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ABSTRACT

This paper providgs a general framework for proving the /T'-consistency and
asymptotic normality of a wide variety of semiparametric estimators. The results apply in
time series and cross—sectional modelling contexts. The class of estimators comsidered
consists of estimators that cé.n be defined as the solution to a minimization problem based
on a criterion function that may depend on a preliminary infinite dimensional nuisance
parameter estimator. The criterion function need not be differentiable. The method of
proof exploits results concerning the stochastic equicontinuity or weak convergence of
normalized sums of stochastic processes.

This paper also considers tests of nonlinear parametric restrictions in semiparamet-
ric econometric models. To date, only Wald tests of such restrictions have been considered
in the literature. Here, Wald, Lagrange multiplier, and likelihood ratio—like tests statistics
are considered. A general framework is provided for proving that these test statistics have
asymptotic chi—square distributions under the null hypothesis and local alternatives. The
results hold for a wide variety of underlying estimation techniques and in a wide variety of

model scenarios.
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Keywords: Asymptotic normality, empirical process, infinite dimensional nuisance
parameter, Lagrange multiplier test, likelihood ratio—like test, nonparametric estimation,
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1. INTRODUCTION

Semiparametric models and estimation procedures have become increasingly popular
in econometrics in recent years. A large number of semiparametric estimators have been
introduced and many have been shown to be yT—consistent and asymptotically normal.
The proofs of such results are given in the literature on a case by case basis. No general
results are available. The purpose of this paper is to provide a general framework for
establishing the yT—consistency and asymptotic normality of a wide class of semipara-
metric estimators for time series, cross—section, and panel data models.

A consequence of the recent development of estimation results for semiparametric .
models is an increase in the need for tests of parametric restrictions in such models. To
date, only Wald tests of such restrictions have been considered in the literature (e.g., see
Robinson (1989)). A second purpose of this paper is to provide a general framework for
establishing the asymptotic chi-square distributions of Wald (W), Lagrange multiplier
(LM), and likelihood ratio—like (LR) tests of nonlinear parametric restrictions in a wide
variety of different semiparametric models.

The estimators considered in this paper are called MINPIN estimators. They are
estimators that MINimize a criterion function that may depend on a Preliminary Infinite
dimensional Nuisance parameter estimator. The criterion function need not be different-
iable. As it happens, many of the semiparametric (and parametric) estimators in the liter-
ature are MINPIN estimators. Examples are given below.

The test statistics considered in this paper are W, LM, and LR statistics that are
based on MINPIN estimators and MINPIN criterion functions. In consequence, all three
tests apply in a wide variety of different underlying estimation contexts. In particular, the
"LR" test applies in non—maximum likelihood scenarios. The testing results, like the esti-

mation results, apply in time series, cross—section, and panel data scenarios. An atiractive



feature of the testing results is that few assumptions are needed beyond those used to
obtain asymptotic normality of the underlying MINPIN estimators.

'1.‘he method of proof used here employs a condition called stochastic equicontinuity.
This condition can be verified directly or by establishing a central limit theorem (CLT) for
the normalized sums of stochastic processes, such as empirical processes. An important
feature of the method used is its generality. The same method can be used with a wide
variety of estimators in different semiparametric models. The same method can be applied
with independent identically distributed (iid), independent non—identically distributed
(inid), and dependent non—identically distributed (dnid) random variables (rv’s). Thus,
the method used here can be utilized for attacking new semiparametric estimation and test-
ing problems and for extending the domain for applicability of existing results, e.g., to dnid
scenarios.2

A second feature of the method used is that the assumptions on the infinite dimen-
sional nuisance parameter estimator and on the random criterion function are separated.
There is no need to use sample splitting procedures or to introduce complicated arguments
to circumvent the problem caused by the dependence between the nuisance parameter esti-
mator and the criterion function. In consequence, the results given below are flexible
regarding the choice of estimator of the infinite dimensional nuisance parameter. In
contrast, most results in the econometrics literature specify a particular estimator for the
nuisance parameter even though other estimators are just as suitable.

A third feature of the method used here is the simplicity of the structure of the
proof. Many proofs in the literature are long and complicated. In some cases, the key
steps of the proof are obscured by the details. With the method used here, the key steps
are highlighted and compartmentalized. The results given here, howéver, do not provide a
complete proof of asymptotic normality—they assume, rather than prove, that ar
estimator of an infinite dimensional nuisance parameter has certain properties. In con-

sequence, direct comparisons of the complexity of proofs may be misleading.



A fourth feature of the method used here is the flexibility it affords with respect to
the type of estimator considered. Many results in the semiparametric literature apply only
to one—step estimators because of their technical tractability, among other reasons (e.g.,
see examples (1), (4), (7), and (8) below). The results of this paper apply to one-step ver-
gions of estimators as well as to the pure minimization versions of the estimators. One
consequence of this is that LM and LR tests of parametric restrictions can be constructed
in semiparametric contexts.

On the other hand, a drawback of the method used here is that in some examples it
requires more smoothness conditions on certain underlying unknown functions than are
necessary for y/T—consistency and asymptotic normality of the estimator in question. (The
class of examples for which this is true is characterized below.) For some of these
examples, alternative proofs are available in the literature that do not rely on such smooth-
ness conditions. Examples are given below.

A second drawback of the method used here arises in thoss examples where trim-
ming of nonparametric function estimators is required. In such examples, the method used
here places more restrictions on the form of trimming that can be used than is necessary.
This drawback and the previous one are consequences of the stochastic equicontinuity
results that are currenily available; they are not intrinsic to the method used here. It.is
possible that future developments of stochastic eqtﬁcontiﬁuity results will ameliorate these
drawbacks.

A third drawback of the method used here is that, while the method is quite gen-
eral, it is not applicable to all semiparamétric estimators that are J_T—consistent and
asymptotically normal. Examples are given below. A method for extending the results to
cover some of these examples is mentioned briefly.

The results given in this paper are proved under a set of "high—level" assumptions.
In particular, we take as basic assumptions certain properties, including consistency, of the

infinite dimensional nuisance parameter estimator and the fulfillment of a uniform law of



large numbers (ULLN), a CLT, and a stochastic equicontinuity comdition for certain
random variables and/or stochastic processes. The reasons for adopting such assumptions,
rather than more primitive assumptions, are the following:

First, the highJevel assumptions clarify those features of the infinite dimensional
nuisance parameter estimator that are important for its successful use in the semipar-
ametric estimation procedure.

Second, the high—level assumptions provide for greater flexibility regarding the
choice of the preliminary nuisance parameter estimator than would be obtained otherwise.

Third, the isolation of the role played by the ULLN, CLT, and stochastic equicon-
tinuity condition helps one to understand the scope of the results, and in particular, the
effect of temporal dependence on the results.

Fourth, the flexibility to choose from numerous existing ULLNs, CLTs, and stochas-
tic equicontinuity results yields greater generality and/or simplicity than the alternative of
specifying a single ULLN, CLT, and stochastic equicontinuity result and specifying primi-
tive assumptions under which it holds. The reason is simply that depending upon the
modelling context — time series, cross section, or panel data — and upon the application of
interest, different ULLNs, CLTs, and stochastic equicontinuity results may be the most
suitable for use.

Fifth, the results given here using high—level assumptions can exploit continual
improvements in asymptotic results for infinite dimensional nuisance parameter estimators,
such as nonparametric regression and density estimators, and improvements in ULLNs,
CLTs, and stochastic equicontinuiuty results. Especially for dnid contexts, these improve-
ments are likely to be substantial in the future.

A consequence of the use of high—level assumptions is that the results given here
provide a general framework for proving the asymptotic results rather than a complete
proof of such results. To obtain the latter for a given example of interest, one needs to

specify primitive conditions under which the high—level assumptions are satisfied. For the



ULLN and CLT conditions this is relatively easy, because there are numerous ULLN and
CLT results in the literature that are suitable without alteration. In addition, a sequel to
this paper Andrews (1989a), hereafter referred to as ASEM:II, provides primitive
conditions under which the stochastic equicoatinuity condition holds.

Thus, the remaining "high—level" assumptions that require verification concern the
properties of the infinite dimensional nuisance parameter estimator. For the case of kernel
regression and density estimators, ASEM:II provides results that establish the requisite
properties. Thus, when the infinite dimensional nuisance parameter is estimated using
kernel estimators, the present paper and ASEM:II provide all the ingredients necessary to
establish the consistency and asymptotic normality of MINPIN estimators and the asymp-
totic chi—square distribution of the corresponding W, LM, and LR test statistics. When
the nuisance parameter is estimated by some method other than kernel estimation, a wide
variety of results in the literature on nonparametric regression and density estimation can
be exploited for this purpose. Some references are given below. These results alone, how-
ever, are not always sufficient to complete the proof of asymptotic normality. In many
cases, special tailoring of existing nonparametric results is required to verify the desired
properties of the preliminary infinite dimensional nuisance parameter estimators.

We now specify a number of examples of estimators that fall within the MINPIN
class. Those marked with an asterisk are discussed in the paper.

(1)* Efficient generalized method of moments (GMM) and one—step GMM estimators of
parameters defined by conditional moment restrictions. For the latter, see Newey

(1987, 1990a). Included in this class are weighted least squares (LS) estimators for

linear and nonlinear regression models that adapt to heteroskedasticity of unknown

form, see Carroll (1982), Robinson (1987), and Delgado (1988a,b), and weighted
instrumental variabie estimators for simultaneous equations models.
(2)* Semiparametric LS and weighted LS estimators of partially linear regression models.

For the former, see Robinson (1988), Chamberlain (1986), and Andrews (1991a).



(3)*

4

(5)*

(6)*

(7)*

(8)

(9)

(10)

Semiparametric instrumental variable estimators for regression models with unob-
served risk variables, see Pagan and Ullah (1988).

Efficient weighted censored least absolute deviations (WC—LAD) estimators and
one—step versions of them for the censored regression model. For the latter, see
Newey and Powell (1990).

MAD-DUC estimators of index regression models. Included in this class are Klein
and Spady’s (1987) efficient semiparametric estimator of the binary choice model
and Ichimura’s (1985) and Ichimura and Lee’s (1990) LS estimators of single and
multiple index models.

Two—step and three—step estimators of the sample selection model. For the former,
see Powell (1987) and Newey (1988).

Adaptive estimators for regression models with errors of unknown distribution.
Included in this class are pure minimization and one—step estimators of linear and
nonlinear regression models with (i) iid errors, (ii) independent symmetricaily
distributed errors, and (iii) stationary, homoskedastic, r—th order Markov errors.
See Bickel (1982) and Manski (1984) for one-step estimators for the independent
error models.

Pure minimization and one—step adaptive estimators of autoregressive moving aver-
age models with innovations with unknown distribution. For one—step estimators,
see Kreiss (1987).

Profile likelihood estimators for semiparametric models, see Severini and Wong
(1987b) and Lee (1989).

M-estimators with non—differentiable ¢ functions, including Huber (1973) ¢
function regression estimators, Koenker and Bassett’s (1978) regression quantiles,
Ruppert and Carroll’s (1980) trimmed LS regression estimators, Powell’s (1984,
1986a,b, 1990) least absolute deviations (LAD), quantile, and trimmed LS



estimators of censored, monotonic, and truncated regression models, and Bates and

White’s (1988) weighted M—estimators for regression models.

(11) Method of simulated moments estimators, including those of McFadden (1989),
Pakes and Pollard (1989), and Laroque and Salanie (1989).

(12) Parametric estimators that minimize criterion functions that are differentiable and
that may depend on a finite dimensional nuisance parameter estimator, including
the classes of estimators considered by Bierens (1981), Burguete, Gallant, and Souza
(1982), Gallant (1987b), Gallant and White (1988), Andrews and Fair (1988), and
P5tscher and Prucha (1990).

A useful feature of the results given here is that in the common parametric case
described in example (12), the results are comparable to existing results in the econo-
metrics literature (e.g., Andrews and Fair (1988))—the assumptions are no more difficult
to verify.

The results of this paper do not cover most estimators of time series models that
have deterministic or stochastic trends. The results do mnot cover nonparametric
estimators. In special cases, the results cover some finite dimensional sub—vectors of the
seminonparametric estimators considered by Gallant (see Gallant (1987a) and references
therein), but in general Gallant’s seminonparametric estimators are not covered.

In addition, except for the consistency results, the results do not cover Manski’s
(1975, 1985) maximum score estimator, Horowitz’s (1989) smoothed maximum score esti-
mator, or Cosslett’s (1983) semiparametric maximum likelihood estimator of the binary
choice model, Cox’s (1975) partial likelihood estimator of the proportional hazard model,
Han’s (1987) maximum rank correlation estimator of generalized regression models,
Horowitz’s (1988) M-estimator of the censored regression model, or Powell, Stock, and
Stoker’s (1989) or Andrews’ (1991a) estimators of index regression models.

