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ABSTRACT

We recast the capital asset pricing model (CAPM) in the broader context
of general equilibrium with incomplete markets (GEI). In this setting we
give proofs of three properties of CAPM equilibria: they are efficient,
asset prices lie on a *security market line," and all agents hold the same
two mutual funds. The first property requires a riskless asset, the latrer
two do not.

We show that across all GEI only one of these three properties of
equilibrium is generally valid: asset prices depend on covariances, not
variances.

We extend CAPM to many cansumption goods in such a way thac all three
properties hold. But now the definition of a riskless asset depends on

preferences and endowments, and so cannot be specified 2 prieri.



THE CAPITAL ASSET PRICING MODEL AS A

GENERAL EQUILIBRIUM WITH INCOMPLETE MARKETS*

by

John Geanakoplos** and Martin Shubik**

1. INTRODUCTION

This paper is devoted to clarifying the relationships between the CAPM
stock market trading model and general equilibrium with incomplete markets.
CAPM ylelds three important views of financial markets. First, that they
are efficient. Second that asset prices depend not on the variance, but
rather on the covariance of the underlying payoffs with a particular, priv-
ileged portfolio. Third, that all portfolio holders may be perfectly happy
to hold only a few specially designated mutual funds.

By placing CAPM in the broader context of general equilibrium with
incomplete markets (GEI) we find that only the second property, that covari-
ances (and not variances) matter to asset pricing, retains validity. Risk
averse agents diversify, to be sure, but in general they will not be satis-
fied with the same mutual funds. 1In GEI equilibrium there is no arbitrage,
but the final allocations are almost never Pareto optimal. In fact, they
are almost never constrained Pareto optimal.

Although there is no variant of either the efficiency principle or the
mutual fund principle that is precisely true throughout GEI, one may still

wonder if perhaps efficiency is approximately true if CAPM is a "reasonable"”
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description of reality. CAPM assumes a single consumption good in each
state of nature. To regard CAPM as a descriptive model, one must suppose
that in reality relative commodity prices are not much affected by redistri-
butions of income. In that case, GEl equilibria do become constrained
Pareto efficient, but not Pareto efficient.

When there are many goods, what is the meaning of the riskless asset
which is so central to CAPM? Should it promise the same quantity of money
In each state, irrespective of the (different) rates of inflation? Should
it guarantee equivalent purchasing power measured in terms of some specified
basket of goods? How should the basket be chosen? Is there an analogue to
the riskless asset in a multi-commodity world?

We shall show that there is a generalization of CAPM to a multi-
dimensional world (m-CAPM). To each m-CAPM economy, there correspends a
collection of "riskless” assets. If any one of these is marketed, then all
the equilibria will be Pareto optimal. But the rub is that this set of
riskless assets depends on the underlying m-CAPM economy. It cannot be
calculated without knowing the preferences and aggregate endowments of the
economy for each possible state of nature. Without a riskless asset the
equilibria will be far from Pareto optimal.

In the classical one good CAPM model the presence of a riskless asset
. 1s crucial to Paretc optimality. Perhaps the single most obviocus policy
recommendation that can be derived from the model is that the government
should always engineer the creation of the riskless asset if it is not there
already. Yet (at least in the U.S.) for a very long time there has really
been no asset which purported to be riskless, when inflation is taken into

account. For the one good CAPM, that is a puzzle, since there is no ambigu-



ity about what the riskless asset should be. In the multi-dimensional
CAPM, a riskless asset exists, but knowing how te calculate it might be
impossible.

In Part 1 we place the one good CAPM inside GEI. In the presence of a
riskless asset (and quadratic preferences, and other CAPM hypotheses) we
derive the Pareto efficlency of equilibrium, the security market line, and
the mutual fund theorem. We note that efficlency fails when there is no
riskless asset, but that the other two theorems remain valid. 1In Part II we
describe a full-blown multi-commodity GEI model. We note that efficiency
and the mutual fund theorem fail, but that an analogue to the security
market line does hold. We also describe a special multi-good CAPM in which
efficiency holds if there is a riskless asset. But the riskless asset

cannot be described a_prjori, independent of the data of the economy.

2. ECONOMIC PREIIMINARTES

In the past few years there has been a great revival of interest by
economists in the theory of general equilibrium with incomplete markets
(GEI) anticipated by Arrow (1953) and Diamond (1967), and expressed first in
general form by Radner (1972) and Hart (1975). The GEI theory focuses on
the primitive characteristics of the agents and commodities, treating
financial assets as limited devices for transferring wealth across states of
nature, rather than starting with reduced form preferences defined on the
assets themselves., The extra structure preserved by this approach, which is
just beginning to be fully explolted, accounts for the renewed interest in
the subject. In é series of papers, for example, by Cass (1984), Werner

(1985), Duffie (1987), and Geanakoplos-Polemarchakis (1986) existence of



equilibrium was proved by using the boundedness from below of the consump -
tion sets for models with assets that all deliver in the same numeraire
commodity in each state of nature, such as the quadratic-utility capital
asset priéing model (CAPM) we shall consider below. In reduced form repre-
sentations of CAPM, the existence of equilibrium is not always guaranteed
(see Nielson (1985)).

Perhaps the most interesting general question that can be posed in the
GEI (but net in any reduced form) theory is: how close will equilibrium
allocations, constrained as they are by the limited assets available to the
market, come to achieving Pareto optimality? Although no satisfactory defi-
nition of distance from optimality has been found for this problem, the work
of Hart (1975), Greenwald and Stiglitz (1984), and Geanakoplos-Polemarchakis
(1986) shows that except for extremely rare choices of utility-endowment
characteristics for the agents, any absence of potential insurance contracts
will prevent equilibria from being fully Pareto optimal; in fact the missing
asset markets will (with rare exceptions) cause equilibrium allocations to
fail to be even "constrained" Pareto optimal.l One purpose of this paper is
to show that the quadratic utility CAPM model, with a riskless asset, is
precisely one of those rare economies for which equilibrium allocations
always attain full optimality (if every agent’s consumption is strictly

positive in every state).

1The. reader can consult those papers for definitions of constrained
Pareto optimal; Geanakoplos-Polemarchakis (1986) proves (except for rare
exceptions) that' when some of the asset markets are missing, the equilibrium
will not even efficiently use the existing assets, when there are at least
two commodities in every state of nature.



