, 2™ lie in the interior of S,, and 7 (z°"), T (") %0.

Furthermore, for all z ¢ int Sy, x(z") > x(z).
THEOREM 5: r> 1—_5511(2677' , andr< i—f—sw(zm) forall §¢(0,1).

PROOF: By Theorem 2, r= max f= max {-I-_% %(z) —{ ®(z) — =(z)]}. Hence, by
(A6) and (AT), arg max fCint .S'1 and f'(z)=0 for all zeargmaxf Obviously,
> l_fé w{: zcn). Now observe that, if

r= ™) = Eyn™) - |7 ~ 2(e) = 2L 56
then " cargmax f and f'(c°®)=0. Noting that ='(z°")=7"(z") we have
T '(zm) = 0, contradicting (A7). Finally, let z* be defined as in Theorem 4, and suppose
that r= 1—‘_551(2*) = l—fa-n(zm). Then, 2z* maximizes = and «'(z*)=0. By
assumption w '(z*)+# 0 which contradicts the requirement f'(z*)=0.
Q.E.D.

This should be contrasted with the usual theory without renegotiation, where the

first inequality of Theorem 5 (with r replaced by v, the minimum of the equilibrium

value set) is reversed, and the second inequality (with T replaced by v, the symmetric

maximum of the equilibrium value set) holds with equality for sufficiently high é.
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THEOREM 6: As functions of §, 1-¢ r(ﬁ) and 1—'5é T(5) are strictly increasing.
Furthermore, }5:? 1-6 () = 11m 1_5-(6)—1\'(3 ).

PROOF: Let g(z;6)=1:(z)—1—3-§ [x(z}x(z)]. By Theorem 2, %‘—%(6):
max ¢g(z;6) . Consider 6; < b, and let z; maximize a(z ;6‘.). By Theorem 5, z; does
not define a symmetric NE and E(zl )> w(z;). It follows that

1521 (6) = max 9(z38) > g(ests) > 9oy = 35 1 (5))

1-4 r(é) is strictly increasing in 4. From the first order conditions to the

Hence,

problem max ¢(z;6,), it is clear that z, ¢ z, and
9(2136,) > 9(25:6)
9(z9365) > 9(z;36,) .

Noting that 1—;-‘121 > 1—3% , these inequalities may be seen to imply w(zz ) > 'rr(zl ). Hence,
.l_gﬁ;(g) -is strictly increasing in 4. Finally, observe that =(z™)) w(z)—
10 (z) - w(z)) forall z and &, and Lim (@™ -5 GE™) - x(™)) = x(@™)

1

Q.E.D.

The limit results of Theorem 6 are in the spirit of Proposition 3 of Pearce (1987).
Our additional structure yields the new result that l;.é r(8) is strictly monotonic.

Recall the punishment path Z constructed in the proof of Theorem 2, and the inter-
pretation in Theorem 4 of z* forever, as the most collusive CBE path. Then Z has two
phases: an initial phase of low payoffs (the "stick") followed by a phase of the highest
(renegotiation proof) payoffs (the "carrot") available. This is analogous to the symmetric
"stick—and—carrot" punishments of Abreu (1986).

Under an additional assumption this structure may be expressed more crisply :

phase 1 consists of exactly one period.
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(A8) If 6(x(z*")+T)> 1, there emists yeS; such that S(x(y)+7r)=r and

w(y) < ®(@").

DEFINITION: For all z,, 7, ¢S5}, let § (31,3:2) denote the symmetric path in
which z is played in the first period, and Z in all subsequent periods.

Let z* be as defined in Theorem 4.

THEOREM 7: There ezists 2, € S; such that ;(f(zl,f,"), §(z),2*)) is o CBE and
”1 (6(-@1’:*)) =T

PROOF: If the hypothesis of (A8) is false, then in the proof of Theorem 2, T'=10
and we may set z =a, as defined there. If not, let y be as in (A8) and set =19
Then 6(1?{;1) + 1) — §(x(z;) + )<z} +1)—r<0 since b(z(zy)+ T)=1 and
r> l—f—ﬁ'rr(xm). Hence E(,:gl) - w(z;) < T—r Therefore, z= §(z),=*) is supportable by
r, and by (R2), ;(2,'2’) is an equilibrium. Also, vlﬁ)= r and vl(:'z';t) =7, t=23,..
Thus, ;(2,}') is a CBE, and the proof is complete.

