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ABSTRACT

This paper presents a nonparametric and distribution-free estimator for the
function, h* , of observable exogencus wvariables, x , in the generalized
regression model, y = G( h*(x), £) . The method does not require a parametric
specification for either the function h* or for the distribution of the random
term p. The function G is only assumed to be monotone increasing. The
estimation proceeds by maximizing a rank correlation criterion (Han (1987)) over
a set of functions that are monotone increasing, concave, and homogeneous of
degree one; the function h* is assumed to belong to this set of functions.

The estimator is shown to be strongly consistent.
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1. INTRODUCTION

An increasing number of microeconometric models possess limited dependent
variables. These include the popular censored, truncated, threshold-crossing,
and discrete-choice models. Maddala (1983) describes several applications of

such models.

In limited dependent variable medels, the observable dependent variable is
a transformation, which is not one-to-ome, of a latent unobservable dependent
variable. For example, the observable dependent variable may be whether an
individual accepts a job offer, while the unobservable dependent variable is his
willingness to accept. The latent variable is typically assumed to depend on a
function h* of observable exogenous variables x (e.g. salary, outside

income) and an unobservable random term

In the past, the estimation of limited dependent wvariable models has
proceeded by specifying parametric structureg for the function h* of exogenous
observable variables and for the conditional distribution of the unobservable
random term g given x . The transformation G relating the values of h*
and u to the wvalues of the observable dependent wariables was completely
specified. Consequently, these methods were susceptible to potential
inconsistencies that could arise from erroneous specifications for G, h*, or the

distribution of u

To avoid inconsistencies due to erroneous specification of the distribution
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of p , Manski (1975) pioneered the study of semiparametric estimation methods
for limited dependent variable models. Manski showed that the parameters of h*
can be consistently estimated in polychotomous choice models without specifying
a parametric structure forl the distribution of the random terms. The function
h* was assumed to be linear in a finite dimensional parameter and the random
terms were only assumed to be i.i.d. within each observation. For binary choice
models, even weaker assumptions on the random terms sufficed. Following
Manski's work, several other semiparametric distribution-free methods have been
developed. These include, among others, Cosslett (1983), Heckman and Singer

(1984), Horowitz (1986), Klein and Spady (1986), Manski (1985), and Powell

(1984, 1986a, 1986b).

All the above estimators are robust to the misspecification of g but
assume that h* is known up to a finite-dimensional parameter vector. The
specification of h* , however, 1s another important source of potential
inconsistency. Matzkin (1987) developed a semiparametric estimation method for
polychotomous choice models, which did not require h* to possess a parametric
structure. Instead, the function h* was assumed only to be monotone and

concave, The distribution of 4 was assumed to be known up to a finite

dimensional parameter.

Matzkin (1988a) developed nonparametric distribution free estimators, for
single-threshold crossing and binary choice models. These methods do not
require a parametric structure for either the function h* or the distribution
, or the function whose difference is h*, is assumed

of u. The function hﬂr

to possess certain properties such as monotonicity, concavity, and homogeneity
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of degree one, or some kind of additive separability. The unobservable random
term is assumed to be independent of the observable exogenous vector x . These
methods provide an estimator of both the function h* and the distribution of
the random term Lo The transformation G , however, is assumed to he

perfectly specified.

Recently, some semiparametric distribution-free methods Thave been
introduced that do not assume that the transformation ¢ 1is known; hence, they
avoid the inconsistencies that could arise from an erronecus specification of
this transformation. These works include Han (1987), Ichimura (1986), Powell,
Stock, and Stoker (1986), and Stoker (1986). Ichimura assumes that h* is known
up to a finite dimensional parameter vector, while the others require h* to be

linear in a finite dimensional parameter.

In this paper, we introduce an estimater for a model in which the
transformation G is unknown and neither the distribution of the unobservable
random term g mnor the function h* is specified parametrically. The function
G 1is assumed to Se monotone increasing and nonconstant, and the random term u
is assumed to be independent of the exogenous observable variable x . This new
estimator is developed by following a suggestion in Matzkin (1988a, Section 3).
The estimator is obtained by modifying Han’s (1987) semiparametric distribution-
free maximum rank correlation estimator and combining it with Matzkin‘s (1987)
semiparametric estimator for monotone and concave functions. The identification
of h* is obtained by requiring it to bhelong to a set of functions that are
monotone increasing, concave, homogenous of degree one, and attain a known value

at a known peint of their domain, It is appealing to rely on such assumptions,
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as opposed to requiring restrictive parametric structures, because the
assumptions of monotonicity, concavity, and homogeneity of degree one are often

encountered in economic models.