The CAPM name has been used to refer to any model in which it is pos-
sible to write for each agent a reduced form utility for asset portfolios
depending only on the means and variances of their payoffs. It is a famous
property of such models that there is a mutual fund theorem and a security
market line theorem. The mutual fund theorem states that all portfolios
held in equilibrium can be expressed as a combination of two portfolics, the
so-called market portfolio and a "zero-beta" portfolio (see Lintner (1965),
Shafpe (1964), and for the case where there is no riskless asset see Black
(1972)). When there is a riskless asset, the zero-beta portfolio can be
taken to be the riskless asset alone. The security market line thecrem as-
serts that in equilibrium there is a linear relationship between the expect-
ed payoffs of assets with price equal 1, and the covariances of their pay-
offs with the market portfolio payoffs. Of course it is impossible to pose
the Pareto optimality question in the reduced form version of the model.

There are two well-known GEI models which give rise to reduced form
mean-variance utilities for assets. In one, the state space is taken to be
infinite, and all assets are assumed to have normally distributed payoffs,
and all commodity endowments are kept at zero. The utilities are arbitrary
von Neumann-Morgenstern, with common probabilities. In the second version,
the utilities must be quadratic von Neumann-Morgenstern with common proba-
bilities, and the endowments of commodities must be zero; but the asset
payoffs can be arbitrary, and the state space'finite. It is well-known that
the normal distribution is specified by its mean and variance, and that the
expectation of a quadratic function depends only on the mean and variance of
the underlying distribution, so both of these versions clearlylgive rise to

reduced form preferences on assets of the mean-variance kind. Either



version may be considered with or without a riskless asset. The point of
Theorem 1 of this paper is that in the quadratic version with a riskless
asset, all i{nterior equilibria are fully Pareto optimal, no matter how few
asset; there are relative to the number of states of nature. By contrast,
in the other 3 GEI variations, equilibria are almost never Pareto optimal
when the asset markets are incomplete. This shows that Pareto optimality is
a property distinct from the mutual fund and security market line proper-.
ties, though closely related. (For prior discussions of Pareto optimality,
see Rubinstein {1974), Mossin (1977), Rothschild (1986).)

In Part I we consider in detail a model in which all consumers have
quadratic von Neumann-Morgenstern utilities with common expectations. The
state space is finite and the asset returns are arbitrary. The consumers
are allowed to have endowments, however, provided that these lie in the span
of the assets. In Theorem 1 we prove that if there 1s a riskless asset, all
interior equilibria are Pareto‘optimal.2 In Theorems 2-3' we derive the
mutual fund and security market line theorems with (2, 3) and without (2’,
3') a riskless asset from a linear algebraic argument that does not appeal
to the mean-variance reduced form representation.

In Part 1I we give a sufficient condition on preferences for all multi-
commodity GEI to be Pareto optimal (Theorem 4). One consequence (see
Corollary) is that even in the one commodity model it is possible to obtain
Pareto optimality with preferences other than quadratic. (For a discussion
of these classes of utilities and their connection to mutual funds, see

Cass-Stiglitz (1970). For an application to efficiency in the one good

2It is interesting that in CAFPM Pareto optimality holds only for inter-
ior equilibria, while in the Arrow-Debreu model interiority has no
conniection with Pareto optimality.



model, see Rubinstein (1974).) We derive a multiple commodity CAPM model
and observe that interior equilibria are Pareto optimal in the presence of a
riskless asset, and we note the difffculty of finding a riskless asset in
practice (Theorem 6). We note that even without the riskless asset, equi-
libria in the multiple commodity CAPM are constrained Pareto optimal
(Theorem 5). Finally, we show that in all GEI equilibria there is a secur-
{ty market line giving prices in terms of covariances with some privileged

asset, but not necessarily with the market (Theorem 7).

3. THE MODEL
let the set of states of nature be denoted by S = (0, 1, ..., S}

Let there be only one good in each state of nature. The consumption set {is

taken to be Ri+1 . FEach asset he&€ H « {1, ..., Hl is characterized by a

h S+l
quasi-concave, monotonic¢ function V R -+ R, and an endowment vector

+
of commodities eh € Ri:l . In addition agents hold assets, described

below.

The set of financial assets is denoted A = {1, ..., A) . Each asset

a € A is represented by a vector r € RS+1 . Sometimes we shall take the

A
first asset, to be the so-called riskless asset 1, which pays one

r,
AN
unit of the commodity in every state of nature. r, - 1=¢(1,1, ..., 1}

Let us denote by the (S+1) x A matrix R the entirety of assets. A port-

folio 4 = (ﬂl, ceey EA) is a holding of each asset, and yields a return
R§ across the S+l states of nature. Each individual h begins with an
endowment Fh - (??, cees 3:) > 0 of asgets.

Equilibrium is defined by a price vector q € R , and asset holdings

8: satisfying:



ze:- T3
heH heH

h
a

(1)
ﬂh - Argaﬁax{vh(eh + Rﬂ)lq-ﬂ = q-?h, and (eh + R8) =2 O)

Notice that first trade takes place in the market for assets, then the
state is realized, the assets pay-off, and finally consumption occurs.3
Since there is only one commodity, there is no need for the markets to re-
open once the state of nature is realized. The definition of equilibrium
requires that all promises are honored (consumption is eh + R§ ). In par-
ticular, agents are allowed to go arbitrarily short, aa <0, in any
asset, provided they ultimately keep their promise (by reducing their con-
sumption by -Oara 7.

Allowing short sales violates the standard boundedness from below con-
dition used to guarantee the existence of equilibrium in Arrow-Debreu
(1954). Nevertheless, as shown for example ;n Geanakoplos-Polemarchakis
(1986), the possibility of short sales of assets does not interfere with
existence of equilibrium, provided that the consumption set is bounded from
below. We call an equilibrium (q, ﬂh; h € H) interior iff eh + R&h > 0
for all heH.

