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EXISTENCE OF WALRAS EQUILIBRIUM
WITHOUT A PRICE PLAYER OR GENERALIZED GAME®
by
P. Dubey** and J. Geanakoplos***

1. INTRODUCTION

The paper of Nash ([9]) on the existence of equilibrium points in noncooperative
games was historically critical for Walrasian analysis. In order to prove existence of
Walras equilibrium, Arrow and Debreu ([1], [2]) extended Nash’s model to "generalized
games" and added a fictitious price player (whose payoff was "the value of excess
demand") to the original agents in the economy. Walras Equilibria (W.E.) were then ob-
tained as the Nash Equilibria (N.E.) of a generalized game that included the price player.

But W.E. can be shown to exist without stepping outside the original framework of
Nash. In fact, W.E. are N.E. of a strategic market game introduced by Shapley and
Shubik. No price player is involved nor are generalized games. The model adheres com-
pletely to the standard format laid out by Nash: each player 1< @< n has a compact,
convex strategy—set S and a continuous payoff function u?:slu ... xSPLR , Which
is concave on S%, for every fixed choice of strategies of the other players. To obtain
W.E. as N.E. we do need to replace each player a by a type «, consisting of a con-
tinuum of identical agents. But since we restrict to type—symmetric strategies, all
measure-theoretic technicalities are avoided. By an analysis identical to that of Nash, we

verify the existence of an N.E., and hence of a W.E.
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In the Shapley—Shubik model, money is introduced as a medium of exchange, and a
"trading—post" set up for each commodity in the economy ([15], [16], [17]). Agents (stra-
tegically) send quantities of commodities for sale and/or money for purchase to these posts.
Prices form in a natural manner at each post as the ratio of total money to total quantity
received, and they mediate trade. Thus the posts function independently of each other,
and there is a form of "decentralization" at the level of the market trading mechanism
itself. The money in the model, as was pointed out by Shapley and Shubik, may be one of
the commodities, or paper that is made legal tender; and a variety of rules concerning its
availability are possible, in particular whether it can be borrowed and what the penalty is
for agents who go bankrupt.

This model contains within it a straight proof of existence of W.E. as N.E., but
though the model has been much studied this fact has gone surprisingly unnoticed. For
those variants of the model in which W.E. and N.E. coincide (in the continuum), existence
of N.E. is proved either via generalized games! or else by invoking the known existence of
W.E. ([8], [10], [11]). In the variants which adhere to the Nash framework ([4], [15], [16],
[17]) N.E. exist by Nash’s argument, but they do not coincide with W.E. except under very
special conditions. In this note we show that there is a variant "in between." It is in the
Nash framework and yet its N.E. coincide with W.E. Thus we obtain an existence proof of
W.E., without a price player or generalized games. It seems to us useful, from a pedagog-
ical point—of—view, to describe this direct route from Nash to Walras.

Other models of strategic games of the Bertrand type, which use both prices and
quantities as strategies, have been developed ([5], [7], [14]). They show coincidence of

W.E. and N.E., but rely upon the known existence of W.E. to infer that N.E. also exist.

IThe notion of "generalized game" is not easy to interpret in terms of how the game is to be played.
What happens if the independent choices of the players turn out to be jointly infeasible? One can, of
course, assign an arbitrarily large and negative payoff to each player in this case, so that he prefers any
feasible choice to any infeasible one. At the formal level a game is reinstated, but with ad hoc and
unrealistic "penalties," which have no relation to the "size" of the crime. The payoffs in such a game are
discontinuous and so do not fit into the Nash framework.



The one exception is provided by a paper of Sahi and Yao ([12]), who work with a
model due to Shapley, prove the existence of N.E., and show that N.E. converge to W.E.
under replication of the agents. But the model is an order—of—magnitude more complex
than what we present here. (Also in [12] somewhat stronger conditions are imposed on
utilities.)

The result of our note is embedded in [6], but we thought it useful to extract it on

its own (without all the complications that arise in [6]).

2. THE EXCHANGE ECONOMY

14

+be

Consider an exchange economy with n agents and £ commodities. Let e% € R
the endowment, and u®: lR_ﬁ - R the utility function, of 1< a<n. We assume

T a
(i) Le">>0
a=1

(ii) ea#O for 1< a<n

(iii) u® is continuous, concave and strongly monotonic (i.e. strictly increasing in

each variable) for 1< a<n.