The maximum score estimator is not covered because it does not solve a set of first

order conditions with probability that goes to one as T -w, as is required for the



asymptotic normality results. In fact, this estimator is not y/T—consistent or asymptot-
ically normal, see Kim and Pollard (1990). In consequence, the failure of the method used
in this paper is to be expected. Horowitz’s smoothed maximum score estimator is not
covered, because the sample average of summands that comprise the first order conditions
for this estimator is not asymptotically normal with a /T—normalization. This estimator
as well is not «./'I'--«consistent.3

The other estimators listed in the paragraph above are not covered by the results of

this paper because they fail an asymptotic orthogonality condition (Assumption 2(c)

| below) between the finite dimensional and infinite dimensional parameter estimators. This
condition is the most restrictive of the conditions imposed below to obtain asymptotic
normality. It is sufficiently general, however, to cover many estimators, as examples
(1)—(10) above illustrate. In particular, it does mot restrict the results to adaptive
estimators of adaptive models. The orthogonality condition is discussed at length below.

This paper does not discuss semiparametric asymptotic efficiency bounds. The
bounds in some semiparametric models are obvious, e.g., see examples (7) and (8) above.
In other models, such as those of examples (1), (2), (4), (5), and (6), the asymptotic
efficiency bounds are not obvious, but have been determined in the literature. See Begun,
Hall, Huang, and Wellner (1983), Bickel, Klaasen, Ritov, and Wellner (1988), and refer-
ences therein for general results concerning semiparametric asymptotic efficiency bounds.
See Newey (1990b) for a review of such bounds with an emphasis on econometric models.

This paper also does not cover specification tests, except those that are of the W,
LM, or LR type. A treatment of specification tests in semiparametric models is currently
being developed by Whang and Andrews (1990) and will be reported elsewhere.

The remainder of this paper is organized as follows: Section':..> defines the class of
MINPIN estimators and provides consistency results for them. Section 3 gives
JT—consistency and asymptotic normality results. Section 4 introduces consistent covar-

iance matrix estimators for MINPIN estimators. Section 5 introduces the W, LM, and LR



test statistics, presents conditions under which they have chi—-square asymptotic distribu-
tions under the null hypothesis, outlines conditions under which their defining expressions
simplify, and gives local power results for the tests. Examples (1) and (2) above are used
throughout Sections 2—5 to illustrate the results. Section 6 discusses several additional
examples, viz., examples (3)—(7) above. An Appendix contains proofs of the results given
in Sections 2-5.

Throughout the paper all limits are taken as the sample size, T, goes to infinity,
unless specified otherwise. We let "with probability - 1" abbreviate "with probability that

goestooneas T-o." Welet JJA| denote the Euclidean norm of a vector or matrix A,

b
ie, [All= (trace(A’A))ll 2 | For notational simplicity, we let 2: denote X and
t=a

E|X}® denote E(||X|?).
2. CONSISTENCY

In this section we define the MINPIN class of estimators and give sufficient condi-
tions for their consistency. We also introduce two examples that are used throughout the
paper to illustrate the results given and discuss sufficient conditions for consistency in these

examples.

2.1. Definition of MINPIN Estimators
The data are given by a triangular array of random veciors (rv's) {WTt} = {Wr, :
=1,..., T; T2 1} defined on some probability space (0,B,P) . The observed sample is
{WTt :t=1,..., T} . In the standard case where th does not depend on T , we
write it as W, . MINPIN estimators are defined as follows:

DEFINITION: A sequence of MINPIN estimators {8} = {3 : T2 1} is any sequence of
rv’s such that

(2.1) d(m(6,7), 7) = 10161 é d(mp(6,7), %)
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with probability - 1, where mp.(4,7) = 1vTm (6,7), m(f7) denotes mm (W, 8, 7),
T T1 t T " Tt

k¢
mTt(""') is a function from R

x@x7T to RY, kp, i a positive integer (o, 7
is a random element of 7 with probability - 1, % is a random element of ' (and # and
7 depend on T in general), ©, 7, and T' are pseudo—metric spaces, and d(-,-) is a

non—random, real—valued function (which does not depend on T ).4

Throughout this paper, all functions that are introduced (such as &, #, #,
mr,(-,+,+) , and d(-,-) ) are assumed to be B/Borel or Borel/Borel measurable. The
only exceptions are the stochastic processes vp(-) and vT(-,-) defined below, which
need not be measurable. Thus, we assume away measurability problems except in those
circumstances where measurability may be of real concern.

Note that 7 and ¥ are preliminary, possibly infinite dimensional, estimators used
in the definition of &. In almost all examples, however, either no preliminary estimator #
appeats or it is finite dimensional. For the asymptotic normality and testing results given
below, © is taken to be a subset of RP . This structure is not needed, however, for the

consistency results of this section.

2.2. GMM/CMR and WLS/PLR Ezamples

We now discuss two estimators in terms of the above definition of MINPIN esti-
mators. Other examples are given in Section 6 below. The estimators that we discuss here
are 2 GMM estimator of parameters defined by conditional moment restrictions (CMR)
and a weighted least squares (WLS) estimator of the partially linear regression (PLR)
model. These estimators are chosen for several reasons. First, consistency and asymptotic
normality results are not available in the literature for either of them. Second, they can be
used below to illustrate the two different sets of testing results given in Section 5. Third, |
they illustrate the two different cases that arise regarding a key orthogonality condition

that is used to obtain asymptotic normality.
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For each of the two examples, and in the additional examples given in Section 6
below, we distinguish between "assumptions for which the estimator is designed" and
assumptions that are imposed for the asymptotic results to hold. The former refer to
assumptions that are not necessarily imposed but that motivate the choice of estimator and
sometimes correspond to assumptions under which the estimator is asymptotically efficient.

We consider first the CMR model. Chamberlain (1987a) establishes the semipar-
ametric asymptotic efficiency bound for this model when the observations are iid. Newey
(1987) establishes the agymptotic normality and efficiency ofa “one—step" GMM estimator
of this model for the iid case. Here, we consider the "pure" GMM estimator, which is
designed for independent observations, and consider its behavior for drid observations.

In the CMR model, 80 is defined to be the unique parameter vector that solves the

equations:
(2.2) E(a;(zt, 0)|Xt) =0 as. Vi21

k
for some specified R®-valued function ¥(.,-), where X, eR ® _ The observations
W, = (Z¢, Xi)’ may be dnid. Examples of this model in econometrics are quite numer-
ous, see Chamberlain (1987a) and Newey (1987). One example is the parametric nonlinear

regression model with errors that are heteroskedastic of unknown form:
(2.3) Y, = i(X;, §) + U, E(U;|X,)=0as, and Var(U,|X,) = 0y(X,) as.

for t=1,..., T, for some known function f(-,-) and some unknown function Q(-) .
In this case, Z, =(Y,,X;) and ¢(Z, 0 =Y, - (X, ). Carroll (1982), Robinson
(1987), and Delgado (1988b) consider weighted LS estimators of different versions of this
model with weights given by a preliminary estimator #(X,) = Jf(X,, D)/O(X,) of
ro(X,) = GH(X,. 6,)/00(X,) -

For the CMR model, we define
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ng(xt) = E(#’(Zts 90)’(2": 00)' ‘xt) e R*xR® )

i) a
" AglX,) = E[W,-;b(zt, ao)|xt] €R*«RP,
2.4
ro(X) = Ay(X,) A7 (X,) € RP x RY, and

-1
i

By assumption, the functions 90(-) y 8¢(+), and 7o(+) donot depend on ¢.
We define 2 GMM estimator # as a MINPIN estimator by taking

d(m,7) = m’ ym/2, m(4,7) = (X )¥(Z,, 6) ,
(2.5) . NP « (15T Are va=lx Vicx A1
Hx,) = AX) A7(x,), and 7= [TEIA(Xt)'Q (Xt)A(Xt)] ,
where A(-) and i(-) are estimators of Ay(-) and O(-) respectively.® For example,
Newey (1987) considers nearest meighbor and instrumental variable estimators of Ay(-)
and Qg(-). In the nonlineé.; fégression model of (2.3), AO(Xt) = 'Hng(xt’ By), 1y isas
above or 1s equal to Ip , and the above GMM estimator is the weighted LS estimator.
For the case of iid observations, the GMM estimator attains the semiparametric
efficiency bound for the CMR model (under suitable assumptions). |
In some cases, it is convenient to trim the nonparametric estimator #(x) such that
it equals zero outside a bounded set I* . In this case, Ay(X,) and To(X,) of (2.4) each
need to be multiplied by l(Xt € I*). There are two reasons for trimming. First, trim-
ming can eliminate observations from the computation of # for which the nuisance
parameter estimator 7(X,) is estimated with relatively large error in comparison to the
non—trimmed observations. Second, trimming makes it much simpler to establish the con-
sistency and asymptotic normality of b, because one can obtain uniform consistency of
#(x) for 7(x) over a bounded set I* under suitable conditions, but not over unbounded

sets in gemeral. On the other hand, trimming using a single fixed set &* affects the
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asymptotic distribution of a MINPIN estimator # and usually sacrifices some asymptotic
efficiency.

For simplicity, we do not make trimming explicit in expressions given for mt(a,-,—)
and other quantities in this example or in others below. If trimming is carried ous, then
indicator functions need to be added in the appropriate places.

Next, we consider the PLR model:

(2.6) Y, =Xi0,+8g(Z,)+ U, and E(Utlxt, Z)=0 as.
for t=1,..., T, where the real function g is unknown, Wt = (Yt' X{ Zi, Ut)' is

identically distributed for ¢21, Y, U €R, X,, 6 €RP, and Z¢ Rk“ . Chamber-
lain (1987Db) establishes the semiparametric asymptotic efficiency bound for estimating 00
in this model when the observations are iid and the errors are square integrable. Robinson
(1988), Chamberlain (1986), and Andrews {1991a) establish the asymptotic normality of
different LS estimators of fp for this me4l. These LS estimators are obtained by regress-
ing Y, on X, after Y, and Xt have been purged of their correlation with Z, by
subtracting off nonparametric estimates of their conditional expectations given Z,.

Here we consider a WLS estimator of 00 that is defined analogously to the LS esti-
mator mentioned above, but is designed for the case where the conditional variance of U,
given (Xt, Z,) depends on Z, . To motivate this estimator, we note that the PLR model
with beteroskedasticity of this form is generated by a sample selection model. In partic-
ular, suppose

2.7

(Y Dy Xy, Z,) = (Y,D,, Dy, X, Dy, Z,D,) are observed for t =1, ..., T,

where the real function h(-,-) is unknown, (U,, %, X,,Z,) is identically distributed for
t21, and (U, ) is independent of (X,, Z,) and has unknown distribution. By multi-
plying the first equation of (2.7) by D, , one sees that the sample selection model (2.7)
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generates the PLR model (2.6) with the unknown function g(-) of (2.6) given by
g(v)=v¢,+E(D,0,|Z,=v) and with the eor U, of (26) given by
U, =D,U, ~E(D,U,|Z,) . In this case, the error U, has conditional variance given
(X,,2,) that depends on Z, alone, which motivates the use of 8 WLS estimator with
weights that depend only on Zt .
For the PLR model of (2.6), define
r10(Ze) = B(Y,1Z,) » 7aq(2y) = B(X,|Z,), 739(2,) = E(U?|2,), and

(2.8) .
7o = (10 T30: T30) -

tively. We consider the following semiparametric WLS estimator for the PLR model:

(28) 9= [ET0X, Ay B )X—r5(T)) 135(2,) ST (2 WY (2502,

This estimator can be written as a MINPIN estimator in either of two ways—as an esti-
mator that minimizes a weighted sum of squared residuals or as one that solves the first
order conditions of this minimization problem. Correspondingly, for the consistency results

below, we can take either
2
(2.10) d(m,7) = m and m,(4,7) = (Y, - 1(Z,) — (X, — 7o(Z,))’ 0)"[74(Z,) , or
(211) d(m,7) = m’m/2 and mt(a!'r) = [Yt-rl(thx{' 2(Zt))' a][xt"‘fg(zt)]/ 73(21,) )
whichever makes the assumptions for consistency easier to verify.6 Having obtained consis-
tency, the definition of (2.11) must be used for the asymptotic normality and testing
results given below.
We note that Newey (1989a) also discusses WLS estimators for PLR models. He

does not establish their asymptotic normality, but derives what their asymptotic covari-

ance matrix must be if they are regular and asymptotically normal and if ?-3 and Tgp aTe
allowed to depend on both Zt and Xt .
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2.8. Consistency of MINPIN Estimators

We now return to the general case. In what follows we avoid imposing conditions
that are used just to emsure measurability of # by stating results that hold for any
sequence of rv’s {#} . Such results have content only if such a sequence exists. Clearly,
sequences {#} that satisfy (2.1), but are not necessarily measurable, exist if © is assum-
ed to be compact. Further, we note that one set of sufficient conditioﬁs for the existence of
a measurable sequence {#} is that d(mp(6,7), 7) viewed as a function from Qx© to R
is continuous in # for each w € ) and is measurable for each ixed e B, and © isa
compact subset of some Euclidean space (see Jennrich (1969), Lemma 2).