The assets can be variously interpreted. Some may be thought of as

shares in a firm, whose production decision has already been made (perhaps

ra(O) <0 and ra(s) 20 for all s e (1, ..., 8) ). On the other hand

3We have {included the state s = 0 to make it easy to reinterpret the
commodity in state 0 as consumption that occurs simultaneously with the pur-
chase of assets at time 0 provided there is also an asset, say Ty which

satisfies r2 = (1, 0, ..., 0) . Under this interpretation the uncertainty

se{l, ..., S} only affects consumption at time 1.




some may be thought of as permissible contracts. For example, if the ini-

tial shares Fh of the riskless asset r, = 1 are zero for every household

1 1
heH, and if there is another asset r, = (1, 0, ..., 0) with 32 -0
for all h , then trade between assets 1 and 2 can be considered saving and

borrowing between consumption at s = 0 and consumption at all other s .
Notice that the distribution of consumption across the states of
nature, and across individuals, is constrained by the span of the assets.
If A< S, there are lmaginable Iinsurance contracts, 1.e. trades of con-
tingent commodities, that are not feasible with the limited asset markets.
It can easily to shown (see for example Geanakoplos-Polemarchakis (1986))
that for "almost all” choices of utilities Vh and endowments eh , all
the resulting equilibria are Pareto suboptimal (if A < S ). The point of
our first theorem is to show that for the special case of the gquadratic
utility capital asset pricing model.'fuli optimality is nevertheless attain-

ed even when A < 5, if there is a riskless asset,

4, E ASSUMPTIONS

(Al) There is gne commodity in every state of nature.

(A2) The endowments eh € Ri:l satisfy:

eh € sp[rl, T

2 . rA] = gp[R] for all heH , 1l.e.

eh - Rﬁh for some ¢h € RA , and eh + th >0 VYheEH.

Consumers are able to trade any fraction of their own initial

endowments.
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(A3) Quadratic von Neumann-Moxrgenstern Vtilities: For each h € H there is
scme humber =N > 0 and probabilicies ”h >0, z xh ~ 1, such
s s
se8S
that

h 1
Wy = VW Wi ooee, W) = stxs[ws - i“hwi] _

Thus the von Neumann-Morgenstern utility of consumption for agent h

is uh(c) - - %ahc2 .

(A4) Common Expectations: 12 - nz - %, for 211 h, h* €e H, se5§ .
) - =h h
(AS5) Monotonicity: let ¢ = Z ¢ , and let e= X e . Let
heH heH

M=-Ri+e. Then 1 — o ¥ >>0 for all hel .

Note that it is infeasible for consumption to exceed M_ in any state s
and 1 - ahus is the marginal utility of consumption in state s for agent
h , 1if he is consuming Ug .

We have already noted that under hypotheses Al-A5, existence of equi-
1ibrium is guaranteed. We shall shortly show that for any economy satisfy-
ing Al-A5, all its interior equilibria are Pareto optimal if there is a
riskless asset,

An equilibrium (q, 8h; h eH) gives rise to a consumption allocation

P = el 4 rgD , hei, with = X' =M = Rf + e =R( E Fh) + e we

heH heH heH
call the equilibrium Pareto optimal if and only if there is no allocation

(' heH) with £y <M and V" > V() forall heH .
heH
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5. CAPM W RISK SE
In this section we shall assume in addition the presence of a riskless

asset:

(A6) Riskless Asset: r, - 1=(1,1, ..., 1)

At any equilibrium we know from monotonicity that the price of the
riskless asset cannot be zero. Moreover it is evident that the equilibrium
conditions are homogeneous of degree zero in g , hence without loss of

generality we shall suppose that at equilibrium if r, 1is the riskless

1

asset, then q, = 1.

Pareto Cptimalit
Theorem 1l: Let ({(q, Eh; h € H) be an interior equilibrium (eh + R&h >> 0
for all h € BH) for an economy satisfying assumptions Al-A6. Then the equi-

librium allocation xh - eh + Rﬁh , heH , 1s Pareto optimal.

Proof: Let ph € RS+1 be agent h's marginal utility vector at the equi-

librium allocation: “2 -] - ahx: for all s €S, heH, i.e.
ph - 1 - ahxh for all h e H . Since the utilities are concave and differ-
entiable, and since there is agreement on the probabilities LI it is
enough to show that all the ph are colinear.

Observe that on account of monctonlcity, w.l.o.g. q; = 1 . Let ; be

~ A A

the set of assets a for which 9, w 0 .. Then 1 € A . For each a € A ,

let fa - (l/qa)ra be the per dollar return on asset a . Now for any

agent h € H , observe that equilibrium requires that z xSpZ(fa(s) -1
. s€S

= 0 , for otherwise the agent could buy (sell) one unit of the riskless

asset 1 and sell (buy) 1/qa units of asset a . Similarly if a € A/a ,
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so that q, = 0, then for all h, I xsera(s) -0 .
sS€S
Let us now define an inner product for twe vectors x and y in RS+1

by xOy= I XY, - We write x 1y 1iff Z XY - 0 . Using this
ses ~8€5

notation, we have from above that ph 1 (ia - 1) forall heH , Llet
K = sp[[(fa - 1); a€A) VU lr; a € A\A)] , where for any set T of

vectors in Rs+1 . sp[T] denotes the span of T , i.e., the smallest

subset of ns+1 containing T . Then ph 1K, forall heBn,

Observe that since eh € sp[R] and since consumption xh - e‘n + ﬂh

it follows that xh € sp(R] = sp(l, Ty oros rA]
: h_h

recall that ph =1-ax , hence ph € sp[R] for all he H . But

for all heHdH . But

clearly sp[R] = sp{K; 1] . Hence all the ph must lie in the same one-
dimensional subspace in sp({R] perpendicular to K ; 1i.e., they are all

colinear. Q.E.D.

Mutual Fund Theorem 2: Let (g, ﬂh; h € H) be an interior equilibrium for

a CAPM economy with a riskless asset satisfying assumptions Al-a6. Let

xh -y Rﬂh be the equilibrium consumption of agent h , and let
M= I eh + R§ be the market consumption. Then there are scalars Sp and
hed

t for each agent h such that xh - shl + thM . If R has full colum

rank and if e" =0 for all h, then " =5 (1, 0, ..., 0) + £
where § 1is the market portfolio of assets. = = ih - I Bh .
heH hel

.Y

Proof: We have already seen that if ph -.1 - ahxh ., then the ph are all

colinear. Hence the consumption vectors xh - (1/nh){i - uh] all lie in

some two-dimensional space, spanned by i and some vector g , c¢olinear

with all the ph . Since Z xh =M , we have that M € sp{i.p] . Since

M= I xh - I (1/ah)[£ -p Tﬂ- si ~ 5 it follows that if M and i are
heit hel
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colinear, then so are 1 and p , and hence xh - shl for some scalar
Sy for all heH . If 1 and u are not colinear, then
sp[1l,s] = sp[l,M] and we can write xh - shl + thH , for all heH.