(For relaxations of (iii), see Remark 1.)

Recall that (xl, ..., x®% p), where each x%e |R_ﬁ and pE€ IRl is a Walras

+4
Equilibrium (W .E.) if

1 a 1 o
Yx = Ye,
a=1 a=1

and

L

+,p-y=p-ea} for 1<a<n.

x% = argmax{u%(y) : y € R



3. THE GAMES I

We consider a continuum of traders T = [0,n) , made up of n types T o= [e-1, a),

where €' =e® and u'=u? for teT, . For M>0, let SM={yEIR£:1é[$yj52M

for 1< j<£} . Then Sy is the strategy-set of each t € T in FM . An integrable choice

b: T -8y produces outcomes (xt, ct) € [R_f_ xR forall te T, where xt is the final
bundle of t and c® is his "net credit." The payoff mt to t of (xt, ct) is ut(xt)—ci,

where ¢! = max{0, ct} . Here —' isa "bankruptcy penalty" imposed on t if he owes

+ +
ct > 0 to the "bank" at the end of trade.

It remains to define the strategy—to—outcome map. Denote b(t) by b' and
/4

b b} by B'. We interpret Bt as an "1.O.U." note sent by t to obtain money from
=1
the bank. The supply of bank money in the game I‘M is M, hence an interest rate
ceR, with 1402 % > 0, is formed by the rule (assuming b integrable)
M
+t

/b
The money at hand for t is then T)'t/(l+a) . The amount b;/(1+a) is sent by t for
purchase of commodity j at the jth "trading—post" (1< j<{) . We suppose for

simplicity that all the endowments are up for sale. Thus the price p.j > 0 is given by

t t
]Tbl _ fTbj

(1 + oige) (1 4 o(b))( 3 %)
o=1

(2) (b) =

P;

b

for 1< j<{. Tradeis mediated by these prices, so t winds up with (xt, ct) where

bt

(3) (8) = ey L e i<



£
(4) ct(b) = B* = T p(bet,
j=1 J J
and obtains the payoff
(5) T4(b) = u'(x(b)) — ¢ (b)

A Nash Equilibrium (N.E.) is an integrable b such that, for all t € T and a’e Sy,

nt(b|at) < m(p)

t If, further-

where (b]at) is the same as b , except that b' has been replaced by a
more, bl = bt for t,t’ € Ta and 1< a<n, wesaythat b isatype—symmetric play
and that the N.E. is type—symmetric and denote it by T.S.N.E. In this case b is written
ann @ _oyn . .
as {b"},_; and (xc) as {x7,c"} _, without confusion.
We confine attention to type—symmetric plays b, and deviations to ate SM by a

single player t in the continuum. Thus both b and (b|at) are automatically integrable.

Moreover all measure-theoretic technicalities are avoided.

4. EXISTENCE OF WALRAS EQUILIBRIUM AS NASH EQUILIBRIUM
THEOREM 1: Under assumptions (1), (it), (i1i), ¢ T.S.N.E. ezists for Ty, if M >0.
Moreover as M - o, "limits" of T.S.N.E. outcomes of I‘M exist; and each such limit 1s a

W.E.
The proof of Theorem 1 follows from Claims 1—4 below.
CLAIM 1: A T.S.N.E. exists for FM ,any M>0.

PROOF: This follows from the theorem of Nash. We recall the main steps. Let
b= {b“"}g=1 be a type—symmetric play. Then, for fixed b , the map (blat) - (xt, ct) is
a linear function of a’e Sy since a® cannot affect o or p . Hence Ht(blat)

t

= ut(xt)-c n is continuous and concave for a'e€ Sy - Define Sﬁ(b) CSy by



Sﬁ(b) = argmax{l'[t(b|at) cabe Spp b€ Ta} . (Clearly the definition is invariant of the

choiceof t €T a .) Consider the map

b= {bN2_ — Sp(b) x .. x SH(b)

from (SM)n to subsets of (SM)Il . By Kakutani’s theorem it has a fixed point, which is
easily verified to be a T.S.N.E. o

CLAIM 2: 02> 0 at any T.S.N.E. of I‘M .