In Section 2, we present the model. Then, in Section 3, the new estimator
is introduced. 1In Section 4, we present the assumptions under which the strong
consistency of the estimator is established, and in Section 5, we demonstrate
the strong consistency of the estimator. Section 6 summarizes and concludes the

paper.
2. THE MODEL

In this model, the value of an observable real variable y is determined
%
by the values of a function h and an unobservable random variable u through

a transformation G according to the relationship
1 ¢ (h
(1) y; =6 (h(x), 8

The wvariable p:4 is a K-dimensional random vector of observable exogenous
variables distributed according to a probability measure Px over a set X,
which is defined by X = { x € RK I X >0 k=1,.,.,K }. The random variable u
is distributed independently of x , over a set U , with a probability measure
Pp . The function G 1is monotone increasing in each coordinate: for all p < u'
and t < t', G(t, p) = G(t', w) and G(t, p) = G(t, p'). The set of values
that G attains over the set h*(X) % U 1is assumed to possess at least two

. *
distinct elements, We assume that h is monotone increasing, concave,
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L. * % *
homogeneous of degree one, and satisfies h (x ) = a for some x € X and some

a>0, ae R .

This model includes, among others, some proportional and additive hazard
models, censored regression models, and threshold crossing models. Han (1987)
shows explicitly how these and other particular models are special cases of (1).
The model in (1) also belongs to the class of single index models, since the
distribution of y conditicnal on x coincides with the distribution of ¥

*
conditional on h (x).

This paper is concerned with the problem of estimating the function h*
from N independent observations { (yi, xi) I i=1, . . . ,N), without
imposing any additional restrictions on the function G and without imposing
any parametric structure either on the distribution of ux or on the function
h* . This extends Han's (1987) semiparametric generalized regression model,
where he assumes that h* is linear in a parameter ﬂ* that belongs to the set
{ perl | 8l = 1, |ﬂK| > § ) . In this paper, we substitute for Han's
linear restriction the assumption that the function h* is monotone increasing,
concave, and homogeneous of degree one. These assumptions appear commonly in
economic theory. The restriction that ﬂ* belongs to the set { f € RK I8l

* %
=1, |BK| > & } is substituted by the assumption that h (x ) = o« for some

*®
known x € X and some known o > 0 , a € R.



3. ESTIMATION

In this section we introduce a fully non-parametric estimation method for
the model described in the previous section. The estimator is obtained by
maximizing a rank correlation criterion over a set W of mnonparametric
functions. The functions in W satisfy properties that are necessary for the
identification of the function h* and for the strong consistency of the
estimator. Following Matzkin (1988a, Section 4, Example 1), we define W to
be the set of all monotone increasing, concave, and homogeneous of degree one
functions h: X - R that are defined on the set X=|{ x € RK [ Xy >0, k=1,

*
., K} and that satisfy hix ) = a .

Han's (1987) semiparametric maximum rank correlation estimator for the

model y; = G( x; p. #) 1is defined to be any ﬂN that maximizes

54(B) =
-1
- 3] =0 s =g 1y, > v+ Lxgp < xp) Ly <) )
over the set { g e R | [B] - 1, 8l = 6 ) (6> 0 is known) where 1[+] is

an indicator function and Ep denotes the summation over the [g] combinations

of two distinct elements (i,j) from (i, ..., N}.

X - - s I *
Our nonparametric maximum rank correlation estimator for the function h

in model (1) is defined to be any function BN € W that maximizes the function



(2) Sy(h) =

-1
- [’2‘] 0 1hex) > hex )] 1y > y,) + 1h(xp) < h(x,)] Uy, <y,1 )

over the set W.

Hence, instead of searching over a set of linear functions, we

search over a set of nonparametric monotone increasing, concave, and homogeneous

of degree one functions.

To find a solution to the maximization of (2) over the set W, we can

follow a two-step procedure analogous to that developed in Matzkin (1988a):

First maximize the function

(3) Sgthy, o v v h) =

-1
N
= [2] Z, [ 1hy > b1 1y, >yl + 1[hyg < B 1y, <] ]

over all vectors ¢(h

(4)
(3)
(6)
(7

N

10 7 h
h1 =< ﬁj Xy i, j= 0,
h1 = ﬁi X, i= 0, 1,
B. = O i- 0, 1,

*
Second, employ the solution (hl’

N) and (51,

, N, N+1
, N, N+l,

, N, N+1, and

* *
, hN) and (Bl.