If eh - 0 for all h , then xh - Rﬂh and M=R§ . If R has

full column rank, then 8h is the unique peortfolio with xh - Rah . Hence
we must have that in portfolio space, 5h - sh(l, 0, ..., 0) + th? . Q.E.D.
Before proving our next theorem, let us recall the definition of expec-

S+1
tation and covariance between two vectors x and y in R . Ex denotes

A

the expectation of x with respect to the common priors x , Ex =x01

= T axx . cov(x,y)= Z=x (x = Ex)(y_ - Ey) ., and var x = cov(x, x)
s's s''s s
ses sES

Notice that cov(x,y) - Z xs[xsys - xSEy - ysEx + ExEy] = X XY, - ExEy
s€ES s€S
- x 0Oy - ExEy .

Security Market Line Theorem 3: Let (q, Sh; h € H) be an interior equi-

librium for a CAPM economy with a riskless asset satisfying assumptions
Al-a6, taken with normalization 4 - 1., Let 1t : Rs+1 -+ R represent the
payoffs of any potential asset, marketed ( r = Ry for some % ) or not
(r» Ry for all ¢ € RA ). Then there is a unique price q(r) at which
every consumer h will be satisfied to continue to hold exactly Eh , des-
pite the new opportunity of buying or selling short the new asset at price
gq(r) . (Of course if r = R¢ , then q(r) = q+¥ .) Morecver, if

q(r) = 0 , so that f = r/q(r) is well-defined, then again denoting

Me~e+RfI and M = M/q(M) we must have:

(%) Ef - 1 = SVEM gy -1y
var M
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Proof: The existence of the price q(r) follows immediately from the
Pareto optimality theorem. Indeed, letting ph be the marginal utility
vector at equilibrium of any agent h , q(r) = (ph ] r)/(ph O 1) . Since
in any eduilibrium satisfying our hypothesis, ph >0, q(r) 1is well
defined and {ndependent of h , since all the ph are colinear.

Observe that the security market equation (*) defines a linear relation
between Ef and cov(f,ﬁ) for all securities £ with q(£) = 1 . Any

line is determined by any two distinct points on the line. It can trivially

A A ~ ~

be checked that (cov(l,M), El) = (0,1) and (var M, EM) satisfy (*), for

the portfolio payoffs £ =1 and £ = M , respectively. Thus if there is

a linear relationship between cov(£,M) and Ef for all portfolio payoffs

t with q(£) =1, then (*) is the right formula. (If var M = 0 , then

from Pareto optimality we know that for any h , p: is a constant indepen-

h

dent of s , and so (ph O£)/(sp O1) - EE/EL = EE , so * trivially

holds.)

Consider now that 1 = q(£) = (4" 0 #)/(,® 0 1) . Recalling that for

any two vectors X and y , x Oy = cov(x,y) + ExEy , we have

ph Ot = cov(?, ph) + Epth . Finally, recall that for any h we could

find s and th with ph - shl + thM . Hence we have

h

yh Ot = cov(t, shl + thH) + Epth , or

,uh g - cov(f, M) + Eph'r:i- .

Taking ph o1, th and Eph as constants gives us a linear relationship

A

between cov(2,M) and ET . Q.E.D.

Note the necessity of the hypothesis that q(£) = 1 .
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Portfolios that are free (for example buying 1 unit of M and selling
short one unit of the riskless asset 1) have "betas™ and returns lying on

the line through the origin parallel to the security market line.

6. APM WITHO )

There are other versions of mean-risk behavior in which the mutual fund
theorem and the security market line for marketed securities still holds,
but Pareto optimality fails. This shows that Pareto optimality is a separ-
ate, stronger property attaching to the quadratic utility, riskless asset
version of the mean variance model. To make our point we shall prove the
mutual fund theorem and a security market line theorem for marketed assets
in a quadratic-utility CAPM model without a riskless asset, in which opti-

mality need not obtain.

Definition: Let M = e + Rf - R&M be the market payoff. let =z = Rﬂz .

We call Bz a zero-beta portfolio iff cov(z,M) -~ 0O .

Lemma: let r = Rﬂr and M = R§ Then there is a zero-beta portfolio

¥ -

az - Er + ABH , for some A , such that spir,M] = sp{z,M]

Proof: If wvar(M) = 0 , there is nothing to prove. 5o suppose

var(M) > 0 . Let 82 - Er + AGM . Then cov(Rﬂz, M) = cov(Rﬂr, M)

+ dcov(M,M) , s0 choose X = —[cov(Rﬁr, M)/var(M)] . Then cov(z,M) =0
and z and M are linearly independent if r and M are noncolinear.
Hence sp[r,M] = sp{z,M] .

Q.E.D.
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tual Fund Theorem 2°': Let (q, 8h; h € H) be an interior squilibrium for
an economy satisfying assumptions Al-A5, that is, possibly without a risk-
less asset, and let xh - eh + Rﬂh be the final consumption of agent
he€H, and let M = e + R§ be the market portfolio payoff. Then there is
a zero beta portfolio payoff 2z , z = Rez , satisfying cov{z M} -0 ,

such that for all h e H, there are scalars and ch for which

%
xh - shz + thH . Moreover, if R has full column rank and eh = 0 for all

h -
heH, then § = s,q + thﬂ for all h e H .

Proof: Leat ph -1 - ahxh be the marginal utility vector of consumer h .
et A be the set of assets a with q, * 0, and let A\A be the re-
maining assets a’ with Q. - 0 . Noting that M = e + Rf >> 0 , we must

have that q+4, w» O for § solving M = R# let M = M/(q-BM) , and

M M M-
similarly for all a € ; let ia - ra/qa . Then as we saw in the Pareto
optimality proof, at an {nterior equilibrium it must be that ph L (fa - ﬁ)
for all a e ; and ph 1T, for all a € A\; . Letting
R = sp[{(, - ﬁ)la € R) v [ra]a € A\Z}} . LK. But ph € spfx.i.nl
for 811 h e H . Thus the ph all lie in a two-dimensional set. Note the
fact that i might not be in sp[R] costs a dimension in this argument,
and allows for the possibility of Pareto suboptimality.

If 1 € sp[R] , then we have already proved the result (letting
z - i y., 1f i ¢ sp[R] , then we can still deduce that there is a two-
dimensional space V containing all the xh , heH . For If there were 3
linearly independent consumption vectors xh , then the vectors
ph - i - ahxh would vary over at least 3 dimensions, since xh € sp[R] for

all h .