Q.E.D.

Theorems 2 and 4 emphasize how easily the best and worst remegotiation proof
payoffs may be computed. The simple stick—and—carrot structure of the associated

strategies is given a sharp expression in Theorem 7.
24 AN APPLICATION: MULTIMARKET CONTACT

A determinant of the degree of collusion in a particular market is the extent to
which the participants interact in other markets. If the markets are inherently linked this

inter—dependence is, of course, unavoidable. However, even if they are not, the markets
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might nevertheless be coupled by sirategic interactions: a deviation in one market could be
responded 1o in several markets. This issue has been formally addressed in recent papers
by Bernheim and Whinston (1987) and Harrington (1986) in the context of infinitely and
finitely repeated game models, respectively. The treatment below follows Bernheim and
Whinston. They deal with a number of different types of multimarket contact. One they
analyze fairly extensively is the case where each of the different markets is symmetric.
Given the setting of the present paper this is the only case we address. A key insight of
their work is that it may be beneficial to pool incentive constraints. This is helpful both
for optimal collusion and optimal (i.e., worst) punishment. With renegotiation as
conceived here, the objective is to mazimize the lowest payoff. I pooling constraints help,
it is conceivable that multimarket contact serves to improve the lowest payoff by so much
that the most collusive payoff actually declines. In fact, it turns out that with
renegotiation, multi—market contact (when markets are symmetric) has absolutely no
impact. We proceed to details.

Consider n firms, i=1, .., n, each of which operates in two markets, a and .
The issue we wish to comsider is whether a less (or more) collusive outcome prevails if the
two markets are completely segmented in the sense that the set of firms in market a is
disjoint from that in market &.

Let G¥= (sF, ., sk, 0¥ ., 1F), where G, k= satisfies (A1) to (A7). In
the multi—market situation where the firms in the two industries have the same identity,

we have a single game: G = (§,, ..., Sy 1 S Hn) with
_ ol _sa.b
S;= 5§57, 5= (s,

b, b b
sy ,08,) = 5 (57, ,85) + I,(5)80)
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ﬁz‘(sl"“’sn) = ﬁ?(sf,...,si) + ﬁg(si’,...,sz)
R(z,z,) = 7o z,) + T (5,)

Since S, is now a subset of R?, we need to reformulate (A7). In particular,

m

= /.Ch
wxe (z™), x(z°") # 0" needs to be replaced by "a“gik ) , ﬁﬁggk) #0 for k= qab"

With these changes, if G leid satisfy (Al) to (A7) then so does G, and all our results
apply. In particular, Theorem 2 implies

r=max f(z) = ma.xfa(za)+ maxfb(zb)=1'a+1'b,
z z z
a b
and by Theorem 4

7= (x0(2) + () = T+ 7y

Thus, in symmetric markets the optimal collusion problem is completely separable
when players are able to renegotiate with equal bargaining power.
If the markets are structurally independent (in terms of firm cost functions and

industry demand functions) then they are strategically independent also.
3. IMPERFECT MONITORING

In repeated games with perfect monitoring, some histories of play discriminate
sharply amongst the participants: perhaps one player has deviated from cooperative
behavior, while all others have conformed to some agreement. Evidence distinguishing one
player from another tends to be less conclusive in models in which publicly observed signals
are only stochastically related to players’ private decisions. This suggests that there is if
anything less reason to treat players asymmetrically after certain histories in imperfect

monitoring models than in supergames with perfect monitoring. We show that on the
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contrary, consistent bargaining equilibria under imperfect monitoring will commonly
violate strong symmetry, unlike their counterparts in perfect monitoring environments. In
other words, sometimes players find it in their interest to submit gracefully to asymmetric |
{reatment.