) ﬁN) that satisfy

*
, ﬁN) to obtain a

monotone increasing, concave, and homogeneous of degree one function in W. The

resulting function will possess values

*
h.1 and subgradients

*
g. at each «x,.
i i

(See Section 5 in Matzkin (1988a) for the justification of this procedure and
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for more details.) A similar two step procedure was developed in Matzkin
(1987) to maximize a likelihood function over wvarious sets of monotone and

concave functions.

Other nonparametric maximum rank correlation estimators could be
constructed by specifying different W sets. For example, the set of "least-
concave" functions studied in Matzkin (1988b) provides another set of
nonparametric functions over which h* can be strongly consistently estimated.
Also the additive separable functions described in Matzkin (198Ba, Section 4,
Example 2) can be employed to define a set of nonparametric functions W from

which a strongly consistent estimator can be constructed.
4, ASSUMPTIONS
In this section, we present and discuss the assumptions under which the
nonparametric maximum rank correlation estimator can be shown to be strongly

consistent. The proof follows in Section 5. The convergence of our estimator

*
to h is obtained with respect to the metric d : Wx W -+ R defined by
Vh, h' €W d(h,h') = I |h(x) - h'(x)] L
X

The following assumptions will be made:

Al: For all 1i,j By and pj are i.i.d.

AZ: For all i By is independent of X,



A3 For all i, j X, and xj are i.i.d.
Al Px is absolutely continuous.
A5 The support of PX is (x € RK | X = 0, k=1, ..., K.
* % *
Ab: For all X5, xj in X such that h (xi) < h (xj), there exists t € R
* *
such that Pr . <t > Pr , <t ),
P|X( Yy ) le( Yy )
where Prp|x denotes the probability with respect to By conditional
on X,
i
*
A7 G: h (X) xU - R is monotone increasing in each coordinate and not
constant.
A8: W is the set of monotone increasing, concave, and homogeneous of

*
degree one functions h; X - R such that h(x ) = a ,
%*
where X ={ x € RK | X >0, k=1, ..., K}, x €X, and a > 0.

*
A9: h eW.

*
Assumptions Al and A2 are employed together with A7 to show that h (xi)
*
< h (xj) implies that for all t € R ,
P .- = t) , where
u|x (YJ )

respect to (pi, pj) conditional on (xi, xj). Assumption A6 only makes the

P . < t) = P denotes the probability with
4% (v4 ) ulx P y
implication slightly strongerl . Assumption 6, together with Assumptions Al,
A2, and A7, implies that

(yi < yj )y > { Yyq > yj ) whenever h*(xi) < h*(xj) ., This is

P p
alx elx

*
employed to prove that h  uniquely maximizes E SN(-) over W .

Assumptions A8 and A9 together with A3, A4, and A5 guarantee that for all

1 I am indebted to a referee for suggesting Assumption A6 as a substitute

for an assumption made in a previous version of this paper.
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h in W such that h = h* there exists a set Xi X Xj in X x X of positive
probability such that for all (xi, xj) € Xi x Xj .
)) < 0. This is also employed to prove that h*

* *
(h(x;) - h(x)) (B (x) - B (x

A h|

uniquely maximizes E SN(-) over W.

Assumptions A3, A4, and A8 imply that, for any h in W, the set
{ (xi, xj) | h(xi) = h(xj) )} has zero probability. This is necessary to prove
that h* uniquely maximizes E SN(-) over W and that certain auxiliary
functions are continuous in h a.s. The continuity of E SN(-) on W follows

from the a.s. continuity in h and the measurability of some of these auxiliary

functions.

Assumption A8 pguarantees that the set W is compact and that convergence
with respect to d implies pointwise convergence. The compactness of W is
necessary to prove the uniform convergence of SN(-) te E SN(-) and the
measurability of auxiliary functions. The pointwise convergence of the
functions is needed to show the continuity in h and the measurability of the

auxiliary functions.