Finally, let V be the (at most) two-dimensional subspace containing
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all the xh . Since M= Z xh , MeV . From the lemma, V is spanned
heH
by M and a zero-beta portfolio payoff =z - Rﬂz . Hence xh -5z ¢ thM
for all heH . If eh =0 and R has full column rank, then xh - Rah .
h -
and 4§ = shﬁz + th8 . Q.E.D.
h

Security Market line 3': Let (q, ¢ ; h € H) be an interior equilibrium
for a CAPM economy satisfying Al-A5, with prices q normalized so that

q-BM = 1 ., Then there is a linear relationship between the covariance of
returns with the market return, and expected return, for assets with unit
price. Precisely, there are scalars Al’ 12, A3 such that for any port-

folio ¥ with qep =1 and t = R$p , X, cov(E,M) + AzEf +2; =0,

1

Furthermore, if there exists a zero-beta portfolio Gz with q-ez -1,

then letting 2 = R#_ this linear relationship takes the form:

cov(L M)

var (M) (EM - E2)

(**) Et - E2 -
Proof: For any portfolic ¥ and any agent h € H, letting r = Ry ,

ph Dr cov(ph, r) EphEr
Y= T T n W
p OM p OM p OM

Restricting attention to ¢ with gqep =1, £ =Ry ,

ph OM=- cov(ph, £) + Ethf

- cov(l - ahxh, £) + Epth

-y cov(xh, £) + Epth .

So (ﬁh a H)/ah - -cov(xh, ) + (Eph/ah)Ei .



1t

Summing over h € H gives

h h
g8 OM _ _ooovex® 2) ¢ EEC g

hel “h heH heH

or ll = -cov(M,L) + AzEt .

Finally, observe that if there is a zero-beta portfolio 8z with
q-ﬂz = 1 , then the above linear relationship must take the form (**) since
any linear relation is determined by two points, namely (var M, EM) ,

{0, EZ) . Q.E.D.

I1. GEN ONS T0 co 0 HON-QU.

In this section we take a broader perspective, allowing for multiple
consumer commodities and therefore trade on spot markets and assets, and
also for nonquadratic utilities. The essential point that emerges here is
that when asset markets are {ncomplete, there is typically a lack of coor-
dination between the desires of consumers and the desires of shareholders.
It is thus not correct to assert that under conditions of informartion sym-
metry, perfect competition, etc., that asset markets are efficient, or
nearly so.

We argue our case in two ways. We quote an argument in Geanakoplos-
Polemarchakis (1986), that shows that generically, when the asset market is
incomplete, the equilibrium trade in assets is inefficient in the strong
sense that all traders could be made better off If they made different asset
trades, even if the subsequent spot markets were allowed to clear at compet-
itive prices, on account of the effect on relative commodity prices when the

spot markets subsequently clear. When there is only one physical commodity
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in each state, the desires of shareholders and consumers are necessarily the
same, and Iindeed it is easy to see that no reallocation of existing assets
can Pareto dominate the competitive allocation.

Second, we consider the case where spot market relative prices are un-
affected by asset trades (the case with identical income effects on con-
sumption). This is the case presumably that is represenced by the parable
of the single commodity, assumed by the models of Sections 2 and 3. Under
this knife-edge hypothesis on income effects, asset reallocations alone
cannot Pareto improve on interior equilibria. If, in addition, attitudes
toward risk are quadratic, one would expect full Pareto optimality to
obtain, as in Theorem 1. But this turns out to be false, unless the assump-
tion of a riskless asset is augmented by a far stronger hypothesis. This
abstraction further clarifies the role of the riskless asset in the one-
commodity world.

We shall begin by describing an equilibrium with multiple commodities
and proving the analogue to Theorem 1 for Pareto optimality in the general
case.

From now on the commodity consumption space Ris+1)(L+l) consists of
L+l physical commodities, (0, 1, ..., L} , in each of (S5+1) states of

nature. Consumers (Wh, eh, 3h) are characterized by utility functioms Wh

that are smooth and strictly concave, and by endowments eh € Rii+1)(L+l) .

and by their holdings Fh of initial assets. It is often the case that a

utilicy function Wh can be extended to a convex set Xh containing

R(S+1) (L+1)

+ while retaining smoothness and strict concavity; the quad-
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ratic utility is an obvious example.a This i{s information which can be

useful, so we shall take wh : Xh -+ R , where Xh s any closed, convex
set, that 1s bounded from below, containing R(s+1)(L+1> . Of course we
shall always restrict consumption to R(s+1)(L+l)

Assets Ea , a€A:{l, ..., A} now yield (L+l) dimensional vec-

tors of commodities in each state, so ?a is given by an (S+1) x (L+l)
matrix. The totality of assets is represented by the collection R . The
notation (Ea)s ., for 4 € RA , Wwill mean the vector commodity payoff that
occurs in state s , given the portfolio § = (81. e GA) . We assume
that asset 1 is not identically 0, and that it pays off a nonnegative amount
in every commodity, and a positive amount of some commodity in each state.
A consequence of this mild assumption is that in equilibrium the price of
asset 1 can be taken to be strictly positive,

Asset prices are denoted, as before, by q € RA . Commodity prices are

(5+1)(L+1)

P € R The product ps(ﬁa)s means the payoff in units of

account i{n state s that {s obtained by selling the commodity vector payeff

(RE)  at prices p = (pp. --vs Pg)

As before, we let § m I Eh , and e = I eh , and
heHd heH

Ms me_+ (RD)S

An interior equilibrium for the above economy is a tuple

(@ p. (6% ™ h e H) satisfying (47, x) e &* x gD o an
heH, S8~ 550w} . Ex - mel e Rt e , and
hel _ hel hel he hen
“We also require that DW(x™) >> 0 for all xP e R(S+l)(L+1) that

satisfy x <M, where M is the aggregate social endowment. It is rnot
necessary to the theory that Wh be monotonic outside the feasible set;

indeed, the quadratic utility is not monotonic for large xb
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(8h, xh) 'S Dh(q,p) - ArgMax{Wh(x)l(a,x) € RA X Xh. qed = q-?h and
(8,%
h = 5
ps(xS - es) < ps(Rﬂ)s for all s € §) , for all he€H,.

An extremely useful construction in the following is the asset com-
strained demand: Dh(plah) = Arg Haxwh(x)lx e X%, pr(x, - e:) < ps(ish)s
for all s € S} . The choice x 2 Dh(pléh) 1ff agent h would choose x
if he was forced to hold the portfolio ﬂh , but could trade freely on the
spot commodity markets at prices p >> 0 . An asset constrained interior
equilibrium is a tuple (p, (Gh, xh); h € H) satisfying all the require-
ments of an equilibrium except that the optimality condition
(ﬂh. xh) € Dh(q,p) is replaced by the weaker requirement xh e Dh(plah)

We shall shortly say more about these.