Let 9/60 denote the set of points @ that arein ©, but are not in 9, -

For consistency of MINPIN estimators we assume the following.

ASSUMPTION 1: (a) There esisis o function m(-,-):®xT+RY such that @p(6,7)

Bm(8,7) uniformly over (8,7)e© « 7.

(b) saug"m(ﬂ,’r) —m(8, 75)l| B0 for some To€T, P(TeT)~1 ,‘ and ¥ B 7o Jor some
€

Y € L.
(c) d(m,v) is uniformly continuous over XK x Ty, where K={meR’:m=m(4,r) for
some €O, 7eT} end T (CT) contains a neighborhood of %

(d) For every neighborhood 6 (C 6) of 6, o é 1/1 é d(m(ﬂ,ro),'yo) > d(m(8y,70):7,) I
0
THEOREM 1.1: Under Assumption 1, every sequence of MINPIN estimators {8} satisfies

o B 6, under P.

The proof of Theorem 1.1 is similar to many other consistency proofs in the literature. It is

given in the Appendix along with the proofs of the other results stated below.
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2.4. Discussion of Assumption 1
We now discuss Assumption 1. The function m(6,7) of Assumption 1(a) usually is
given by | imh 1 Em,(d,r) . Thus, Assumption 1(a) holds if m(4,r) = ! imI3TEm,(6,7)
-0 -“@m .

. . . 1T
exists uniformly over ©x7 (ie, sup " Y1Em. (6,7) — m(0,7 "-40 and
Ge, o froiEm(an -men]-0)

{mt(ﬂ,'r) :t<T,T>1} satisfies a uniform weak law of large numbers (WLLN) over
OxT (ie, sup || 15T(m (8,7) ~ Em (a,r))" R0). The latter can be verified using
%O, 7eT T 1 ¢

stochastic equicontinuity results, such as those given in ASEM:II. Alternatively, it can be
verified using the generic uniform WLLN results of Andrews (1987b, 1989b), Pdtscher and
Prucha (1989), or Newey (1989b) combined with a pointwise WLLN, such as that of
Andrews (1988) or McLeish (1975a) for dnid rv’s. As a third alternative, it can be verified
using empirical process or Banach space WLLN resuits, such as those of Pollard (1984,
Theorems I1.2, I1.24, and I1.25).

The first part of ASsumption 1(b} specifies the manner in which 7 musi converge
to 7. The condition shows that 7 must estimate 7, well only in so far as m(4,7) esti-
mates m(#6, 1'0) well uniformly over ¢ © for large T. When 7o 18 a function, the
latter usually requires 1 consistency of 7(-) for 7(-) forsome 1< Q< w, eg, see
the discussion below of the CMR and PLR examples.

H 7 is a nonparametric regression or density estimator, then consistency results in
1_;he literature for such estimators and/or their proofs can be exploited when verifying the
first part of Assumption 1(b). There are numerous LQ and uniform consistency results
available for a variety of different nonparametric estimators for temporally independent
and dependent scenarios. For example, for results and references concerning nonparametric
regression estimation via (i) kernel, (ii) series, (iii) nearest neighbor, (iv) sieve, (v) locally
weighted polynomial regression, and (vi) splines, see (i) ASEM:II, Devroye and Wagner
(1980}, Prakasa Rao (1983), Bierens (1987), and Gydrfi, Hirdle, Sarda, and Vieu (1989),
(ii) Cox (1988) and Andrews (1991a), (iii) Stone (1977), (iv) Grenander (1981), Severini
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and Wong (1987a), and Wooldridge and White (1990), (v) Stone (1982), and (vi) Eubank
(1988) and Wahba (1890) respectively. For results and references concerning nonparamet-
ric density estimators, see ASEM:II, Devroye and Gyorfi (1985), and Silverman (1986).

Note that in many cases the establishment of the first part of Assumption 1(b)
involves an additional step that is not treated in the literature concerning consistent non-
parametric estimation (although it is treated in ASEM:II for kernel estimators). This
additional step arises when the preliminary estimator 7 is based on estimated variables
rather than the true variables themselves. For example, for the GMM estimator of the
CMR model, one cannot regress the elements of ¥(Z,, ﬂo)ﬁzt, 00)' on X, to estimate
no(xt) , since 6 is unknown. Rather, one has to regress 111(Zt, )L, %) on X,
where #* is some preliminary consistent estimator of 00 . In such cases, one has to show
that the error introduced by using ¢* rather than 6, is op(l) . This can be done
directly on a case by case basis, or by using the results of ASEM:II when kernel estimators
are employed, or by using a discretization/contiguity argument as in Bickel (1982, p.r 657).
(The latter method is also discussed in Manski (1984, pp. 173—178).)

The second part of Assumption 1(b) requires that with probability +1 7 lies in the
set 7 over which @.p(4,7) converges uniformly to m(6,7). There is a tension between
this condition and Assumption 1(a), since the larger is 7 the easier it is to verify this con-
dition, but the more difficult it is to verify Assumption 1(a) and vice versa. If Assumption
1(a) is verified using a smoothness condition on all 7€7, as is the case when 7 is
infinite dimensional and the stochastic equicontinuity results of ASEM:IT are used, then
the second part of Assumption 1(b) requires that 7 satisfies this smoothness condition
with probability - 1. See the discussion of Assumption 2(b) below for further details.
Again, congistency results in the nonparametric literature, including those for derivatives,
can be exploited when verifying such a condition.

The third part of Assumption 1(b) often holds trivially since no estimator 7% arises.

When % does arise, it is almost always finite dimensional.
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In almost all examples, d(m,7) =m, m’m/2, or m’ym/2. In these cases, a suf-

ficient condition for Assumption 1(c) is o a up Tllm(ﬂ,-r)ll < w. The latter condition

H

usually is not overly restrictive.

Assumption 1(d) is the uniqueness/identification assumption that ensures that
{0:T 21} neither converges to a multi—element subset of © nor diverges to " w." This
condition is the same as a uniqueness/identification condition that is often used for non-
linear parametric models. Sufficient conditions for Assumption 1(d) are: © is compact

and d(m(8, ro), 70) is continuous in # on © and is uniquely minimized at By

2.5. Consistency in the GMM]/ CMR Ezample
For the GMM estimator of the CMR model, the following assumption implies
Assumption 1, and hence, is sufficient for consistency of 8:
ASSUMPTION GMM/CMR 1: (a) 1 im LETEA(X,) 0 (X, )¥(Z,,0) and
-“m
lim gELEA(X,) 0 (X,)A(X,) exist uniformly over (,7)= (6, A’} ) e @« 7.
T-o _
(b) {ARX) AN XU, 0 :t21} and {AX) (X )A(X,):t21} satisfy uni-
form WLLNs over (6,7) = (6, A’Q@ ) e ©~7.
1 A \
(©) s30 {7 [IA) - AR =) B0 and  sup g5 [I8x) - (I ap (x) B0
for some 2<rf{w and 2<u<w, where Pt( +) denotes the distribution of )(t and
j IB(x)I"dP(x) denotes suplih(x)]
X€

(d) sup sup E(Z,. 0> <w and supsup EJAL(X,)|* <w for a=max{r/(r-1),

P esp ¢ tupsup 1Ao(X {z/(x-1)
2u/(u-1)} .
() Tc{r:r(x) = A(x)'n_l(x) for some functions A(x) and €(x) such that
8 A (A0) 2 ¢ and TTm TELEIAX )T < C} for some ¢>0 and C<w. In

addition, P(7€7)~1.
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. T - . .
6 Lim TE1BAGX,) 051X, )A4(X,) is nonsingular and

’ -1
[1im 297BA () 05 (X )¥Z,, 0] [Lim FETEAGX,) 5! (X)Ag(X)]

; [1 im RETEA(X,) QGHX)WE,, a)] is bounded away from sero for all f¢ © outside
T-o

any given neighborhood of 6, .

Part (a) of GMM/CMR 1 holds automatically in the case of identically distributed
(Z,, X,) (given parts (d) and (e)). Also, note that the restrictions on 7 given in part (e)
are not necessarily exhaustive. In order to obtain the uniform WLLNs of part (b}, one
imposes additional conditions on 7 which depend on the uniform WLLN to be used. (If
the results of Section 3 below are to be applied to establish the asymptotic normality of #,
then it may be convenient to define 7 from the outset to include restrictions that allow
one to verify a stochastic equicontinuity condition, Assumption 2(e), given below.)

To see that Assumption GMM/CMR 1 implies Assumption 1, we proceed as fol-

lows: Assumption 1{a) holds with

(2.12) m() = lim TETEA(X,) 07 (X )¥(Z,, )

by GMM/CMR 1(a) and (b). The first part of Assumptioﬁ 1(b) holds by GMM/CMR
1{c), {d), and (e), because

supllm(8,7)-m(6, 7o)l ¢ sup Tim =) [IMOIA-Ag) 67" + A0~ (ag-dag'lap,
fecB %0 N-o

1 X 1
SCI[:I;;I) sup BIWX,, Ol /aNIﬁI ~=1 [J1a-ler, I
(2.13) ) qyy{u-1)/u
-1
+ g sup E(ICK,, AR )

1/u
1 . u
« Jim 81 U““ =l dPt]

for some constants C,,C, <, where ¥(0), A, By s Q, ,, and P, abbreviate
Wx,0, A®), By(x) 0(x) , Qo(x), and Pt(x) respectively. The second part of
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Assumption 1{b) holds by GMM/CMR 1(e). The third part of Assumption 1(b) can be
shown to kold using GMM/CMR 1(a), (b), (¢), (d), (e), and (f). Assumption 1(c) holds by
GMM/CMR 1(d) and (e), since the latter imply that N a up 1““1(9:7]" < o . Assumption

3

1(d) holds by GMM/CMR 1(f).

2.6. Conststency sn the WLS/PLR Ezample
For the WLS estimator of the PLR model of (2.6), the following assumption implies
~ Assumption 1 with d(m,y) and mt(ﬂ,'r) as defined in (2.11). In consequence, this |

assumption is sufficient for consistency of 8:

ASSUMPTION WLS/PLR 1: (a) {[U,+7;4(Z,)—7;(Z,)+X;(8-0p)+(ro(Z,)-To0(Z,)) 4
x [X,~7o(2,)])/ To(Z,) : t 2 1} satisfies a uniform WLLN over (61)e6 T,

(b) J-”"rj(z) - jo(z)l]2dP(z) Bo for j=1,2,3, where P(-) denotes the distribution of
Zt .

(© EIX)t<o.

(d) © is bounded.

() Tc{r:7=(rp, 73, 'rs)' , i2§|73(2)| > €, l"a‘II'rj(Zt)ll2 <C for j=1,2,3} for some
€>0 and C < w. Inaddition, P(7€7)-1.
2 . .
(H) E(Xt - E(Xt [ Zt))(Xt - E(thzt))’ / E(Ut | Zt) is nonsingular.
To see that Assumption WLS/PLR 1 implies Assumption 1, we proceed as follows:

Assumption 1(a) holds by WLS/PLR 1(a) with

(2.14)
+ E(7y~Toq) Arg=To) 73
where Ti0 and T abbreviate -rjo(zt) and -rj(Zt) respectively for j=1,2,3. The first

part of Assumption 1(b) holds by WLS/PLR 1(b}, (c), (d), and (e), because
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lm(6,7) — m(ﬂ,'ro)ll <E|r, - 710‘ l To— 720"/73 + ||EX{(00—0)1'2/T3
(2.15)
- EX£(90—9)1'20/T30" +E| ("'2 - 7'20)' 8liry - 7'20"/7'3 )

and so,
. . 2.0 fu 2,11/2
g‘elg"m(a:f) - m(B,TO)" < U(Tl - 10) dP‘J""'g - 720" dP] [€

12, 2
216) + ’,‘E‘g“"‘”o“[[E"xtllz] U“Tz— 720"2 dp] e
2.16 g )
* [E||xt|[2|1.,-20(zt)n2] / U(*s“fao)z‘“’] / 162]

A 2
+ sup J'r—'r dP/e+ 0 (1),
059"0" 79 — 7oqll“"dP/€ + 0,(1)

where -‘rj ’ Tigo and dP abbreviate -“rj(z) , rjo(z) , and dP(z), respectively, for
j=1,2,3. The second part of Assumption 1(b) holds by WLS/PLR 1(e). The third part
of Assumption 1(b) holds trivially, since there is no preliminary estimator % . Assumption

1(c) holds by WLS/PLR 1{c), (d), and (e), since the latter imply that o é up T||m(8,r)||
, TE

< » . Assumption 1{d) holds by WLS/PLR 1(f).