The results presented below are chosen with the intention of conveying as succinctly
as possible the idea that asymmetric continuation payoffs arise quite naturally despite the
presumption of equal bargaining power. No atiempt is made to describe the specific
structure of optimally collusive equilibria.

The model is a repeated partnership. We set out the model and notation below,
emphasizing only those aspects which do not overlap with Section 2. It is now assumed
that player ¢ selects an action in period ¢ from a finite set S;- His choice 8,(t) is
unobservable to j# i but the realization of a random variable 4(t) is publicly observed at
the end of period ¢ The signal # can take one of m values 01,...,0m, and pi(s)
denotes the probability of signal Bz- given the action profile se¢ S We assume that ¢
has constant support: pi(s) >0 foral i=1,.,m and seS Player #s payoff
I, (s(t)) in the component game in period ¢ is the expectation of his realized payoff
“i(si(t)’ f(t)). Thus a player cares about the unobserved actions of others only insofar as
these determine the distribution of the payoff relevant signal 6. The component game is
symmetric in that S = S5, forall 4, and H'r(i) (31,32,...,sn)= Hi(sf(l)’srﬁ)"""sr(n))
for any permutation 7of {1,...,n} .

A strategy o, for player i in the repeated game is a sequence of measurable
functions ai(l), az-(2),... , Where ai(l) €5, and for £ 2, ai(t): (Si X 9)5_1 = S;, where
6={6 ,...,0m} . Let ¢(o) denote the vector of (expected) present discounted payoffs
when the strategy profile o is used. It is convenient to work with average discounted
payols u(z) =132 Y(o) . Let p(s) = (b (5)-spp(s)) and Pits)={p(sy s ) | ;4
s € Sz’} . Denote by G"(§) the repeated game with discount factor &, Fudenberg, Levine

. and Maskin (1988) have introduced the following condition.
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DEFINITION: The stage game satisfies the pairunse full rank condition if the
vectors { p(s)} U Pi(s}U P2(s) are linearly independent forall se S.

We will assume that:

(M1) The stage game has a symmetric Nash equilibrium in pure strategies.

(M2) Forall s* ¢ argmaz SI1,(s), there ezists j such that ﬁj(s*) > l'IJ.(s*).
1
(M3) The stage game satisfies the pairwise full rank condition.4

We first record a simple corollary of a folk theorem of Fudenberg, Levine and
Maskin (1988) which implies that a symmetric first—best payoff can be approached in
equilibrium as § tends to 1. Related results are given by Matsushima (1988) and, in a
static setting, Radner and Williams (1987).

The pairwise full rank condition is required for the result below. Let
e=(1,.,1) eR", =*= %mg.x%lli(s), and V{§)={v(c)| ¢ is a (perfect Bayesian)
equilibrium of G*(6)} .

PROPOSITION 1 (Fudenberg, Levine and Maskin, 1988): For all € >0 there
ezists § such that for all §> § there ezists we V(§) with | 7*-e—u | <&

4 It might seem at first sight that the pairwise full rank condition is inconsistent with
symmetry. This is emphatically not the case. To comstruct a simple example, let
f= ({1,...,5 n) be a multi—dimensional random variable where the £, ’s are independent,

and the probability distribution of each {i depends only on s . Of course, in a
non—trivial example =« ; will deperd on all the ¢ 5 ’s.
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The preceding theorem is easily translated to a statement about consistent
bargaining equilibria by appealing to a limiting characterization of renegotiation—proof

equilibria.

PROPOSITION 2 (Pearce, 1987): Forall §',ue V(6') and € > 0 there exists
b such that for all 6> & there exists an S.E. o such that for all ¢, i]ﬁ.f ”,-(UI h}> u — €.

The next result on consistent bargaining equilibria is an immediate corollary of the

preceding propositions.

8 such that for all §> § there ezists a

COROLLARY: Forall € > 0 there ezists

consistent bargaining equilibrium ¢ with {(g)> ©* —¢.