Finally, let Dh(p) - Uh Dh(p|9h) be the set of all conceivable conm-
modity bundles h might deiand, if he did not have to worry about his bud-
get constraint for assets, but if he could only spread his limitless wealth
across states of nature through ;ssets. Consider for example the case where
there 1s only one commodity per state of nature, and where Xh is all of
RS+1 . Then the prices p are irrelevant, since there is no spot trade.
If the asset span, sp[R] , has full rank S+1 , so that the asset market

5+1

is complete, then Dh(p) is all of R If the number of assets A <

S+1

S+l , then Dh(p) i{s an A-dimensional affine subspace of R {a sub-

space translated by the endowment eh ).

5Notice that we have allowed the choice set for commoditigs in calcu-
lating demand Dh(q.p) to include all of Xh . Since we are restricting

(S+1)(L+1)

attention to demands xh interior to R this makes no differ-

+
ence on account of the concavity of Wh . We have already mentioned the
great importance for Pareto optimality of considering only interior equilib-
ria.
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1. u Q Q0 ) O
HON-QU c AND INCO

For general g g(SHL(L+1) |, let us give:

Definition: For x € xh ., let ph(x) - DUh(x) be the marginal utility of
agent h .6 Given commodity prices p >> 0 , we say that the vector
p >> 0 1s ray p-reachable for agent h 1iff there is some A > 0 and

X € (Dh(p) N interior Xh) with ph(x) - Ay .

Definition: We say that the map ph has the ray property at prices p for
the economy (R, (W, X, e, 7); h € H) 1ff whenever the image u(D"(p))
of Dh(p) under ph contains u >> 0, {A>0]|3x e Dh(p). ph(x) - Ap} 1is
an interval and inf[wh(x)lph(x) -y, A>0, x€ Dh(p)] < Wh(eh) and

sup{Wh(x)th(x) - g, A >0, x€ Dh(p)l > uh(u)

Definition (co-reachable hypothesis): We say that the asset structure R
allows for co-reachable agents at prices p 1ff (1) every map ph has the
ray property at p , and (2) a vector p 1is ray p-reachable by any agent

h iff u 1s ray p-reachable by all agents h'’ € H .

The co-reachable hypothesis means that the images of the Dh(p) under
the maps ph contain the same rays for all agents h € H , and furthermore
that these ray images are large intervals. No matter what the utilities

Wh , 1if #h (Xh) has range including all of 'R(S+1)(L+1)

as may be as-
++ ( Y

sured by the proper boundary conditions), and if the asset markets are com-

plete, then the co-reachable hypothesis is trivially satisfied. There are

6This definition is slightly different from the one given in Section 2,

since here it includes the probability weights L if they are used in the
definition of Wh .
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cases where the hypothesis is satisfied even when the asset market is incom-
plete. For example, under the one good, quadratic von Neumann-Mergenstern
hypothesis of Section 2, ph(x) " i - ax . If Xh is taken to be RS+1
and all the eh € sp[R] , then the sets Dh(p) are ldentical vector
spaces, and the sets ph(Dh(p)) are each identical translations of Dh(p)
by the vector i . 1f i € sp(R] - Dh(p) , then ph(Dh(p)) is a vector
space, hence it includes all multiples s of any vector g that it con-
tains. In particular, suppose that 0 << u = ph(x) - i - X . Then
letting X, - l-(i - Ap) € Dh(p) - sp{R] , we find that for A -+ 0 ,
Wh(xl) - Wh(é; i) » which is the bliss point or maximum achievable utility,
and for A -+« , Uh(xk) - .o < Uh(eh) . Hence the ray property holds, and
¢o-reachability is confirmed.

Note that if for all h &€ H we choose Xh - [x € Rs+l[xi > -A) , for
A > max l/ah » co-reachability could similarly be confirmed, and at the
same :ime we would have Xh bounde& from below. The images ph(Dh(p))
would be ray identical (although perhaps not pointwise identical). 1If
A > l/ah » then it can easily be checked that for any x >> 0 , there is
X € Xh , with ph(x) = iy , for some A >0, and
Wh(x) < Wh(O) < Wh(eh) . The significance of the co-reachability hypothe-
sis, when Xh is bounded from below, is illustrated by the following gen-

eralization of Theorem 1 to many commodities and possibly nonquadratic

utilities.
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Theorem 4: Llet (q, p, (8h. xh); h € H) be an interior equilibrium for the
economy (R, (Wh. xh, eh, 3h); h € H) . Suppose that the co-reachability

hypothesis helds at p . Then the allocation (xh; h € H) 1s fully Pareto

optimal.

Proof: Let u = ph (xh ) for some h' € H . We must show that

2P = APy for all h e H . For this it suffices to find (8%, &) with
P eop|e™ end 4@ - s, for some 23>0, with

Wh(ih) - Wh(xh) , Since it follows at once that then ih - xh . To see

this, note that if h had asset income q-éh » his demand at prices (q,p)

would be (ﬂh, ﬁh) , Since there the first order conditions are satisfied.

But q-oh is either greater, less, or equal to q+f = q-ah . If less,

then from the fact that Uh is monotonic near xh , and from the avail-

ability of the nonnegative asset rl , 1t follows that it would be possible

to make a better choice than (ﬂh, xh) at prices (q,p) , and asset income

q-?h .7 A similar argument shows that q-ah > q-ih would contradict the

optimality of (Bh, ih) . Hence the conclusion that q-?h - q-éh ., and

xh - ih , follows from the strict concavity of Hh .

h
2 []
Wh(x?) < Wh(eh) < Wh(xh) < Wh(xg) and ph(xg) - Alp and ph(xg) -

From the ray property there exists (B?, x?) and (¢ xg) with

2# -
Note that A2 < Al , for by concavity of Wh , Wwe must have that

(Alp)-(xg - x?) > 0 . From the diminishing marginal returns that are a

7The choice (aﬂh + (l—a)ﬂh, axh + (l—a)ih) is strictly preferred to

(Bh. xh) , for 0 <a<1l, and satisfies the state by state budget sets
exactly, while leaving asset income to spare. For a mnear 1, Wh is
monotonic at axh + (1—a)ih , and so spending the extra asset income on ;l

makes Wh higher still.
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consequence of strict concavity, we must have 0 < (Azp)-(xg - x?)

h h
< (Alp)-(x2 - xl) , hence A2 < Al .