3. ASYMPTOTIC NORMALITY

We now give sufficient conditions for the asymptotic normality of sequences of
RP—valued MINPIN estimators {#} . Three alternative assumptions are introduced —
Assumptions 2, 2*, and 2**. Each is sufficient for asymptotic normality of {8} . Each
involves a different tradeoff in the assumptions it imposes. In particular, Assumptions 2
and 2* allow 7 to be infinite dimensional whereas Assumption 2** requires it to be finite
dimensional. Also, Assumptions 2 and 2** assume mt(a,'r) is twice differentiable in @,
whereas Assumption 2* only requires Emt(ﬂ,-r) to be twice differentiable in 4 . For
example, Assumption 2* allows one to consider least absolute deviations (LAD), censored

LAD, method of simulated moments, and Huber ¢—function M—estimators. On the other
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hand, most estimators do satisfy the differentiability condition of Assumptions 2 and 2**
and the imposition of this condition allows other conditions in Assumptions 2 and 2** to be
weakened.

We note that when the asymptotic normality results based on Assumption 2* are
specialized to the case of a finite dimensional nuisance parameter 7, they improve various
general results in the nonlinear econometrics literature with regard to the smoothness
required of m,(6,7) in & and 7. For example, Bierens (1981), Burguete et al. (1982),
Domowitz and White (1982), Gallant (1987b), Andrews and Fair (1988), and Gallant and
White (1988) all assume m,(6,7) (or its equivalent) is twice differentiable. On the other
hand, the results of Huber (1967), Pollard (1985), and Pakes and Pollard (1989) allow for
non—differentiable m,(4,7) functions. The latter results, however, do not accommodate
dependent observations or preliminary nuisance parameter estimators whether of finite or
infinite dimension.

Before stating Assumptions 2, 2* and 2**, we define the asymptotic covariance
matrix of {3} , we introduce some notation and definitions used in the assumptions, and
we give a brief description of how the property of stochastic equicontinuity is used in
establishing the asymptotic normality of 8.

3.1. The Asymptotic Covariance Matriz of MINPIN Estimators

The asymptotic covariance matrix V of {8} is defined as follows. Let d(m,%)
and m,(6,7) be defined such that the dimension v of ﬁxT(ﬂ,-r) is at least as large as the
dimension p of #. For example, for the WLS estimator of the PLR model, d(m,7) and
m,(6,7) are as defined in (2.11) rather than as in (2.10). Let
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. _ . 1aT
§= ’}‘im VarP(ﬂ' mT(BO, -ro)), M= .i‘un Tzl 3-‘37Emt(00, 1-0) ,
o -
2

(3.1) D = =0 d(m(d, r5), %) » J=M'DM, T=M'DSDM, and

V= rlfrl )

32

where z—pd(-,-) denotes the matrix of second partial derivatives of d(-,-) with

respect to its first argument and m(d, 7,) = 'i‘im .}:.ETEmt(ﬂo, 7y) - In the common case
ud

where p =v (i.e., the dimension of # equals the dimension of ﬁJT( 6,7) ), the covariance

matrix V simplifies to
(3.2) v=MIsml) .

For example, for the GMM estimator of the CMR model, we kave p = v and the

asymptotic covariance matrix of # is
V=M WM, where
. 14T _y:o 14T s | _ .-l
M= lim ¥ Erg(Xy)Ag(Xy) = Lim g2  EAq(X,) 0 X)Bg(Xy) (=797

(3.3) D= " (= M—l) . and

. 1T yo—l ,o—-1
= Lim 72 EAGX) G (X2, U2, )07 (X)A0(X,)

If W, isindependent across t, S simplifiesto M and V= Ml i W, is iid for
t>1, & obtains the semiparametric asymptotic efficiency bound of Chamberlain (1987a).
In addition, if ¥ is replaced by I, in the definition of 8, the asymptotic covariance
matrix of {6} is unchanged. In this case, however, Assumption 6a introduced below does
not hold and the likelihood ratio—like test statistic defined below is not necessarily asymp-
totically chi~square under the null hypothesis.

For the WLS estimator of the PLR model, using the definition of d(m,y) and

mt(ﬂ,r) given in (2.11), we have p = v and the asymptotic covariance matrix of 8 is
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v=MIsM1, where
. 2 -

(34) M =-B(X, —E(X,|Z)XX, - E(X,|2,))’ /E(U}|2,), D=1, and
. 1T T ! 2

S=1im} 5 T EUUX,~BOIZX, ~ B, 1)) BV} |2 BV} 12,) -
If the errors U, and Ut are uncorrelated conditional on (Xs, 2, X, Zt) Vst and
E(U2(X,, 2,) = E(UZ|Z,) as. Vi, then S=-M and V=-M". I the observations
are iid and E(U2|X,,2,) = E(U?|Z,) as. Vt (but the latter is not part of the prior
resirictions on the model), then the WLS estimator attains the semiparametric asymptotic

efficiency bound given by Chamberlain (1987b) for the PLR model.

8.2. The Definition of Stochastic Egquicontinusty

Next, let py(-,-) and pg,4{-,-) denote pseudo—metrics on 7 and 6«7
respectively. The former is used with Assumption 2 and the latter with Assumption 2*.
Examples of such pseudo—métrics are given in (3.23), (3.24), (3.32), and (3.33) below.
Converggqce in probability of 7 to 7, and (8,7) to (80, -ro) means convergence with
respect to py and PoxT respectively.

We introduce two sequences of stochastic processes, {VT(°)2 T>1} aad
{uT(-,-) : T > 1}, which are indexed by 7 € 7 and (4,7) € © x T respectively. The first
sequence 38 used only in Assumption 2 below and the second only in Assumption 2%,

Neither is assumed to be measurable. By definition,
vip(r) = VT8, 7) - BA(G,, 7)) and
(3.5) vep(6,7) = YyT(dp(6,7) - m75(6,7)) , where

@4(0,7) = 751 Em,(4,7)
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DEFINITION: {up(-): T 21} is stochastically equicontinuous at 7 if: Forall ¢>0
and n> 0 there exists & > 0 such that

3.6 Tim P* sup V() — (1) > 1) < €,
(3.6) TE (re T:p,(r,ro)sﬁl () —vp(7)| > )

where P* denotes outer probability.

(If the rv in parentheses is measurable, then P* can be replaced by P .) Stochastic
equicontinuity of {uT(-,-) :T>1} at (00, -ro) is defined analogously with 7 replaced
by (6,7) and py teplaced by pg. -

The stochastic equicontinuity condition is discussed in detail in ASEM:II. Primitive
sufficient conditions are given there for stochastic equicontinuity in iid, inid, and dnid
scenarios. For the time being, note that stochastic equicontinuity of {vp(-)} at 7, is
implied by the weak convergence of {vq(:)} to some stochastic process whose sample
paths are continuous with probability one (and likewise for {wp(:,-)} ) . Thus, if the
process  {vq(-)} or {vp(-,-)} ‘sa.tisﬁes a CLT (with Gaussian limit process that is

continuous with probability one), then it is stochastically equicontinuous at T

3.8. Description of the Method of Proof of Asymptotic Normality

One of the main purposes of this paper is to show how stochastic equicontinuity can
be used to establish the {/T—consistency and asymptotic normality of a large class of semi-
parametric estimators. We now give a brief heuristic description of how this is done. The
assumptions, theorems, and proofs given above and below regarding MINPIN estimators
provide a more detailed account.

For the time being, suppose # is a consistent estimator of 00 € RP that satisfies

the first order conditions
(37) VT mp(8,7) = 0

with probability 1, where my(f7)=zEim(B7)€eRP. Let 7 be an infinite
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dimensional parameter estimator that lies in 7 with probability - 1 and is consistent for
7o € 7 with respect to the pseudo—metric Pr- Assume the population first order condi-
tions, MmA(6;, 1) = Emp(6y, 75) =0, hold.

We consider first the case where m,(6,7) is differentiablein §. I 7 was finite
dimensional one could establish the asymptotic normality of # by expanding T lﬁT( 8,7)
about (y, 7)) using element by element mean value expansions. Since r is infinite
dimensional, however, mean value expansions in (#,7) are not available. In consequence,
we expand T g ( 8,7) about é, only (using element by element mean value expansions)
and use stochastic equicontinuity and an asymptotic orthogonality condition to handle 7 :
(3.8) 0,(1) = T my(87) = VT my(8y, 7) + g B8, FWI(By — 8y)
where * lies on the line segment joining # and % (and takes different values in each
row of 3-271?1.1.(0“, 7) ). Under suitable assumptions on {m,(6,7): ¢ 21}, one can show
that -ag;—mT(F", HEM= ,}‘:1:1 %E?E—a-‘g,—mt( 0g» TO) . Thus, provided M is nonsingular,
we have
(39) VI(B~ ) = (M + o ()T (G, 7).

If 7 is replaced by 7, in (3.9), the right—hand side of (3.9) is asymptotically
normal, say N(0,S), under general conditions by the application of a CLT, since
T m1(d,, 75) is a mean zero sample average normalized by 4T . Hence, if we can show
that

(3.10) VT (6, 7) — /T (8, 7o) B0,

then we will have established that yT(3— g;) 9 N(o, M~IS(M™)') . Note that in this

case the estimation of ) by 7 does not affect the asymptotic distribution of 7.
Stochastic equicontinuity is useful in establishing (3.10). In particular, stochastic

equicontinuity of vp(7) = JI‘(ﬁlT(BO, 7) ~03(fy, 7)) (indexed by 7€7) at To» con-

sistency of 7 for 7, with respect to the pseudo—metric py, and P(7€7)~1 yield
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(3.11) vp(7) = vep(7g) B 0.
This follows because given any 1, € > 0 there exists a § > 0 such that

Tim P(|vp(7) — vp(7p)] > )

¢ TI Tm P(jup(7) — vplrg)l > m7 €7, p{hi7) € §) + T"'Tlm P(7 £ 7 or pp{F,7) > 6)
¢ "’ P¥( lvp(7) = vgl7g)l > ) "’
<lim sup Vel T) = vl T )l > 1
Tow TET:pT(r,-rO)gﬁ T o

< €.

Since
(3.13) VT ﬁlT(ﬂo, )~ T fﬂT(%, 7'0) = VT(%) - "T(TO) ~yT ﬁ'}(ao; 7},

equation (3.10) now holds if and only if

(3.14) JT m4(6,, ) BO.

The latter is an asymptotic orthogonality condition between ¢ and 7 that is analogous to
the block diagonality of the information matrix between 00 aLnd 7o in the case of maxi-
mum likelihood estimation with finite dimensional 7. This condition is usually satisfied
by adaptive estimators of adaptive models, but is also satisfied by numerous semiparamet-
ric estimators of non-adaptive models (for suitable estimators 7). See the discussion of
this condition given below.

In sum, given stochastic equicontinuity of wp(7), consistency of 7 for 7y, the
asymptotic orthogonality condition (3.14), and the other conditions referred to above,
equation (3.10) holds and we obtain the asymptotic normality of @, as desired.

Next, we briefly consider the case where mt(ﬂ,'r) is not differentiable in 4, but
Em (6,7) is. This occurs with LAD estimators, Huber M—estimators, and weighted
censored LAD estimators (under appropriate conditions) among other parametric and semi-

parametric estimators. Let @, 7, etc. be as described in the paragraph containing (3.7)
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except that consistency of # is replaced by consistency of (8,7) for (00, -ro) with respect
to some pseudo—metric pg s OR Ox7T.

Since T Mmp(4,7) is mot differentiable in 4§, we cannot carry out.mean value
expansions of T mT(b,i-) as in (3.8). Instead, we expand /T m,f.(ﬂo, %) about # using
element by element mean value expansions:

. - r a - - “
(3.15) op(l) = JT @34, )= Jl‘m.}(ﬂ,-r) — g7 (0%, TWT(0-6,) ,
where @* is as above. The first equality of (3.15) holds by the asymptotic orthogonality
condition (3.14). Under suitable assumptions on {m (6,7):t21}, 4 77 (P, 7) Em
= lxm TET W‘Emt( » Tg) - Thus, provided M is nonsingular, we have

(3.16) VI(9- )= (M + o (IWT m$(8,7) .
Thus, we obtain the same asymptotic distribution for ¢T(#—- 00) as was obtained

above if we can show that

(3.17) VT @3 8,7) + VT (8, 75) B 0,

since —/T ﬁlT(ﬂo, TO) is asymptotically normal under general conditions by a CLT. Let
vp(0,7) = VT(@p(0,7) — m45(6,7)) . Using (3.7) and 4T ﬁl,i\(ﬂo, 1'0) =0, we have

(3.18) YT m4(8,7) + VT ;6 70) = —vp(8.%) + v( 8y, 75)

with probability » 1. In addition, in analogy to (3.12), stochastic equicontinuity of
vp(+y+) (indexed by (6,7) €@ = T) at (fy, 7)), consistency of (8,7) for (6, 7o) With
respect to the pseudo—metric pg ,, and P((8,7) €O x 7)1 yield

(3.19) v 8,#) — vp( 85 75) B0 .