5. CONSISTENCY

In this section we demonstrate the strong consistency of the nonparametric
maximum rank correlation estimator. The result 1s stated in the following

theorem:
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THEOREM 1: lim d( h

N—0

To prove this theorem, we need to borrow the result of Lemma C.2 in Matzkin

(1988a}:
LEMMA 1: Suppose that W 1is a set of functions on X and that W satisfies
Assumption A8 . Then, W is compact with respect to the

metric d .

The proof proceeds in four steps. The first step defines auxiliary
functions and studies their properties. The second step establishes the
identification of h*. The third step shows that the rank correlation function
converges almost surely uniformly over W to its expectation. And finally, the
fourth step employs the first three steps to establish the conclusion of the

theorem.

STEP 1 (definitions and properties of random variables):

For any heW and 4§ > 0 , define

rij(h) = lly; > lel[h(xi) > h(xj)] + 1y, < lelih(xi) < h(xj)] '
r(h) = EErij(h)] ,

s.. (h, §) =

i SUP,/eB(h . §) ( rij(h') - x(h') ),

§ij (h, 6§) = infh'eB(h,E) ( rij(h') - r(h') ),

s(th, §) = E sij ¢(h, 6) , and
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!

s¢h, §) = E 843 (h, &)

where B(h,§) = { h' € W | d(h, h') < § }.

Since G and h are monotone increasing, ¥s is measurable in (xi, pi)

and therefore, since h 1is measurable,

(l.a.1) rij(h) is measurable.
By its definition,

(l.a.2) rij(h) is uniformly bounded over (i,j) and h .
We mext show that

(l.a.3) rij(h) is continucus on W a.s.

Let {hk} be a sequence in W and h be an element in W such that d(
hk' h) - 0 . Since by Assumption A8 the functions in W are continucus and
monotone, convergence with respect to d implies pointwise convergence (see,
for example, Matzkin (1988a, Lemma 0)). It then follows that if =x, %' € X and
h(x) > h{(x'), for large enough k, hk(x) > hk(x’) . Thus, rij(-) is
continucus at h if (xi,xj) is such that h(xi) > h(xj) or h(xi) < h(xj).
From this it follows that

{ (xi, xj) | rij(-) is not continuous at h }
c (%, xj) | h(x;) = h(xj) ).
By the continuity and homogeneity of degree one of any function h in W , the

latter set has Lebesgue measure zero. Hence, since by Assumption A4 Px is

absolutely continuous, and by Assumption A3 X, is independent of =x, , Pr {

(xi, xj) | rij(-) is not continuous at h }
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< Pr{ (xg, xj) | h(x,) = h(xj) ) = 0 .
This completes the proof of (1.a.3).

Next, we note that by (l1.a2.1) and (l.a.2)
(1.b.1) r(h) exists and it is finite;
by (1.a.2),
(1.b.2) r(h) is uniformly bounded over h;
and by (1.a.2), (1.a.3), (1.b.1), and Lebesgue Dominated Convergence Theorem,

(1.b.3) r(h) is continuous in h .

To study the properties of Eij and §ij , we note that by Lemma 1, W 1is
compact with respect to d, and by Lemma 0 in Matzkin (1988a) and Assumption A8,
convergence in W with respect to d implies pointwise convergence. Hence, by

(l.a.1), (1.a.3), and (1.b.3) it follows that

(l.c.1) for 211 § > 0 and h € W, sij(h’ 5) and gij(h, §) are
measurable.

By the definition of Eij and §ij , (1.2.2), and (1.b.2), it follows that

(l1.c.2) for all § > 0, Eij(h, §) and gij(h, §) are uniformly bounded

over all (i,j) and h.
By (1.a.3) and (1.b.3)

(1.¢.3) lim , 4 Eij(h, §) = ( rij(h) - r(th) ) a.s. and

lim g, 8,08, 6) = (r; () - xh) ) &

n

By (l1.¢.1) and (l.c.2},

(1.d.1) for all 6§ >0 and heW , s(h, § and s(h, §) are finite,
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and by (1.¢.2), (l.c.3), and Lebesgue Dominated Convergence Theorem,

(1.d.2) lim ;o 5(h, 6) =0 and lim . . s(h, §) = 0.

This concludes Step 1.

*
STEP 2 (Identification): h uniquely maximizes r{(h) over W .