Again from the ray property, to each Az = ; < Al , there is (;,i)
with ph(i) - ;p , and X € Dh(pls) . From the last paragraph, we know
that all such X satisfy Wh(i) < Wh(xg) ., and hence q-; < q-ﬂg . But
from the fact that p >> 0, and (q,p) 1is an equilibrium, we know that ¢
does not permit arbitrage, 1.e. there is no # with R§ >0 and q+4 <0.
Since Xh 1s closed and bounded from below, the set of x that satisfy the
budget constraints with asset income less or equal to q-82 , at asset
prices q , 1is compact. A standard argument now shows that there must be
some (;,ﬁ) as above with Wh(i) - Uh(xh)

Note first that uh is a one-to-one function. Take y » z ; by
strictly diminishing returns, u(y)+(y-z) < p(z)}+(y-z) , so u(y) » u(z)
Moreover, the function %

Hence we can write %(A) , for <A<

2 1-

is continuous in A ., If At = A* _  then since the ﬁ(lt) lie in a
compact set, by passing to subsequences we have i(xt) -+ x* and

ph(x*) = A%y . So the function ¢ : {A|A2 < A < 11} -+ R given by
@(A) = Wh(ﬁ(k)) is continuous. The continuous image of a connected set
must be connected, so the image of ¢ must contain Wh(xh) . Q.E.D.

As a first consequence of Theorem 4, let us consider the models of

Section 2, but now extended to allow for a class of nonquadratic utilities:

Corollary: Under assumptions (1), (2), (4),'(5), (6), let

Wh(x) - 3 wsuh(xs) ., where all the uh belong to one of the following
seS
i h 1 b
exclusive classes: (a) u (z) = E(l + ahz) S >0, b<l, b=0,

~(1+ay z)
(b) uh(z) = log(l + ahz) N >0, (o) uh(z) - -2 h N >0 .

Any interior equilibrium for such an economy must be fully Pareto optimal.
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Proof: We need only apply Theorem &4, taking advantage of the fact that each

e RS+1

uh can be extended to xh - {xX lxs - —l/ah + ¢) , where 0 < ¢ .

Consider case (a), where p:(x) - ah(l + ahxs)b_lxs . Note that for any x

c xh , #h - ph(x) , pz - xsm:-l , where m € sp{R] . So for any h' €
H, take x?' - (1/aﬁ)[lm—1] € sp[R] . For A big enough, x?i € Xh' and

h! ' - ! ?
Ry - e /a T as e, W) se . as a0,

) ! + ] r
eventually -(lfaﬁ)l << x? << 0, so Wh (x ) < Uh (ah Y , and the co-
reachability hypothesis is confirmed. A similar argument works for cases

(b) and (c¢). Q.E.D.

2. CONSTRAINED OPTIMALITY
The most important application for us of Theorem 4 is to economies with
many goods, but where the relative prices in each state of nature can be

taken to be independent of the distribution of income. Consider now utili-

ties of the form: Wh(x) = 3 whuh(vh(x , X ., ., X .)) , where
s s " s0 sl sL
h L+l S€S h
v ! R+ -+ R represents "in state” utility, and u : R - R represents

the attitude toward risk of agent h . We shall suppose that the concave

and strictly quasi-concave, monotonic VZ give rise to the same "income

h h L+l
effects.” To be precise, let xs(ps. I) = Arngax{vs(xs)|xs € R+ » P X <
I} be the state s demand of agent h . s
Assumption 1.1: x:(ps, I) 1is a differentiable function at all (ps, I)
for which x:(ps, I) >> 0 . Furthermore, if at (ps, Ih) . x:(ps, Ih) >> 0

for all heH , then [ax'(p,, I")/31] = Z(p) 2 0 , independent of P

and h .

Two examples of utilities satisfying 1.1 are (1) all individuals have
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h h
the same homogeneous utility v, =V, or (2) vs(xso, X 1 - st) - X

+ 3:(x for all he H . In the first case,

sl' 7! st)
Es(ps) - x:(ps, 1)/I , which is independent of I and h , but not of

P - In the second case, zs(ps) - (1,0, ..., 0 (if Peo 1) , vwhich
is independent of h , I, and Ps . It is well-known, after Gorman, that
all distributions of income that allow for strictly positive spot market

—

clearing prices P give rise to the same price vector p. = Pp_ (if

l;sO -1).

For our two examples, these spot market clearing prices Es are easy
to calculate. In (1), Ss ~ Dv(M_)/{3v(M )/3xg5] . In (2) Es is the mar-
ginal utility vector for each consumer at (any) allocation which maximizes
the sum of utilities, given the aggregate endowment HS . Notice that in
both cases Es will depend on s , if the aggregate endowment is not con-
stant.

The consequences of assumption 1.1 can be seen jmmediately for con-

strained optimality.

Theorem 5: Let (R, (Wh ® (uh, vh, zh), eh, Fh) be an economy in which the
(vh. eh, Fh) satisfy assumption 1.1, and suppose that (q, P, (Bh, xh); h €

H) 1s an interior equilibrium. Then the allocation (xh; h € HY |is

constrained Pareto optimal.

Proof: Since all interior asset constrained equilibria (P, (Eh. ﬁh); he

Hy satisfy p - P , it follows that if W& > W) , then
q-ah > q-?h . But then g+« I PP 7% , contradicting I - T
heh heH heH  heH
Q.E.D.
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3. CA v COMMO : v

Assumption 1.1 generalizes the requirement that there is only one phys-
ical commodity per state of nature, at least for the purposes of obtaining
congtrained optimality. A natural conjecture is that if in addition we
carry over assumptions 2-6, including the hypothesis that the & an
belong to one of the same utility classes (quadratic, or exponential, etc.)
given by the corollary to the last theorem, then we might be able to prove
full Pareto optimality for interior equilibria. A moment’s reflection in
the one commodity world, where 1.1 and 1.2 hold trivially, shows however
that even when all the in "state utilities” vh are identical and homo-
thetic, full Pareto optimality cannot be expected. It is clearly necessary
that the "in state” marginal utility of income is constant; otherwise it has
implications for risk aversion, and we know that only special risk averse
behavior can give rise to full optimality. Note, incidentally, that both of
our examples (1) and (2) of aéﬁeptable vh do give rise to constant "in
state™ marginal utility of income. But there is a more interesting problem,
having to do with the meaning of the riskless asset in-a many commodity
world.