In consequence, yT(f#— 80) is asymptotically normal, as desired.
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3.4. Asymptotic Normality of MINPIN Estimators

We now return to the discussion of MINPIN estimators and state the Assumptions
2, 2%, and 2** that are sufficient for asymptotic normality of such estimators. The dis-
cussion above of the use of stochastic equicontinuity should serve to explain its appearance
in Assumptions 2 and 2*. Let @, 7, etc. be as defined in the definition of MINPIN esti-
mators rather than as defined in Section 3.3. Let ©, be a subset of © (c RP) that
contains a neighborhood of 90 . Define

&
B, = sup " -m (G,r)ll and
t 00, rel 9999 "t

(3.20)

i
B¥ = sup ”W,Em 0,7 ” .
t 0690,1‘61 t( )

Therv B, is assumed to exist only in Assumptions 2 and 2** below.

We now state Assumptions 2, 2%, and 2** and the main result of this section:

ASSUMPTION 2: (a) 8 4, € © c R? and 6, is in the interior of © .
(b) P(re7)~1, #Br;, and 4B forsome r €T ond 4y€l.
() VT Gd(m4 (0, 7, 7 Bo.

(d) vplrg) I N(0,S) .

(e) {vp(-)} s stochastically equicontinuous at T -

(f) -gad(m,'y) and Eﬁgi'i’d(m’ ) ezist for (m,7) €My Ty and are continuous at
(m,y) = (m(8y, 7¢), 1) » where My and T are subsets of R' and T that contain
neighborhoods of m( Oy 1'0) and 1, respectively (using the Euclidean norm on RY and
the pseudo—metricon T' ).

(g) mt(ﬂ,'r) is twice continuously differentible in & on ©,, VreT ,Vi21,VweQl.
{m(6,7)} and {B-g,-mt(ﬂ,r)] satisfy uniform WLLNs over ©,xT7. m(f,7)
= 'i‘ll: %ETEmt(ﬂ,r) and M(6,7) = '}?—l”l;l %ETEa-ngt(ﬂ,r) each ezist uniformly over
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8

s 14T
which (8,7) B (6,, 7q) - T*"TiT 7%, EB, <w.

x T and are continuous al (00, 1'0) with respect to some pseudo—metric on 6 x T for

(h) M‘DM is nonsingular.

ASSUMPTION 2*: (a) Assumption 2(a) holds and JT[-a-g,-ﬁl.’f.(a,’r)] & _d(mp(0,5), 7)
= op(l) :

(b) P(7eT)-1, (8,%) B (90, 'ro) , and 4B To Jor some 7o € T and To € r.

(c) Assumption 2(c) holds.

(d) Assumption 2(d) holds.

(¢) {vq(-,-)} is stochastically equicontinuous at (65 -ro) .

(f) Assumption 2(f) holds.

(8) Em(6,7) is twice continuously differentigble in 0 on ©,, Vrel, Vi2l.
m{f,r) = 'i‘l x: %}JTEmt(B,'r) and M(6,7) = r}: T %ET -ag,—Emt(ﬂ,'r) each ezist uniformly
over 60 x T and are continuous at (80, 1'0) with respect to some pseudo—metric on 90 x7
for which (8,7) B (85 7g) - Tl-l-:,l %B'fB: <w.

(k) Assumption 2(k) holds.

ASSUMPTION 2**: Assumption 2 holds with 7 C RY for some u < o, with pr given by

the Euclidean meiric on T, and with Assumption 2(e) replaced by
. d ; a
2**(e) VT(T—75) = Op(l) » gorm, (0, 7) ezists VreT ,Vi21,Ywe, {-ar—,mt(ﬂo,'r)}
|,£Tmt(ao,r) <o Vt>1.
THEOREM 1.2: Under Assumption 2, 2%, or 2**, every sequence of MINPIN estimators
{0} satisfies
VI(0-6) SN(QV) .

COMMENT: We note that a useful feature of the method used here for establishing the

satisfies a uniform WLLN over T€7, and E sug
TE

asymptotic normality of semiparametric estimators is that the assumptions on (7,%) and

on the random criterion function d(fnT(B,r), 7) are split apart. This simplifies their
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verification and allows for greater gemerality in some dimensions. Assumption 2(b) only
involves (7,%) and Assumption 2(c) only involves (7,7) and the non—random function
d(ri,}(ﬂo, 7), 7). Thus, the fact that (7,7) and the random function d(ﬁ:T(GO, ), 7)
are defined using the same underlying random variables does not present a problem. In

particular, sample splitting is not needed to establish asymj)totic normality of &.

8.5. Discussion of Assumption 2

We now discuss Assumption 2. Assumption 2(a) can be established by Theorem 1.1
or some other consistency proof. Assumptions 2(b), (c), and (e) are key assumptions
— they are discussed below. Assumption 2(d) can be verified using a CLT for a sequence
(or triangular array) of rv’s. In the independent case, the Lindeberg—Lévy CLT can be
used. In the dependent case, numerous CLTs are available that differ according to the
dependence, moment, and identical distributions assumptions that they impose. For
example, see McLeish (1975b, 1977), Hall and Heyde (1980, Chs. 3-5), Herrndorf (1984),
Gallant (1987b), and Wooldridge and White (19882, b).

Assumption 2(f) usually is not restrictive and is easy to verify. Assumption 2(g)
requires mt(ﬂ,'r) to be twice differentiable in # . This assumption can be avoided, if
necessary, by using Assumption 2*. Assumption 2(g) requires certain uniform WLLNs to
hold. They can be verified in the same manner as Assumption 1(a) above. Assumption
2(g) also requires continuity of m(6,7) and M(4,7) with respect to some pseudo—metrics
on 6 =7 for which (898 (69> 7o) - The most convenient choices of pseudo—metrics
are

for establishing continuity of m(#,7) and

622) Al ), (B 7)) = TTm ROYE| 5 my(6y, ) ~ aormy(f, 75|
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for establishing continuity of M(#4,7) 83 With these choices, continuity of m(6,7) and
M(6,7) sutomatically holds, so it suffices to verify that p((3,7), (8, 75)) B0 for each
choice of p(:,-). As the examples below show, the latter usually holds under similar
assumptions to those used to verify the condition of Assumption 2(b) that (7, -ro) Ro.
Assumption 2(h) is a standard condition that is often closely related to the identification of
00. For example, it reduces to nomsingularity of the information matrix in iid ML
contexts.

The stochastic equicontinuity assumption, Assumption 2(e), is basic to the approach
taken here. It can be verified using the stochastic equicontinuity results given in ASEM:II
or by using other results in the literature.

In order to obtain stochastic equicontinuity, the index set 7 needs to satisfy some
conditions. This creates a tension between Assumption 2(e) and the first part of Assump-
tion 2(b), since the more restricted is 7, the more difficult it is to show that
P(7€T)-1. For example, if 7 is an infinite dimensional class of functions, the stochas-
tic equicontinuity results of ASEM:II require the functions in 7 to satisfy certain
smoothness conditions. When 7 is defined as such, one has to show that the nonparamet-
ric function estimator 7 also satisfies these smoothness conditions with probability - 1 to
verify the first part of Assumption 2(b).

For example, if 7, is a function of x for x€Z, 7o S8atisfies the smoothness con-
ditions of ASEM:II, and 7 and a suitable number of its derivatives converge in probability
uniformly over x€d to 7o and its corresponding derivatives, then the first part of
Assumption 2(b)} will hold. Note that uniform convergence of nonparametric regression
estimators and their derivatives generally reqm‘i:es the domain & of the functions to be
bounded and the absolutely continuous components of the distributions of the regressor
variables {X,} to be bounded away from zeroon Z. If Z is unbounded, these properties
can often be obtained by restricting ¥ to a large but bounded set (at the expense, of

course, of reducing asymptotic efficiency by some ¢ > 0). Alternatively, one can employ a
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trimming procedure that replaces the uniform convergence requirement with conditions
that allow # to be unbounded and {X,} to have distributions with densities that are not
bounded away from zero on its support. In either case, one can exploit existing consistency
results and proofs for nonparametric estimators of regression and density functions and
their derivatives, when establishing the first part of Assumption 2(b).

We note that the above mentioned smoothness requirements on the infinite dimen-
sional parameter 7, and the estimator # of it are sometimes stronger than necessary for
asymptotic normality of #. Whether they are depends pﬁma.rily on Assumption 2(c). As
discussed below, Assumption 2(c) requires LQ—consistency of r for Ty at rate Tll 4 for

some 1<Q<w in many examples, including the WLS/PLR exa.mple.9

If To 182
nonparametric regression function, then the smoothness conditions on ) required for the
existence of an estimator that is L9—consistent at rate /4 (see Stone (1982)) are essen-
tially the same as those imposed in ASEM:II for Assumption 2(e). (More specifically, the
condition is that q > ka/2 , where q is a measure of smoothness based on the number of
derivatives that exist and k_ is the dimension of the regressor variable, see ASEM:I1.)

On the other hand, the orthogonality condition 2(c) is satisfied trivially in a number
of examples, see the discussion below. For these examples, the smoothness conditions of
ASEM:II that are used to verify Assumption 2(e) when T is infinite dimensional are
stronger than necessary. For example, Robinson’s (1987) results for the WLS estimator of
a linear regression model with heteroskedasticity of unknown form and Newey’s (1987)
results for the one—step GMM estimator of the CMR model establish asymptotic normality
of # without any smoothness conditions at all on 0"

Next we discuss the pseudo—metric py on 7 . As with the choiceof 7, thereis a
tradeoff between Assumptions 2(b) and (e) with regard to the choice of py . The stronger
is the pseudo—metric, the easier it is to verify Assumption 2(e), but the more difficult it is
to verify the condition of Assumption 2(b) that p/{7, 74) Bo. It is this tradeoff and the

availability of stochastic equicontinuity results for different psendo—metrics that determine
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the most appropriate choice of pseudo—metric. For the stochastic equicontinuity results of

ASEM:II, several different pseudo—metrics are considered. One is

1/2
628)  pylry, ry) = sup[ R Elmy (8. 7)) = my (8, )] .
A second is
o 1/2
(3.24) pT(TI’ 72) = U'"m(w: 00: Tl) —m(w, 00: 72)" dw] )

which applies when mTt(""') does not dependon T or t and W, takes valuesina
bounded set ¥. A variation of (3.24) is also considered in which some elements of W,
may be unbounded while others must be bounded. Stochastic equicontinuity results using
the pseudo-metric of (3.23) are given in ASEM:II for the case of independent or
m—dependent rv’s. For rv’s that exhibit more general forms of temporal dependence, such
as strong mixing dependence or near—epoch dependence, one of the other pseudo—metrics
must be used.

Consistency of 7 for 7o With respect to a pseudo—metric such as that of (3.23) or
(3.24) (as required by Assumption 2(b)) can usually be reduced to LQ—consistency of 7
for some 2<Q<w when T is an‘ infinite dimensional class of functions, plus some
moment conditions on certain functions of th and sometimes some uniform bounded-
ness condition on ) and 7 that must hold with probability - 1. For example, see 1ihe
following discussion of the GMM estimator of the CMR model and of the WLS estimator of
the PLR model. As with Assumption 1(b), one can exploit existing consistency results and
proofs for nonparametric estimators when verifying such conditions on 7.

Assumption 2(c) is a key assumption. It is an asymptotic orthogonality condition
between the estimators & and 7. It is needed to show that preliminary estimation of g
does not affect the asymptotic distribution of #. In almost all examples,
d(m,y) =m‘m/2 or m’ym/2 and §= Op(l) . In consequence, Assumption 2(c) usually

reduces to the requirement that
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(3.25) VT m}(6;, 7) Ro.

Note that my(6,, ) evaluated at 7= 7, generally equals zero, because B8y 1) =0
are the population first order conditions for the estimator and 00 is an interior point.
Thus, condition (3.25) requires that the replacement of 7, by 7 in m3(§y, ) has an
effect that is at most op(T_ll 2) .

Condition (3.25) (and hence, Assumption 2(c)) is trivial to verify whenever
(3.26) m3 (6 7} =0 Vr in some neighborhood of 7,
for all T sufficiently large. The reason is, in this case,

I 83(8,7) = VT8, Dor{r,7g) < )| pey + VTEF (8PN (pr{7,7) 2 €

(3.27) = 0+0,(1)

for some ¢> 0, using (3.26) and Assumption 2(b). In many cases, condition (3.26) is
equivalent to the condition: The derivative of (), 7(¢)) with respect to ( equals a
zero matrix for all { in o neighborhood of CO for T large, for any finite dimensional
parametrization {r(¢): (€ Z C R’} of a subset of 7 for which (i) ry = (¢y) for some
(g € Z and (ii) m3(fy, 7(¢)) is differentiablein ¢ in a neighborhood of (.