PROOF: If o< 0 then c'<0 forall te Ta and some a . Any such t could
purchase more of every commodity without going bankrupt, and by (weak) monotonicity of

utilities his payoff would increase, a contradiction. o

CLAIM 3: Let o(M) be the interest rate produced at some T.S.N.E. of T, . Then
o(M)~0 as M-ow.

PROOF: Suppose o(M)>K >0 for al M along a subsequence of M . Let

{x%M), ca(M)}gI=1 be the T.S.N.E. outcomes. Then c*M) > %—M— for some type «.
KM " ¢

SRS e') < min eﬁ(O) —y1 > €ach t €T ~would have improved by choos-
n r=1 1<f<n @

ing al = (1/M, ..., 1/M) in Syp» @ contradiction. o

If -

Choose a subsequence b(M) of T.S.N.E. of Iyf o M-wo, with outcomes
{x%(M), M) prices p(M) and interest rate o(M) such that x%M)-x%, for

a=1"
1< a¥ d p;() for 1<j<¢
n; a . .
Cagn; and —pl——uqp, for 1¢j¢
2Pk(M)
k=1
CLAIM 4: (x!, ..., x" p) is a W.E.

PROOF: Note that at a T.S.N.E., the net credit ct >0 for each t , therefore,

o
p(M)~xa(M)2% forall M, andall @=1, ..., n. Since o(M)=0 by Claim



n n
3, p-x¥>p-e® for all a . Since ¥ xa(M)z Y e*, we also have that

a=1 a=1
n n
T x%= % e%, and that p-xa=p-ea forall «.
a=1 a=1

We now show that p >> 0, and hence that p-ea>0 forall a=1,...,n.

Suppose for some j and 1, pj(M)/pi(M)—nn. Choose a with x?> 0 (such a must

n n
exist since 3 x%= % e¥>>0 ). By strong monotonicity, ua(y) > ua(xa) , where
a=1 o=1 17

Yk = x{: for ki, and y, = x?-{- ¢ for ¢> 0. By continuity, if 5> 0 is sufficiently

small, u%z)>u%x% , where 2 =y, for k#j, but 2;=¥;= 1. If

o> thereis c< c®(M) and

al e Sy With (z,¢) the outcometo t of (b(M)Iat) , acontradiction. Thus p >> 0.

pj(M)/pi(M) -+ o, then for sufficiently large M and teT

Let ye lR_i and p-y < p-ea . Then since p-ea > 0, there exists z € lRi with
y<<z and p-z<p-e®. But o(M)-0 as M-o; thus, once again, for sufficiently
large M there exists ¢ < 0 and abe Sy such that the outcome of (b(M)| at) toteT,
is (z,¢). So u%z)<u®x%M)) for all sufficiently large M . By continuity of u®,
1%(z) < u%x%) . By weak monotonicity of u%®, u%y) < u¥z) < u¥x% . Since y was
arbitrary, we get (invoking the continuity of u® again) that u®(y)< u®%x%) for all

yE [Ri with p-y < p-e®. This proves Claim 4. o

5. VARIATIONS ON THE THEME

We are done with the existence of W.E. in Theorem 1. But it may be useful to
record some related results.

Theorem 1 does not quite exhibit a game whose N.E. coincide with W.E. (only the
limits, as M -+ o, of N.E. of Ty are W.E.). But if a boundary condition is satisfied by
utilities, then for large but finite M, we get coincidence (Theorem 2). There is also a

variant of the model in which N.E. of Ty, are W.E. (Theorem 3).



THEOREM 2: Suppose, in addition to (i), (ii), (iii), that each (u®, e®) satisfies (iv) (the

n
boundary condition) if ua(y) >u%e?) and y< ﬂE eﬁ , then y>>0, i.e the indif
=1

ference surfaces through the initial endowments do not intersect the boundary of !R_f_ in the
relevant region. Then for some finite M , the T.S.N.E. outcomes of Iy coincide with the
W.E. of the economy.