When there is only one commodity, in every state, the riskless asset
should provide for delivery of one unit of the good in each state, or 1 unit
of account in every state, if we take the price of the good to be one. But
when there are multiple commodities, with different relative prices across
the states of nature, then what should the viskless asset provide? Should
it identify some significant commodity bundle, and pay off in constant pur-
chasing power relative to this bundle? The right answer is that it should

distribute purchasing power across the various states so that the increase
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in "within state” utility is the same across all states.

Definition: Lec Uh(x) - I nsuh(VZ(xs)) , and suppose that at equilib-
s€S .
rium, consumption is X = (Es; 8§ €5) . A riskless asset r for consumer

h sartisfies Dvi(ﬁz)-rs =1 for each s € 8 .

Assumption 6.1: The collection of assets includes a riskless asset for at

least one agent heH .

Notice that the riskless asset for consumer h cannot be defined
without knowledge of the spot market clearing consumptions ;h {or equiva-
lently, without knowing the spot market clearing prices P ), unless thers
1s only one commodity per state. On the other hand, observe that under the
hypothesis that all the "in state” utilities V' are identical and homogen-
eous, the same asset r is a riskless asset for every consumer. Further-
more, under this homogeneity hypothesis, all initial endowment allocations
(ﬁ, (eh, ?h); h € H) that give rise to the same aggregate endowment M
alsc give rise to the same riskless asset, at every interior equilibrium.

Thus the following theorem is not without content.

Theorem 6: Let (R, (Uh - (uh, vh, wh), eh, ?h); h € H) be an economy in

which all vh = v are identical and homogenecus of degree one.

h for

Furthermore, suppose that assumptions 2 (the span of R includes e
all heH ), 3.1 (that all uh are drawn from one of the same special
classes designated earlier), 4 (the priors xh are common), 5

(momotonicity), and 6.1 (there is a riskless asset for at least one

individual h ). . Then any interior equilibrium is fully Pareto optimal.
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The proof of the above follows immediately from Theorem 4. Let us re-
peat that the above theorem shows that the capital asset pricing model can
be extended to a model with a genuine multiplicity of commodities, if all
consumers have the same homogeneous preferences of degree one within each
state. To achieve full Pareto optimality, only one asset is required,
beyond the initial endowments of all the consumers. By choosing the spot
market price normalizations appropriately, one can of course arrange it so
that this asset pays off commodities with value equal to one in every state.
We have therefore called this the riskless asset, by analogy to the omne
commodity model of the last section (to which it clearly reduces when there
is indeed only one physical commodity). On the other hand, when there are
many commodities the correct price normalization cannot b; predicted in
advance, i.e. it is impossible to know what asset will serve as the riskless
asset without knowing the "in state" preferences and the aggregate
endowment.

Under the conditions of Theorem 6, let us normalize prices

Es - DVS(MS) . Let the money payoffs of each asset r € R(S+1)(L+l) be
e R defined by ?s - Es-rs , §s=0,1, ..., §. If in addition the
uh are quadratic for all h , then one can easily derive the exact

analogues of Theorems 2, 3, 2' and 3’ in this multiple commodity world.
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4, SECUR T LIN
A central relationship in the capital asset pricing model is the secur-
ity market line, which suggests that the return to an asset is linearly and
negatively related to the covariance of the asset return and the market
return, The fact that it is the covariance, and not the variance, which is
important to the pricing of assets is one of the enduring lessons of CAPM.
But this is a lesson which holds much more generally than for the CAPM

model. We shall derive a security market line for any GEI model, provided

p(S+1(1L+1)

that we are permitted to substitute an arbitrary asset g € for

the market asset. In particular, after making this substitution we can

always find a "riskless” asset without making any assumptions about the re-

turn matrix R or the preferences W . Let (R, (wh, Xh. eh, Fh);

h € H) be any multi-commodity general equilibrium model with incomplete

markts. Let (q, p, (ﬂh, xh); h € H) be an interior equilibrium. For each

(5+1)(L+1) S+1

relR let T €R + be defined by Es - ps-rs ,

s=0,1, ..., §.

Theorem 7. Let (R, (Wh, Xh, eh, Fh); h € H) be a multi-commodity GEI.

Let {(q, P, (&h, xh); h € H) be an interior equilibrium. Let =n € Ri:l be

arbitrary, and satisfy I L 1 . Then there is always a renormalization
SES
of prices p that maintains equilibrium, such that with respect to these

~ prices there is =z € sp[R]) with Es - K for all s € §, and there is

5 e RS AY ok that for all r e sp(R] with q(r) =1,

- . Cov (mT) .
(ET-EZ) @« —2%——[Es-EZ) .
n x ad x n
Var_(p)
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Remark. MNote that the security market line holds only for marketed secur-

jities (with price equal 1).

Proof. Choose any h € H . From the separating hyperplane theorem there is

a vector '3h € R(S+1)(L+1) such that for all y € p{SFD 4D

+— +
Wh(y) -3 Uh(xh) , then ﬁhoy b ﬁh-xh . Clearly ﬁ: - Agps , For some

AZ >0, foreach s=0,1, ..., 5§ . -Horeover, there is some X > 0 such

(S+L)(L+1)
B € R++

, if

that for each r € splR) , Aq(r) = ﬁh-r . Let be defined

by & = (l/lxs)ﬁ: . Then for all resp(f] , q(r) = Ex AT =HO T .
sES

Let us observe that without loss of generality we can always renormal-
ize p so that there is r € sp(R] such that P, T, = k for all
s=0,1, ..., S, and x and Tt are linearly independent. Asset T,
satisfies ps-rstl) >0 forall s=0,1, ..., § (recall the definition
of GEI in the beginning of Section II) so that ry will do unless El and
4 are colinear. 1If all assets r € sp[R] with q(r) =1 yield money pay-
offs T colinear with gz , the theorem is vacuously true. If there is
some r € sp[R] , with q(r) >0, and T not colinear with El and 5,

then let z = ar, + (l~a)r , with 0 <a<l. Then q(2) >0, and if «a

is close enocugh to 1, P2 >0 forall s=0,1], ..., 5. Moreover, z
is linearly independent of x and ;1 . So we can renormalize 2z to be
the riskless asset, Thus without loss of generality suppose we have
"z € sp[R] , with Es =k forall s, and g and 2z linearly indepen-
dent. '

If q(r) =1 for r € sp[R] , then 1 =3 a, T - Cov&(ﬂ.?) + E“;E"§ )
Hence there is a (negative) linear relation between Cov“(ﬂ,§) and Eﬂf .

As leng as Varﬂﬁ > 0, the claimed equation must describe this

relationship. Q.E.D.
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