First we show that

(2.a) ¥ X, xj € X,

* * - »
h (xi) < h (xj) implies thﬁfz Pi (yj >y )ETE Pi (yj <y)

* *
To show this, we note that since h (xi) < h (xj) and by Assumption A7 G
is monotone, for all we U ,
* *
GUh (x), 1) = G h (x;), m)
Since by Assumption A2 By is independent of Xy and by Assumption Al Bs and

are i.i1.d., it then follows that for all real t

M

Prp|x (yi =t) =z Pr < (yj = t).

sl
*
Moreover, by Assumption A6 , there exists ¢ such that

*

*
Prp|x (yi =t) > Pr =t ).

plx ;s

It then follows that, since by Assumption Al By and pj are independent,

P >y,
ulx T4 < Byl

(yi < yj)

This concludes the proof of (2.a).

Second, we note that by the definition of rij and (2.a) it follows that
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(2.b) if heW and X, XJ € X are such that h*(xi) - h*(xj) = (0 , then

* .
(2.b.1) E&l£ [ rij(h ) - rij(h) ] =z 0 if

* *
(h(x;) h(Xj)) (b (x;) - & (xj)) =20 , and
* -
(2.b.2) EEIE { rij(h ) - rij(h) ] > 0 if

(h(x;)

h(x)) 1" (x,) - h*(xj)) <o,

where E&IX denotes the expectation with respect to P&|x

Third, we show that

*
(2.¢) if heW and h » h , then there exists a subset Xi X Xj of X x X
of positive probability and such that for all (xi, xj) € Xi x Xj,

* *
( h(xi) - h(Xj) J (h (xi) - h (Xj) ) <0 .

*
Since h # h*, there exists x € X such that h(x) » h (x) . Assume
*
without loss of generality that h{(x) < h (x). Since by Assumptions A8 and A9
* * &
h(x ) = h (x ) and both functions are homogeneous of degree one, it follows
*
from the definition of X that there exists v € R such that h{x) < h(y x )
* * % * % *
~yh(x)=vyh (x)=h(yx)<h(x)
*
Since by Assumptions A8 and A9 both h and h are continuous and by
Assumption A8 X 1is open, there exists a neighborhood Xi of x and a
*
neighborhood Xj of yx such that for all X € Xi and xj € Xj
* %
h(xi) < h(xj) and h (xi) >h (xj) . Hence,
* *

(h(x,) - h(xj)) (h (x;) - h (Xj)) <0.

Since by Assumptions A4 and A5 Px is absolutely continuous and its support is

the closure of X, and by Assumption A3 X, is independent of xj, it follows
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that Pr (X, x X,) > 0.
1 ]

This concludes the proof of (2.c).

Fourth, we note again that
(2.d) for all heVW, Pr{ (xi, xj) | h(xi) - h(Xj) I =0.

This has been shown in the proof of (l.a.3) in Step 1.

Fifth, we employ (2.a) - (2.d) to show that

*
(2.e) h uniquely maximizes r(h) over W .

Suppose that h e W and h = h*.
n h
Let A= (x4, %) | (xp) =h(xy) ),
*
B =t (x, Xj) | (h(x;) - h(xj)) (h*(xi) - h (Xj)) <01}, and
c=a°\B,

where \ denotes set subtraction.

By (2.b),
* -
E&|§ { rij(h ) - rij(h) ] > 0 if (xi, xj) € B and
*
EE|§ [ rij(h ) - rij(h) ] = 0 if (xi, xj) e C .
Moreover, the probability measure of B is positive by (2.¢) and the

probability measure of A is zero by (2.d). Since X x X =AU BuyUZC, it follows
then by the definition of 1r(-) that
*)
[ r(h 7 - r(h) ]
E h" h
[ rij ) - rij( ) ]
*
- E& E£|§ [ rij(h ) - rij(h) ]
> 0.

This concludes the proof of (2.e) and of Step 2.
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STEP 3 (uniform convergence): SN(h) converges a.s. uniformly to r(h).