We now show that restricting attemtion to stromgly symmetric equilibria bounds
payoffs away from efficiency uniformly in 4 Our main result then follows immediately.
Theorem 3 is closely related to the work of Radner, Myerson and Maskin (1986) and
various subsequent papers (see, for example, Abreu, Milgrom and Pearce (1988) and

Fudenberg, Levine and Maskin {1988)).

THEOREM 8: There ezists A >0 such that for all § and for all strongly
symmetric sequential equilibria ¢ of G°(6), ylo)s*—4.

PROOF: Fix §. Let o be a payoff maximal strongly symmetric (sequential)
equilibrium. By Corollary 2 of Abreu, Pearce, and Stacchetti (1986) (hereafter APS), such
a o exists. Let vs v;(0). As argued in APS we may w.l.o.g. take players’ behavior in

¢ to be a function only of publicly observed outcomes and not on the history of their own
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past choices. This implies in particular that o g the behavior induced by o after a
first—period outcome 6, is an equilibrium. Hence, y< wy< v, where wy = vl(al 0) and
y is the worst strongly symmetric equilibrium payoff. Let wje (0,1) be defined by
wy = V-« e(t'}—:u).

Let o,(1)==z be the action played in the first period. Then
v= (1-6)x(z) + 5%1;0 wy, where p, is the probability of the outcome @ when all

players use action z. Suppose z-ef A = argmax };JI'I i(s). Then =x(z)< =*, and
v<(1-6)xf(z)+ v , or ¥ <w(z)< = . Hemce v<{7*—A,, where A, =min
{ ™ —7(z)| zree S\ A } > 0. (Recall that S, is a finite set.) Now suppose z-e¢A.
Then by (M2) there exists s, # z such that I, (5,,3,...,¢) > Hl(z,...,:c). Let g>0 be
the difference between these payoffs. Let a9y be the probability of outcome # when the

action profile is (sl,s:,...,x). Since o is an equilibrium, it follows that

9<Ls ﬁ(p‘,—qo)@—am—y) = ££5(Q-P)(-)

where P=Zap,, Q=Zag, Letm=S5F Then (1-6)L<é@-yP. By the
constant support assumption, P > 0. Together with the finite outcome, finite action
assumption it follows that m ((m+ 1) is a likelihood ratio) is bounded above by some
finite m, independent of xp » T€E A, and the profitable deviation 8- But
v=(1-§)x* + 6T py [v- g (—p)]. Therefore, (1-6)v= (1-6)} =* — éP(v-1) <

(1-6) =* — (1-6) % Hence »< =* _'r%' Let Ay=g/m>0. Set A=min{A,;, Ay}
to complete the prdof.

Q.E.D.

It is now easy to argue that equal bargaining power need mot imply sirong
symmetry; in many supergames none of the consistent bargaining equilibria is strongly
symmetric. In the notation of Theorem 8 {(¢)< =* —A for every strongly symmetric

equilibrium ¢ of G”(6) (regardless of the values of §). Setting & = -‘g‘— in the Corollary
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to Propositions 1 and 2, we find a §< 1 such that for all &§> § there exists an
equilibrium 7 with {(o)> =* -—%—. That is, (o) > {(0c) for any strongly symmetric
equilibrum ¢, therefore no CBE can be strongly symmetric. This result for patient

players is recorded in Theorem 9.

TEEOREM 9: Under (M1), (M2) and (MS) there ezists §< 1 such that for all

62 & there exists no strongly symmetric consistent bargaining equilibrivm.