It is easy to see that (3.26) holds for the GMM estimator of the CMR model. It
also holds for the weighted censored LAD estimator of the censored regression model, see
Example 6.2 below. Neither of these models is an adaptive model. Condition (3.26) also
holds for most adaptive estimators of adaptive models, such as Bickel’s (1982) and
Manski’s (1984) adaptive estimators of linear and nonlinear regression models with errors
of unknown distribution, see Example 6.5 below. Note that when {3.26) 'holds, Assumption
2(c) places no additional restrictions on 7 beyond those of Assumption 2(b).

On the other hand, Assumption 2(c) and (3.25) do not require (3.26) to hold. In
fact, there are numerous examples where Assumption 2(c) and (3.25) hold (for suitable 7)

but (3.26) does not hold. The WLS estimator of the PLR model is one example of this.
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Section 6 discusses several other examples. In such cases, the estimator 7 usually needs {0
converge o 7, ata particular rate, with the rate often being Tll 4. Note that nonpara-
metric estimators of regression and density functions exist that are 1 o uniformly
consistent at rate Tll 4 provided the function satisfies certain smoothness conditions
among other assumptions, see Stone (1982).

To see why a convergence rate on 7 may be needed to verify Assumption 2(c), to
see why the required rate is often Tll 4 , and to see what Assumption 2(c) reduces to in
the case of finite dimensional 7, we consider the case where 7 is finite dimensional and
my(6,, 7) is twice differentiable in 7. In this case, a two term Taylor expansion of the
jth element of JT my(,, ¥) about 7, yields

VT 14(6y, ) = VT @(8y, 7o) + o7 B by, TWT(F — )
(328 + TG - 1) B?ngm'iij’ rT 4 )2
for j=1, ..., v, where "rj lies between 7 and To -

The right—hand side of (3.28) is op(l) , as required by Assumption 2(c), if
G) BHB), 1) =0, (i) g mb(ly ) =0, @) TH43-1r) = o)(1), and
(iv) -a;gf_—,m,fj( Oy ?j) = Op( 1) Vj. As mentioned above, (i) holds quite generally
whether or not # and # are asymptotically orthogonal. Condition (ii) is the requisite
asymptotic orthogonality condition between # and #. For a maximum likelihood esti-
mator, it reduces to block diagonality of the information matrix between the parameters
6, and 7. Condition (iii) is the rate of convergence condition on 7 referred to above.
It is satisfied by most consistent parametric estimators, since such estimators are usually
J/T—consistent.

When 7 is infinite dimensional, one cannot carry out the expansion given in (3.28).
Nevertheless, it is usually straightforward to obtain conditions on 7 that are sufficient for

(3.25) and Assumption 2(c) by using standard inequalities (such as the Cauchy—Schwartz
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and Holder’s inequalities) to obtain a suitable upper bound on [|yT @f( 8y )|l . This is
best seen by looking at the examples given below and in Section 6. In those cases where
(3.26) does not hold, but where it is possible for Assumption 2(c) to hold, such upper
bounds usually involve terms such as JI'Jl[’r(w) - -ro(w)||2dP(w) . Hence, L2—consistency
of # at rate T* is a common requirement on 7 for Assumption 2(c).

Next, we discuss the relationship between Assumption 2(c) and the property of
adaptation of an estimator. When Assumption 2(c) holds, a MINPIN estimator # has the
same asymptotic distribution as the estimator that minimizes the same criterion function
as @ but with 7 replaced by Ty If, in addition, the latter estimator is an asymptotic-
ally efficient estimator of 00 for the case where 60 is the only unknown parameter in the
problem, then g is an adaptive estimator.

The latter condition only holds in special cases, so it is not the case that Assump-
tion 2(c) only holds for adaptive estimators. For example, with the WLS estimator in the
PLR model, Assumption 2(c) holds for sunitable 7, as shown below. Nevertheless, if one
knows the function g(-) in (2.6), then one can form an asymptotically more efficient esti-
mator than the WLS estimator, and hence, the WLS estimator is not adaptive. In
particular, if g(-) is known, one can move g(Z,) to the left—hand side of (2.6), define the
dependent variable to be Y, -—g(zt), and estimate §, via a WLS regression- of
Y, - g(Zt) on X,. On the other hand, if one tried to carried out the latter estimation
procedure with g(-) replaced by an estimator g(-), then one would find that the estima-
tion of g(-) affects the limit distribution of the estimator and Assumption 2(c) fails for
this estimator. This must be the case, since the PLR model is not an adaptive model.
(That is, it is a model for which no adaptive estimator exists.)

To conclude, Assumption 2(c) implies that for the criterion function at hand the
preliminary estimation of 7, does not affect the asymptotic distribution of the resulting
~ estimator. It does not imply the same result for any criterion function that might be used

to estimate §,. In consequence, Assumption 2(c) is a much weaker requirement than is
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adaptability. In addition, as noted above, adaptability is not a necessary condition for
Assumption 2(c) to hold trivially via (3.26).

We now consider the case where Assumption 2(c) fails, and hence, the estimation of
Ty has an effect on the asymptotic distribution of the MINPIN estimator, also see the
discussion of Newey (1990b, Sec. 4.4). In such cases, the estimator in question may or may
not be asymptotically normal. Some examples of MINPIN estimators where Assumption
2(c) fails but the estimator is still asymptotically normal include Powell, Stock, and
Stoker’s (1989) and Andrews’ (1991a) estimators of weighted average derivatives and index
regression models, Han’s (1987) maximum rank correlation estimator of generalized regres-
sion models, Cox’s (1975) partial likelihood estimator of the proportional hazard model,
and Horowitz's (1988) M—estimators of the censored regression model. To fit such esti-

mators into the framework developed here, one would have to present conditions under

which  yTmi(f,, ¥) is asymptotically normal jointly with  wq(ry)  (say,
, A
(VT 2408, 7, wy(rg)’]” 9 W

A
A 812” ) rather than op(l) , when d(m,y)
12
=m’ym/2. For example, Newey (1989a, Sec. 6) presents a method of establishing the

0,

asymptotic normality of T ﬁ,}(ﬂ , T) for some cases, using the stochastic equicontinuity
results of ASEM:II. His method can be extended straightiorwardly to obtain the joint
normality of T ﬁ{,(ﬂo, 7) and VT(TO) for these cases. Under conditions for the joint
normality of JT ®}(4,, 7) and vp(7g) , the limit distribution of 9 is given by

(3.29) V(8- 6)) 4 N(0, V + (M/DMYIM'D(A + Ao + A7,)DM(M-DM) ™).

We leave the development of results along these lines to future research.

3.6. Asymptotic Normality in the GMM/CMR Ezample

Here, we discuss the verification of Assumption 2 for the GMM estimator of the
CMR model. The following assumption in conjunction with Ahsumption GMM/CMR 1 is
sufficient for Assumption 2 (with p, given by (3.23)), and hence, for the asymptotic
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normality of the GMM estimator 8:

ASSUMPTION GMM/CMR 2: (a) §, is in the interior of @ .

T
() Lim TsE B EAX,) Qg (X W, 6p)H(E,, 8) 05 (X,)A,(X,) exists,

sup El|¥(Z,, 00)||2+6 <o forsome §>0, and {(Z,X,):t21} isa sequence of inde-
t21

pendent rv’s or strong mixing rv’s with mixing numbers that satisfy E a(s)6/ (2"'5)
s=1

for & as above.
{c) { ETT(Xt)’l/J(Zt, 0p): T2 l} is stochastically equicontinuous at 7= 171, with p
defined b = sup|LENE(r(X Xz, 07

ned by py(r, To)—;:;lll)['ﬂ TEI(r(X,) — (X Iz, ] -
(d) ¥z,0) is twice continuously differentiable in # for all z in the support of (A

2a i a
Yt 2> 1, sup E||¥Z,, @ < w, sup E sup " - Z,B“ <mw,
£21 v %ol 21 60 AR

&
Tim AsT E sup WwZ,,
Tag 1 1 eee[,"a”j”z v

where 6, is some neighborhood of 6, and a is as in Assumption GMM/CMR 1.
. 1oT — . . : -
(¢) lim FTEACX,)D MX ygoHZ,, 6) exists uniformly over (8,7) = (6, A7)

<o Vit<p, and supE|AyX)I* <o,
t21

€0,*7 and {ARX)0UX)g0UZ,, 6):t21} satisfies 8 uniform WLLN over
(6r) = (6,807 ) eo T

To see that Assumptions GMM/CMR 1 and 2 imply Assumption 2 for the GMM
estimator, we proceed as follows: Assumption 2(a) follows from GMM/CMR 1, Theorem
1.1, and GMM/CMR 2(a). The first part of Assumption 2(b) follows from GMM/CMR
1(e). The second part of Assumption 2(b) can be shown to hold (in a similar fashion to the
first part of Assumption 1(b)) when p, is given by (3.23) using GMM/CMR 1(c), 1(e),
and 2(d). The third part of Assumption 2(b) is the same as that of Assumption 1(b) and
holds by GMM/CMR 1 as discussed above. The asymptotic orthogonality Assumption
2(c) holds trivially for the GMM estimator because (3.26) holds. In particular, we have
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(330) VT m$(6 ) = Jp81 EXINZ,, f) = 0 Vr, VT 21,
since E(Y(Z;, f;}|X;) =0 as. VE21 by definition of the CMR model in (2.2).

Assumption 2(d) requires 71'”1“0("0 ﬂ_l(xt)qb(zt, ) to satisfy'a CLT. It
does, given GMM/CMR 2(b), by Corollary 1 of Herrndorf (1984). Assumption 2(e) holds
by GMM/CMR 2(c). By restricting 7, the latter can be verified using the results of
ASEM:II. Note that the condition P(7€T)-+1 of GMM/CMR 1(e) must hold with 7
restricted in the manner used to obtain the stochastic equicomtinuity condition
GMM/CMR 2(c). Assumption 2(f) holds trivially since d(m,y) = m‘ym/2. Assumption
2(g) can be shown to hold using GMM/CMR 1(a), 1(b), 1(e), 2(d), and 2(e) with the
pseudo—metrics on €, x7 given by (3.21) and (3.22). Assumption 2(k) holds by
GMM/CMR 1(f). |

Note that the strong mixing assumption of GMM/CMR 2(b) can be relaxed if need
be (to near—epoch dependence, for example), provided sufficient conditions are added for
%rETAO(X) 0y ¢(Zt, fy) to satisfy a CLT. Also, the pseudo—metric py used in
GMM/CMR 2(c) can be replaced by some other pseudo—metric provided one checks that
GMM/CMR 1 and 2 are sufficient for pf(’r, 'ro) B0 with this pseudo—metric or provided
additional conditions are added to GMM/CMR 1 and 2 such that pe(7, 'ro) Bo.

3.7. Asymptotic Normality in the WLS/PLR Ezample
For the WLS estimator of the PLR model of (2.6), the following assumption plus
Assumption WLS/PLR 1 are sufficient for Assumption 2 (with d(m,7) and m,(0,7) as

defined in (2.11) and py given by (3.23)), and hence, for the asymptotic normality of the
WLS estimator 8 : :

ASSUMPTION WLS/PLR 2: (a) 6, is in the interior of © .
® [I7(8) - rp@iaP() Bo for j=1,2,3.

1/2
(©) T1/4U||frj(z)-fjo(z)u?dp(z)] / Bo for j=1,2.
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@ $=}im T5§1 tg EU,U,[X, - E(X, | Z)IIX, - E(X,|Z,)} /[E(U2| Z)E(U}|Z,)]

exists, E||U thlz'l"s <o forsome 6>0, and {(U, X, Zt) :t2 1} is a sequence of

independent rv’s or strong mixing rv's with mixing numbers that satisfy E a(s)ﬁ (2+4)
=1

<o for & asabove.

(e) {szl(mt( , 7) — Em (6, 7): T 2.1} is stochastically equicontinuous at 7= 7,
with p, defined by (8.23), where m (8, 7)= [Ut + 730(2,) — 71(Z,) + (79(Z,)
= 7oo(Z))" BllX — 79(2))/ 74(Z,) -

(0 EU} <o and EUJIX,)| <.

(8) {[X; — mo(ZINX, — 19(Z))} [74(Z;) : t 2 1} satisfies a uniform WLLN over 7€7.

To see that Assumptions WLS/PLR 1 and 2 are sufficient for Assumption 2, we pro-
ceed as follows: Assumption 2(a) follows from WLS/PLR 1, Theorem 1.1, and WLS/PLR
2(a). The first part of Assumption 2(b) follows from WLS/PLR 1(e). Thke second part of
Assumption 2(b) follows from WLS/PLR 1(c), 1{e), 2(b), and 2(f) in a similar fashion to
that used to establish the first part of Assumption 1(b).