PROOF: To show that any T.S.N.E. outcome is a W.E., it suffices to show that for any
sequence as in Claim 4, for finite M, o(M) =0 and bg"> 1/M forall a=1,...,1n,
j=1,..,£. Observe that by the boundary condition, the limiting Y>>0 for all

n
a=1,...,n. Since o(M)>0 forall M, I Fa(M)zM-»m, and so pj(M)—»m for
a=1

all j, since as shown in Claim 4, the relative prices are bounded. But then every agent
must be bidding b‘j’(M) > 1/M in order to purchase x?(M) near x(jl > 0. By concavity
and strong monotonicity, there is r sufficiently large such that forany a=1,..., n and
j=1,..., £, and zZ%xa>>0 , if Yk = 2 for k4j, and yj=zj—e%, then
u¥y) > u¥(z) — ¢ for all sufficiently small ¢. If o(M)> 0, then some agent a is
going bankrupt ¢*(M) >0 . Such an agent could always bid e < ¢*(M) less on some

A . . i 155 . . .
commodity j, getting y.(M)=x¥M)—e . , yk(M) = xk(M) if k#j, saving ¢
J J PJ(M)

of bankruptcy penalty. For large M, p j(M) > r, and this contradicts the optimality of

the outcome (x*(M), c¥(M)) to players of type a.

{
Conversely, let (xl, ..., X%, p) bea W.E. with 3 p;= 1. Then from the con-
=19

cavity of ¥ , and the Kuhn—Tucker conditions, for each a there is a smallest 29> 0

such that u%x)—A%-(x —x% < ua(xa) for all xe IR_f_ . Since the set of W.E. is

compact, with prices bounded away from 0,, there is some A bigger than any of the 2%

n {
arising from a W.E. Choose M so large that M> X I % e% . Given the W.E.
o=1j=1
n
(xl, ey X0 p) , choose q = pp for some scalar x>0 so that q- % e¥=M. Let

a=1



b?:pjx?, forall a=1,...,n, j=1,...,¢. Since by construction, x> X > A%,

{
q> 2% andso u%x)— % qj[xj —x?]+ <u*x%, no agent will want to go bankrupt,
j=1

or play differently. o

By choosing a variant of the game TI'y, we can establish the coincidence of W.E.
and T.S.N.E. without the boundary condition. Consider the game Ty (¢) defined exactly
as T)r, except that the common strategy set is now Ty (e)={ye IR_ﬁle < ¥; <2M,
j=1,..., 8, for €20. If e=0, we must also specify the strategy to outcome map
in case o =-1, or some ;= 0 . We do so by defining division by zero to be zero
wherever it occurs. The game T')/(0) is now well—defined, though not continuous. Define
an active TSN.E. of Ty,(0) to be a T.S.N.E. at which o> -1 and P> 0 for all
j=1,...,L.

LEMMA: Fiz any M > 0. Under hypotheses (1), (i1), (4i), any imit b of T.S.N.E.
strategies b(e) for the games PM(e) as €-0 isan active T.S.N.E. of I"M(O) :

PROOF: This follows from the fact that the prices p(e) resulting from b(e) in Tyy(e)

always satisfy p(e)-2 =M . By the argument from Claim 4, we cannot have
h

pj(e)/pi(e)—am, hence limp(e)-p>>0. o
e+0

THEOREM 3: Under conditions (i), (i), (it1), for all M sufficiently large, the active
T.S.N.E. outcomes ofl"M(O) are identical to the W.E.

PROOF: The proof is along the same lines as Theorem 2. o

REMARK: We can replace the strong monotonicity in hypothesis (iii) by (iii)(a) weak
monotonicity, (iii)(b) irreducibility.? Assuming weak monotonicity, the only place strong
monotonicity played a role was to insure that p-e®*>0 forall a=1,...,n. With only

weak monotonicity Claims 14 show that there exists a "quasi—equilibrium" (see [3]). But

2For a definition see [3].



10

it is well-known that irreducibility guarantees that all quasi-equilibria are genuine
equilibria.
To weaken (iii) further, suppose now that the u® are only quasi—concave. The

only place concavity was used in the proof of Theorem 1 was in Claim 1, to establish the
’ a

4
used in [13], a (pure strategy) N.E. still exists, just from the continuity of u%(x)—c

concavity of the payoff function u®(x) —c However, by an extension of the arguments

a
4
Passing to limits as in Theorem 1 yields an N.E. allocation x which is a W.E., though x
need not be type symmetric. Replace i by f z_lxtdt =x?, foreach teT 2 By quasi-

concavity of utilities, {x"}} ; is also a W.E. allocation.
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