This proof follows standard arguments (e.g. Han (1987), Andrews (1987)).
Let & >0 and 15 > 0 be given. By (1.4.2) for each h € W there exists

§(h) > 0 such that

(3.2) | s(h, §(h) ) | < g2 and | s(h, 6(h) ) | < /2 .
Clearly, Wc¢ UheW B(h,6§(h)). Then, since by Lemma 1 W is compact, there
: L
exist hl’ e hL such that W cC U£=1 B(hf,G(hﬂ)) . For each £ , let 6(h£)

be denoted by 61. Then

L
(3.b) Wy, B(h,b,).

let ' = g / (2L)y. By (l.c.l), (1.d.1), and the Strong Law of Large
Numbers for U-statistics (Serfling (1980)), there exists N such that for each

£,

-1
m - ,
(3.c.1) Prob { l [2] zpsij(hﬂ'sﬂ) - s(h£,6£)l > ¢/2 for some m =z N } <5

and

-1
m [
(3.¢.2) Prob { ‘ [2] Epéij(hl'sﬂ) - s(h£,8£)| > e¢/2 for some m = N } <n',

and g, (lL.c.l), (3.a),

Employing the definitions of SN(-), Eij
(3.b), and (3.¢.1)-(3.c.2), it follows that
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Prob { sup ] Sm(h) - r{h) | > ¢ for some m= N }
hew

Prob { sup, { Sm(h) - r(h) ) > ¢ for some m = N }

+ Prob { inf

hew ( Sm(h) - r(h) ) < -¢ for some m = N }

L

' _ t
£§1 Prob { Suph'eB(hﬂ,Sﬂ) { Sm(h h] r(h') ) > ¢ for some m 2 N }

L

+ £El Prob { 1nfh’EB(h£,6£) ( Sm(h y - r(h') ) < -¢ for some m = N }

L
m

-1
Yy '
231 Prob { suPh’eB(h£,6£) [ [2] i rij(h y—r(h') ] > ¢ for some m= N }

~1
mj = rij(h')—r(h‘) ] < -¢ for some m = N }

L
+ 2 Prob { inf
=1 P

h'eB(h,,5 ) [ [2

L ~ =1
m rYy_ [l
£E1 Prob { [2, § Suph'eB(hz,Sﬂ) (rij(h y=r(h'}) > ¢ for some m=z N }

L (m -1
+ X Prob { ] Z int
p

h'eB(h,,6 ) (rij(h')—r(h')) < -¢ for some m = N }

L -1
m —
= 21 Prob { [2] b Sij(hﬂ' 62) > ¢ for some mz= N }

62) < -¢& for some m = N }

r 1_1
Prob { £s..(h,, 6,) - E(hﬂ,sﬁ) > ¢/2 for some m = N }
P
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L o -1
+ % Prob { [ ] Zzs,.(h )

- §(h£,8 ) < -¢/2 for some m = N }
2=1 £

<(21L)n’

Hence,

Prob { sup [ Sm(h) — r(h) | > ¢ for some m= N } = 0.

hew

This concludes Step 3.

~ *
STEP 4 {(consistency): lim d( hN’ h) = 0 a.s.

N-
This is also proved by standard arguments (e.g. Amemiya (1985)). For each
n >0 let B(np) —W \ B(h', n) ( where B(h',n) = { heW | d(h™, h) <n }).
Since by Lemma 1 W is compact , E(n) is compact; therefore, since by
(1.b.3) in Step 1 r 1is continuous in h , there exists hin) € B(y) such that
for all h € B(y) , r(h(n)) = r(h).
let ¢(n) = r(h*) - r(h(n)) . Since by Step 2 r(+) is uniquely maximized
at h* and by the definition of B(n) h* & B(n) , ¢(n) > 0. Since by Step
3 SN(-) converges a.s. to r , uniformly in h , there exists N{%) such
that for all N > N(n)  sup | Sy(h) - r(h) | < ¢(n)/2 a.s.  BHence, QN €

*
B(h ,4) a.s. . Since n was arbitrary, this proves that
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dq ﬁN Yy » 0 a.s.

This concludes Step 4 and the proof of Theorem 1,

6. CONCLUSION

We have presented a nonparametric distribution-free estimator for the

- * s - = a
function h  of exogenous variables =x in the generalized regression model Yy

*

= G( h (xi), pi) , where G is a monotone-increasing nonconstant function, pu is
an unobservable random term distributed independently of x , ¥ is K-dimensional
. K *
random vector that attains values in the set X ={( xe€R | x>0}, and h
is a nonparametric function on X that is monotone increasing, concave,

* %
homogenous of degree one, and satisfies h (x ) = a

The estimator is obtained by maximizing a rank correlation function over
the set of functions h: X - R that are monotone increasing, concave,
homogenous of degree one, and satisfy h(x*) -, We have discussed a two-
step procedure to calculate the estimator, which has been shown to be strongly

consistent under the set of Assumptions Al - A9 specified in Section 5.
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