The orthogonality condition, Assumption 2(c), holds using WLS/PLR 1(e) and 2(c),

since

"ﬂ m{‘( 90: |l = “ﬂJ.(Tlg - %1)(720 -7 )/?'3dP + iﬂr.[(“i'z - 720)' 6 (7'20 = '.’\'2)/"’.'3‘11)-"
1 2

(3.31) T1/4U (7 = 730) dP] 20 4U||72 — Tgqll dP] /

+ 18IV [lry = ragh%dP/e 4+ 0,1)
where 'T'j » Tip and dP abbreviate i'j(z) , 'rjo(z) , and dP(z), respectively, for
j=1,2,3.
Assumption 2(d) requires that UTETU (X, - Tzo(Zt)]/'raO(Zt) satisfies a CLT. It
does, given WLS/PLR 2(d), by Corollary 1 of Herrndorf (1984). Assumption 2(e) holds by
WLS/PLR 2(e). Note that 7 must be defined in the same way in WLS/PLR 1(e) and
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2(e). Assumption 2(f) holds trivially since d(m,7) = m’m/2. Assumption 2(g) can be
shown to hold using WLS/PLR 1, 2(f), and 2(g) with the pseudo—metrics on 8, * T given
by (3.21) and (3.22). Assumption 2(h) holds by WLS/PLR 1(f).

3.8. Discussion of Assumption £*

We now discuss Assumption 2* and compare it with Assumption 2. First, consider
Assumption 2%(a). The second part of this assumption is a necessary condition for the
asymptotic normality of & with covariance matrix V. Essentially, it requires the "first
order conditions" corresponding to the minimization problem that defines 8 tobe appIox-
imately satisfied for T sufficiently large. In the case of M—estimators where d(m,v)
=m‘m/2, p=v, and no nuisance parameters r and - exist, this condition reduces to
the same condition imposed by Huber (1967) to obtain his asymptotic normality results for
M-—estimators.

Assumption 2%(a) holds if (i) mt( 6,7) is once continuously differentiable in # on
8y, VreT, Vi21, Vwe (which is implied by Assumption 2(g)), (ii) m(6,7) and §
have the @e dimension p (=v), (iii) -5371:‘:1,1.(3,%) is nonsingular with probability - 1
(which is implied by Assumptions 2(g) and (h)), and (iv) Assumption 2(a) holds. Thus,
Assumption 2 implies Assumption 2*(a) when p=v.

Assumption 2*(a) follows from conditions (i}—(iv) because the latter imply that tﬂe
first order conditions for the minimization problem of (2.1) hold with probability 1. If
conditions (i}—(iv) do not hold, then the second part of Assumption 2*(a) needs to be
established on a case by case basis. For example, if d(m,y) = m’m/2 and M is a square
nonsingular matrix, then the second part of Assumption 2*(a) requires T f( 8,7 Ro.
This can be shown by establishing that the first order conditions ﬁT(?,'?-) =0 hold with
probability + 1. See Ruppert and Carroll (1980) and Powell (1984, 1986a, b) for the verif-
ication of this condition in certain examples.

Assumption 2*(b) requires pexf((ﬁ,’r), ( 00, 'ro)) Bo, where Po.y 18 a pseudo-
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metricon © = 7 that is suitable for establishing the stochastic equicontinuity condition of

Assumption 2*(e). For example, one could take

O rpugl(0y Uy ) = g [N EIm (8, ) -0 7] s
Alternatively, one could take |

639)  pgu(8y ) (0 7o) = [[ Il 8y, ) —mie, by, 7)) aw] v

in the case where mTt(""') does not depend on T or t and Wr, takes values in a
bounded set ¥ .

Assumption 2¥(e) is stronger than Assumption 2(e), because it requires stochastic
equicontinuity to hold for a sequence of stochastic processes that is indexed by two
parameters rather than just one. Assumption 2%(e) can be verified using the results of
ASEM:IL. Its verification, however, often is somewhat less simple than that of Assumption
2(e), because the evaluation of Mp(6,7) — B4 6,7} at 6=¢, in Assumption 2(e) often
yields a convenient simplification.

Assumption 2*(g) is weaker than Assumption 2(g) because it requires twice contin-
uous differentiability of Em,(,7) rather than of m,(6,7) and it does not require certain
uniform WLLNs to hold. Assumption 2*(g) requires continuity of m(6,7) and M(4,7)
with respect to some pseudo—metrics on 6 » 7 for which (B (6y: 7o) - The most

convenient choices of pseudo—metrics are p(-,) as in (3.21) for establishing the con-

for establishing continuity of M(4,7). With these choices, continuity of m(4,7) and
M(#6,7) holds automatically and it suffices to verify that p((8,7), (6y: 7)) Bo for each
choice of p(-,-).

tinuity of m(6,7) and

(036) A8y, (B ) =TTE 12 | 5B (6 71) - ggrEmy 8y, 73)



In sum, neither Assumption 2 nor Assumption 2* is weaker. The main difference
between the two is that they consider different tradeoffs between the stochastic equicon-

tinuity assumption and the smoothness assumption on the summands {m,(6,7)} .

3.9. Discussion of Assumption Z**
To conclude this section, we briefly discuss Assumption 2**. This assumption

applies in the common case in the literature in which = is finite dimensional and m,(,7)

- is differentiable in # and 7 . This is the case that is considered in Bierens (1981),

Burguete et al. (1982), Gallant (1987b), Gallant and White (1988), and Andrews and Fair
(1988). Assumption 2** is comparable to (i.e. no harder to verify than) the assumptions
used in these papers. In particular, Assumption 2** is essentially the same as that used in
Andrews and Fair (1988) to obtain asymptotic normality of parametric estimators (with
finite dimensional nuisance parameters). Assumption 2(c), which is part of Assumption
2**, ig less primitive than the corresponding assumption in Andrews and Fair (1988). But,
Assumption 2(c) usually is so easy to verify in applications for which 2**(e) holds that it
probably is not worthwhile to give more primitive conditions that imply it. (Nevertheless,
if desired, such conditions can be derived quite easily when r is finite dimensional and

m, (6, 7) is differentiablein 7.)

4. COVARIANCE MATRIX ESTIMATION

In this section we consider estimation of the covariance matrix V of the MINPIN
estimators {#}. We use the same definitions for d(m,y) and m,(6,7) in this section as
were used for the asymptotic normality results of Section 3. When.Assumption 2 or 2**
holds, we define:

A 9% o aa g 1T 8 (2.
(4.1) D = pod(®g(6,7), 3) and M = 1 g (6.7) -

Under Assumption 2 or 2**, D and M are consistent for D and M respectively.
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When Assumption 2* is employed, we define D as above and it is consistent for
D. We define M differently in this case, howevever, since M of (4.1) does not exist
when mt(b,?-) is not differentiable in #. In particular, we use a finite difference

estimator of M . For a constant orrv eq >0, define the j—th column of M by
N T . " . -
(4.2) M, = 121 (my(B + eqey, ) —my(D— eqe;, 7)/(2e)
where &= (0,...,0,1,0,...,0) is the jth elementary p—vector for
j=1, ...,p. The estimator M of (4.2) is consistent for M under Assumption 2* and

the following assumption.

ASSUMPTION 3*: (a) ep B0 and &5 = 0,(VT) -
(b) Em,(8,7) is differentiable in # uniformly over 6€®,, 7€7, and t21 (i.e.,

i i
limsup  sup "(Em (8 + ee,, ) —Em (8 — ee;, 7))/(2€) = 7y Em (6,7 " =0
e+0 121 6e8, €7 t j (8- < ) a7, 1(67)

Vi=1, ...,p)
(c) (8 + exe; '7')2(00, 'ro) ¥Viji=1,...,Dp.

Note that Assumption 3*(c) is very similar to the second part of Assumption 2*(b).
In consequence, verification of the former is usually a trivial extension of the verification of
the latter.

In some examples where Assumption 2* is used, the matrix M simplifies and an
alternative estimator to M of (4.2) is available. For example, with the WC~LAD esti-
ﬁmtor of Example 6.2 below, M = —4Erg(zt)1(xi00 < Ct)XtXE , estimators of 7,(-)
and 6, are available, and Z, = (X{s Ct)' is observed. In this case, one can estimate M
using M of (4.2) or using 48] #(Z)1(X; ¥ < CYX,X; . |

Next, we discuss estimation of the matrix S. Let $ be an estimator of S . If

{mt(ﬂo, -ro)} is a sequence of independent or orthogonal rv’s, then we can take

(4.3) § = 15 Tm (8,1)m (8,7)" .
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If {m(0,, 7,)} is m—dependent, then the following estimator can be used
(4.4) §=LTmm: + % AT, phd: 4, s
) - 1ttv=TE t t—v t—v t*!

where m, = mt(?,%) - I {m/(6, -ro)} is meither orthogonal nor m—-depenciént, then a
more complicated estimator of S is required. In particular, heteroskedasticity and auto-
correlation consistent (HAC) covariance matrix estimators that have been defined for
parametric models can be used, see White (1984, pp. 147-161), Newey and West (1987),
Gallant (1987b, pp. 553, 552, 573), Andrews (1991b), and Andrews and Monahan (1990).
For semiparametric models these estimators can be defined in exactly the same way as for
parametric models, using {mt( 8,7)} as the underlying rv’s. The consistency of such HAC
estimators when 7 is infinite dimensional does not follow from the results given in any of
the papers above, however, because these results make use of mean value or Taylor expan-
sions in the estimated parameters, which rely on the finite dimensional character of the
parzmeters. Neveriheless, conditions under which various kernel HAC estimators are con-
sistent when 7 is infinite dimensional are given in Andrews (1990a).

The estimator § of § that is adopted is assumed to satisfy:

ASSUMPTION 3: SBS (uwhereS is as in Assumption 2, 2%, or 2%*),

Let 7=M'DM, J=M'DSDM , and V= Tli.?_l . (Under the assumptions
given below, J is nonsingular with probability - 1, and 8o V is well-defined with prob-
ability - 1.)

THEOREM 1.3: Under Assumptions 2 and 3, or 2** and 3, or 2*, 3*, and 3, MBM
DED, and VBV, where M is as defined in (4.1) or (4.1) or (4.2) respectively.

COMMENT: When V simplifies, as occurs in many applications, then V simplifies or

simpler estimators than V can be constructed.
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5. TESTS OF NONLINEAR RESTRICTIONS

In this section, we consider tests of nonlinear restrictions of the form
HO : h(ﬁo) =0 . We start by defining the W, LM, and LR statistics to be considered and
stating sufficient conditions for these statistics to be asymptotically chi—square under the
null hypothesis. Then, we provide local power results.

5.1. Definition of Test Statistics and Statement of Assumptions

The R'—valued function h(-) defining the restrictions is assumed to satisfy:

ASSUMPTION 4: (a) h() is continuously differentiable in a neighborhood of 6, and
H = 50:h(0,) has full rank £ (< p).
(b) V is nonsingular.

Throughout this section we use the same definitions of d(m,y) and mt(B,'r) as
were used in"the isymptotic normality results of Section 3.

The Wald statistic for testing H, is defined to be
(5.1) W.p, = Th(d) (BVA)'h(B)

where H = -a-‘gTh(b) . Since HVH-BHVH’ and HVH’ is nonsingular under Assump-
tion 4, HVH’ is nonsingular and (AVH" )_1 is well—defined with probability - 1.10

Two LM and two LR statistics for testing Hy, denoted LMaT . LMbT , LRaT ,
and LRy, are defined below. The LM, and LR, statistics are defined for any criter-
ion function d(fnT( 6,7), 7) that satisfies Assumption 2 or 2**, although the LR,
statistic has the desired x2 asymptotic null distribution only under special conditions.
The LM, and LR, statistics are defined only for critérion functions d(my(6,7), %) for
which d(m,y) =m‘'m/2 and #@p(47)= 'gﬂ pp(6,7) for some function pp(67) . For
example, thése conditions hold for the WLS estimator of the PLR model and ML
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estimators, but not for the GMM estimator of the CMR model. For ML estimators, the
LM, and LR,b statistics correspond to the usual LM and LR test statistics.

In a given context, either the LR, or the LR, statistic may have the desired
asymptotic x2 null distribution, but not both. (The only exception to this is in the very
rare case that M is proportional to the identity matrix.) With the LM statistics, how-
ever, both can have the desired asymptotic xz null distribution in the same context. The
reason for the appearance of two alternative LM statistics is that there are two possible
restricted estimators of §;, denoted 3a and 3b , in those cases where LM; and LR,
can be defined. '

First we define the LMa and LRa statistics. They make use of the restricted
MINPIN estimator 8, :

DEFINITION: A sequence of restricted MINPIN estimators {?a} = {ba. : T2 1} is any

sequence of rv’s such that

(5.2) d(@p(8,, 7), 3) = inf{d(@m(6,7), 4) : € ©, h(F) = 0}
with probability - 1.