The benefit of treating players asymmetrically after certain histories is easily
explained. Players’ incentives to cooperate depend upon their payoffs varying with the
realizations of the random signal. In a strongly symmetric regime this means that surplus
is systematically thrown away; with a finite signal space (or whenever the relevant
likelihood ratios are bounded above) there is consequently an inescapable efficiency loss.
Relaxing symmetry introduces the possibility of passing surplus from player to player
instead of destroying it. Thus, rather than punish both players in a two—person game
whenever certain signals arise, one may reward one player at the expense of the player
whose "record" is less favorable. Of course, this is not possible if there is no information in
the signal that distinguishes the two players, in which case consistent bargaining equilibria

are again likely to exhibit strong symmetry.
4, CONCLUSION

This paper suggests a particular approach to the problem of renegotiation in
symmetric repeated games. The theory developed is based on the idea that players will
tolerate asymmetries in continuation payoffs precisely to the extent that even the worst—off
player in any subgame finds this to be in his interests. In games with imperfect

monitoring, our solution concept often leads to asymmetric continuation payoifs, despite
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the equal bargaining power of the players. But we give conditions under which solutions of
games with perfect monitoring are strongly symmetric. Under these conditions we provide
simple formulae for the computation of the most collusive credible equilibrium and the
value of the severest credible punishment. In contrast td the traditional theory without
renegotiation, severest punishment paths here take an almost naively intuitive form:
following a number of periods of "Cournot—Nash reversion," play returns to (constrained)
maximal collusion. A variety of oligopolistic models are shown to satisfy the required
conditions. Cournot oligopolies with modest restrictions are in this class; the linear
Cournot supergame is solved fully in closed form, for all discount factors and any number
of firms. Finally, the theory has strong, simple implications for collusion amongst firms

having multi-market contact.
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APPENDIX

The purpose of this appendix is to demonstrate briefly that the assumptions of
Section 2 will be satisfied in a range of natural repeated economic models. There is no
attempt at generality. We consider, in turn, oligopolistic supergames with quantities and

prices, respectively, as strategic variables.

A. Quantities
We consider here a class of quantity setting oligopolistic supergames of the sort
studied in Abreu (1986). Identical firms produce a homogeneous product at constant
marginal cost ¢> 0. The industry inverse demand function is denoted p. Then
Hi(sl,...,sn) = (p(Esj)—c)si , where s, is the output of firm 1.
Under reasonable assumptions this model fits into the framework above. These

assumptions are:

(Q1) »: R 4+ = R, is continuous and strictly decreasing. Also, lim p(z)> ¢, and
0

lim p{z) = 0.

Z=m

(Q1) implies that there exists M(6) such that: —Hl(ﬁ(ﬁj,o,...,oj > 1% sup 11, (,0,...,0).
. z

The loss to a firm from producing an output of M(§) or more cannot be recouped by any

possible future gain. Thus w.l.o.g. we may restrict firms to output choices in the interval

[0,M(5)].

il

(Q2) S;=[0,M@8)] i=1..,n
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(Q3) G= (S, S5 My, ooy Hn) has @ symmetric pure strategy Nash equilibrium.

(Q1) to (Q3) imply (Al) to (A3) of the previous section. They also imply (A4), since

1:(%2‘3'.} = %E'- Hi(s), and by Lemr-3 21 of Abreu (1986) TI_‘. is a convex function. If in

addition we assume that = is concave (A5) holds.
(Q4) = is concave

Sufficient conditions (on primitives) for (Q4) are that the demand function is linear, or has

constant elasticity greater than unity. Corresponding to (A6) we now have:
(Q5) =« and T are continuously differentiable.

If the inverse demand function is differentiable then, of course, so is «; since = is

convex it follows that it is differentiable almost everywhere.

(Q1) to (Q3) imply =(z) > 0. Also =(0)=0 and =(M(§)) < 0. Together with
(Q5), Corollary 3 (reproduced below) and Lemma 21 of Abreu (1986), (A7) is implied.

COROLLARY 3 (Abreu 1986): Let z,>z,20. Then =(z)=7w(z)=0, or
w(z) > ®(zo).

Finally (A8) f{follows from Corollary3 {(above) and the fact that if

é[w(zcn) + 'u2] > v, 20, we may always choose y > z"

such that &[=(y)+ v ]=1v,.
Thus, the symmetric oligopolistic quantity—setting supergame with assumptions (Q1) to

(Q5) satisfies all the assumptions of the previous section. The relevant picture is:
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For- illustrative purposes we compute a linear example. The inverse demand
function is:
oz z2< aff

p() = |

where o, > 0 and a > ¢. Then

0 otherwise

%(z) = (a—c—nfz)z when z< %%9 and zero otherwise, and

w(z) = a%— (a—c—(n—1)fz)? when z¢ -(% and zero otherwise.

By definition, f(z) = -1%5 w(z) — =(z), and by Theorem 2, r= max f{z}). This problem

has a unique maximum at z* =9:'59 [ g’:"i) (I__g}(?:i{ P]' Hence

]
1l

§ (a—c)? 1 N _
9" F In+ (A-gni) By Theorem 4, 1‘=1—_51\'(z*). That is,

1
i

2 -
-1%5 &‘ZEL {2; -}-)(;—6 )?:_(;z}%; It follows directly that in agreement with Theorem 6,
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. —— ,
SmLE v = B 170 = (8l = &™)

B. Prices

We now consider price—setting supergames with differentiated products. We pro-
vide two examples which satisfy our assumptions and permit us to use the characteriza-
tions provided above. In particular, it is trivial to compute explicit solutions for r, 7, and
the collusive price level p*. The examples below consider the polar cases of substitutes and

complements, respectively.

A Spatial Model

There are two firms located at the poles of a circle of unit length. They produce at
constant marginal cost ¢ > 0. Consumers are uniformly distributed, demand at most one
unit, and have a reservation value v for either firm’s product. Consumers pay the trans-
portation cost { per unit of distance.

The analysis of this model is straightforward but can become tedious. To simplify
we assume:

¢ >c¢ and v? %E +c.

Firms are constrained to choose prices in the range [0,7].

13
(-c))2  0¢p<v-%
w(p) =
{%(v-p)(p—c) v-f < pgo
o {iq(p+§-c)2 0¢p<c+ it
by =
! (p-%-c) c+3ep Cv
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It is helpful to plot these functions:

[ ]

(v-t)2~c)

-cl2 / ¢ c+tfz C+ 3t VA v P

The symmetric NE of this stage game is of course: p™ = ¢ + é- Assumptions (A1)

to (A3) are obviously satisfied. It is diagramatically clear that (A5) is satisfied also.
Somewhat involved but straightforward calculations show that if p= P-L}zl then
w(0)2 51y (01.0y) + 3 Uylpypy).  Since T s convex, F(p) S R(p) + 5 W(ny) =
% (ﬁz(pl,pz) + qI"I"l,(;:rl,p2 )).  These two inequalities imply {A4). All the results up to and
including Theorem 4 are therefore available. Thus, r = maz f{p). For 6¢ % , the
optimum is unique and lies in the range [c+%, c+g—ﬁ. Precisely, p* =c¢ + i—%{% and

;zl'f'at?i&;' When §>7,7*=p™=v-}. Thatis,7=&lp-1-¢).

A Linear Model with Complements

Consider two firms which produce complementary products: .



33

¢! = max {0, a—fp; — 7pa}
¢ = max {0, a—fps — 7p1}
where @, 8,7> 0,824 and a> (f+7)c. Set S; = [0, a/f]. Then

x(p) = (a— (B+7)p)(p—c) if p< B_‘:—,y and zero otherwise.
w(p) = iﬂ(abﬂo-'rp)ﬂ if p¢ “—;&" and zero otherwise.

The relevant picture is:

(xpeY
4p

‘ |

. |

1 | |

1 1 ~— 3

c . x___ X+ B o-pe -
Ew) 25 4 8e i

-XC

It is clear that (Al) — {A3) and (A5) are satisfied. So also is (A4) (though this takes some

argument). The by now familiar maximization of f yields

* =Zﬁ[a+ggﬂ+7)] + (1-8)7(a—fc)
6+ 467 + 713(1-6) .

As §-1, p*- pm = % + miw , in conformity with Theorem 6.
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