Suppose the null hypothesis is true. If Assumption 1 holds for the parameter space
8, it also holds for the parameter space 8, = {#€ ©:h(d)=0}. Thus, Assumption 1
and Theorem 1.1 imply that &, B 4) under the null hypothesis. In consequence, the fol-

lowing assumption is straightforward to verify when 00 satisfies the null hypothesis:
ASSUMPTION 5a: 8 R ¢, .

The LMa statistic uses an estimator of V that is constructed with the restricted

. '0 . 1 f a =4 82 — b ~ a Y 1 T a 3 ~
estimator 4, in place of 6. Let D = mmprd(ma(6,, 7), 3) , M = ) e (6,, 7) ,
J=MDM, §=5(8), and fi= -ag,-h(ﬁa) . Note that the estimators of the nuisance
parameters (7, 70) still are denoted (7,7) even though they may be restricted estimat-

ors of (7q, 70) . The same is true of the estimator § of S. With this notation, we do
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not need to alter Assumptions 2(b) or 3 when restricted estimators of (7, 70) are used.
Let 7=M/DSDM and V=777, Aswith V, the estimator V can be simplified
when V simplifies, as often occurs in applications of interest.

The LM, statistic for testing Hy is defined to be
(5.3) LM, ; = Tyord(@a(8,, 7), 8- (VR ) 8T Gamn(8,, 7, %)

As shown below, this statistic often simplifies considerably.

If d(m,y) is a quadratic form in m, as is usually the case, then the LMa statistic
is a quadratic form in the v—vector M( ?a.’ %) . For example, with the WLS estimator of
the PLR model, mT(ba, 7) is just the vector of normal equations for the estimator eval-
uated at the restricted estimator @, . Similarly, with the GMM estimator of the CMR
model, ﬁlT( Pa, %) is just the sample average of the weighted cross—products between the
instrumental variables and the model evaluated at the restricted estimator 8. With a
maximum likelihood (ML) estimator, ﬁ“ﬁ‘(ba’ #) is the average of the score functions for
different observations evaluated at the restricted estimator 9, - In each case, 9,,7)
is a random variable that is roughly centered at Q under the null hypothesis, since
m( 0y, T9) = 0.

Next, the LR, statistic is defined by

(54) LR, 1 = 2T(d(@y(F,, 7), %) — d(@g(8,7), ))/b,
where b is a scalar rv defined in Assumption 6a below. The preliminary estimators (7,7)
used in LR,y may be restricted or unrestricted estimators of (7, 7o) - For the asymp-
totic results given below they must be the same in both criterion functions used to
calculate LRaT , however, and they must be such that both 9 and 33 are consistent
under the null hypothesis.

The LR, statistic has the desired asymptotic x2 null distribution only under the

following assumption:
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ASSUMPTION 6a: I =bJ for some scalar constant b#0 and bR b for some sequence

of non—zero rv’s {b} .

Assumption 6a is satisfied with b =b =1 by the GMM estimator of the CMR model
when {¥(Z;, §;) : 121} is an uncorrelated sequence conditional on {X;:t21}. Inthis
case, LR, is given by the difference between a criterion function restricted and unre-
stricted:
(5.5) LR, = Tig(d,, 7) (B, 7) — Thp(8,7) 4mp(8,7) -
Assumption 6a also is satisfied by two and three stage LS estimators of nonlinear simultan-
eous equations models when the errors are uncorrelated and homoskedastic or when these
estimators use preliminary estimators that transform the observations to achieve uncorre-
lated and homoskedastic errors. Assumption 6a is not satisfied by the WLS estimator in
the PLR model since J= 52 and I= S3 . Nor is it satisfied by ML estimators. For
these estimators, the LR, statistic (defined below) 1:::18t be used.

If =157 for some scalar rv b# 0 , a8 usually occurs when Assumption 6a holds,
then V and W simplify:
(5.6) V=57 and Wy = Th(B) (87 ) n(d)/b .
Similarly, if 7 = bJ for some scalar b# 0, as usually occurs when Assumption 6a holds,
then V and LM, simplify:
(5.7) V=07 and LM,q & Tddm(d,, 9, 7! Ta@ (3, #), 9/,
where = denotes equality that holds with probability -+ 1. The simplification of LM#T
holds because 'ng(ﬁT( 8,,%), % =—H'X for some vector A of Lagrange multipliers.

The simplifications of W and LM, 1 given in (5.6) and (5.7) hold when using
the GMM estimator of the CMR model provided ¢(Zt, 00) is conditionally uncorrelated

across time periods. These simplifications do not hold, however, for the Wq statistic
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based on the WLS estimator of the PLR model. A different simplification is given below
that is applicable in the latter example.

Next, we consider the context in which the ‘LMb and LRb statistics are defined:
ASSUMPTION 6b: (i) d(m,7) =m‘m/2. There ezist functions {pp,(Wr,,0,7)} such
that gPaTt(WTt’H'T) = mTt(th’ 6, 7) Vt,VT or gPoTt(th’o’T) = —mTt(WTt,ﬂ,f)
VT, V. With probability - 1, 8 solves ﬁT( 8,7) = inf{ﬁT(O,’fr) :0€ 0}, where
pp(8,7) = 251 ppy(Wrpy, 6, 7) -

(i) S=cM for some scalar ¢c#0 andt B¢ for some sequence of non—zero rv’s {¢}.

Assumption 6b is satisfied by ML estimators for finite dimensional parametric models.
Assumption 6b(i) is satisfied by the LS estimator, feasible GLS estimators, and many
M—estimators for nonlinear regression models and PLR models, among others. Assumption
6b(ii) is satisfied with these estimators only when the errors are uncorrelated and homoske-
dastic or when these estimators use preliminary estimators that t=2asform the observations
to achieve uncorrelated and homoskedastic errors. The WLS estimator of the PLR model

is an example of such an estimator. Specifically, for this estimator, we have

(5.8) ppy(Wopy, 6, 7) = 51Y, — 7, (2) — (X, = 79(Z,))" 61?/73(2,) and S =M.
Thus, Assumption 6b holds in this case with ¢ = & = —1. Assumption 6b also holds for ML
estimators with ¢ = ¢ = ~1. Assumption 6b(i) does not hold for the GMM estimator of the
CMR model. In consequence, no LMb or LR, statistic is defined for that example.

Note that Assumption 6b(i) is compatible with the definition of # given in (2.1)
because an estimator 4 that minimizes TJT(G,'T') is in the interior of © with probability
-1 under Assumption 2 or 2** and hence, also minimizes d(mT( 0,7),%) with prob-
ability - 1.

When Assumption 6b(i) bolds the LM, and LR, statistics are defined. The LRy
statistic has the desired asymptotic x2 null distribution, however, only when Assumption
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6b(ii) also holds. Both the LM, and the LR, statistics make use of the restricted
MINPIN estimator 8 :

DEFINITION: A sequence of restricted MINPIN estimators {8} = {3b :T21} is any

sequence of rv’s such that
(5.9) ao(B,, ) = nf{pg(8,7) : € ©, h(6) = 0}
with probability - 1.

Note that ?a and ?b differ in general, because 2 minimizes the minimand
ﬁT( 8,7} subject to the restrictions h(f) =0, whereas ?a minimizes the inner product of
the first order conditions of this minimization problem, i.e. -agyﬁT( 0,'?')-SPET(0,%) , Bubject
to the restrictions.

As with {8}, the consistency of {5} can be established using Theorem L1, 80
the following assumption is straightforward to verify when 00 satisfies the null hypothesis:
ASSUMPTION 5b: 8, B g, . |

By definition,

LM, 1 = TPy, MR (BRSO YAy a8 S0, (3, 7) and
LR'bT = 2'1‘(?":['(a ' 7) —I_’T(bﬁ'))“él ’

where M, H, and S are as defined above but with 3b in place of 8, . As with LR,

(5.10)

above, the preliminary estimator 7 must be the same in both criterion functions used to
calculate LRy and used to define 3, and 3.
With the WLS estimator of the PLR model, LMyt is a quadratic form in the

vector
(5.11) TELIY, = #(8,) = (X, — 7(Z,))" BIX, — 7))/ 75(2,) -

In addition, LRbT is given simply by the difference between a restricted and an unre-

stricted criterion function;
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T ~ -~ 7 2 -
LRy = B [Yy = #1(Z) — (X — 75(2,))" 6"/ 75(Z;)
T a a s
=B, — 71(2,) — (X, —75(Z,)) 01"/ 74(Z,) -
With the ML estimator, LR’bT is the standard LR test statistic (i.e.,'minus two times the

log of the likelihood ratio).
When Assumptions 2 and 6b(i) (or 2** and 6b(i)) hold, Wiy, and LM . simplify.

(5.12)

. _ 14Ty 8 a2 .
In this case, D=1, M‘f%:TTEIEWFth(wt’ 7o) » J=M", I=MSM,

8 d(my(d,, #),%) = ¥ $pp(8,,7) , M is nonsingular by Assumption 2(b), and Wiy
and LM . are given by
W.p = Th(8) (AN M 1E-)n(8) and
(5.13) . [ij 2 avgela o —lam—la \—lae-1 8 %
LM, g & Tggrp(B,, DM B (AN S0 B ) BN p7(8, ).
Note that in this case LM, q. is the same as LMy p with 8, replaced by 8.

I, in addition to Assumptions 2 and 6b(i) (or 2** and 6b(i}), we have (i) S = cM
or (ii) §=¢&M for some scalar rv &#0, as usually occurs if Assumption 6b(ii) holds,
then (i) Wy or (id) LM, and LM, respectively, simplify:

Wy = Th(d) (BM 1) n(d)/e,
= Tl p (B, M S8, D)/, and
. avir=1 8 = 3 avga
LMy p = Tporpg(d,, DM o0 (B, 7)/E .
The simplification of LM,y uses the fact that -gvd(mT(Fa,?'), 3 (= ﬂ[gpﬁT(@a,’r))
=—H'X for some vector A of Lagrange multipliers. The simplification of LM, uses
the fact that 'gP‘_’T(bb’ ¥) = —H‘§ for some vector # of Lagrange multipliers.
The simplifications of Wr, , LM, and LMym. given in (5.14) apply to the test

statistics based on the WLS estimator of the PLR model, since it satisfies Assumption 6b.

The simplifications also apply to tests based on ML estimators, since the latter also satisfy
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Assumption 6b. In particular, when ﬁT( 6,7) corresponds to the ML estimator, the simpli-
fied version of LM, givenin (5.14) is the standard LM test statistic.

5.2. Asymptotic Results under the Null Hypothesis
We now state the conditions under which the test statistics defined above have the

desired asymptotic x2 null distribution:

THEOREM L.4: Suppose Assumplions 2—4 or 2**, 3, and 4 hold under P and 00 satisfies
the null hypothests. Then the following results hold:
(a) Wy d xf and Assump'tian 2 or 2*%* can be replaced by 2* and 3* if need be,
() LM, 9 x2 provided Assumption 5a also holds,
(c) LR, 4 xf provided Assumptions 5a and 6a hold in place of 3,
(d) LMy d xf provided Assumptions 5b and 6b(3i) also hold, and
(e) LRbT d xf provided Assumptions 5b and 65 hold in place of 3,
2

where 1 is the number of restrictions and X; denoles the chi—square distribution with 1

degrees of freedom.

COMMENTS: 1. The estimation of the infinite dimensional nuisance parameter ) has no
effect on the asymptotic distribution of the test statistics considered here or on the chosen
form of the test statistics. This is analogous to the above estimation results for {4} .

2. The results of Theorem 1.4 can be extended to incorporate "Chow—type" tests of
structural change in semiparametric quels. The extension is analogous to the results of
Andrews and Fair (1988) for parametric models with known breakpoints and to the results
of Andrews (1990b) for parametric models with unknown breakpoints.
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5.5. Local Power Results
Next, we present asymptotic local power (&) results for the W, LM, and LR tests.
These results can be used to approximate the power functions of the tests. We impose one -

of the three following assumptions:

ASSUMPTION 2-{p: The distribution P of the triangular array {WTt t=1, ..., T
T > 1} ¢s such that Assumption 2 holds under P with 6, replaced by IGT = fy+ VT in
part 2(c) and in the definition of vy(-) for some n¢€ RP.

ASSUMPTION 2*—fp: The distribution P of the triangular array {WTt} is such that
Assumption 2* holds under P with 0, replaced by Op = 6, + n/VT in parts 2*%(c) and
(e) and in the definition of vy(r,) in part 2%(d) for some ne€ RP .

ASSUMPTION 2%*—fp: Assumption 2-{p holds with "2” replaced by "2**” everywhere it

appears.

The definition of the rv’s {Woq,} under sequences of local alternatives usually is
quite easy to determine in applications. For example, in the PLR model, the sequence of

models is
(5.15) Yoy, =X{0p +8(Z)+U, ¥Vt=1,...,T, T21

and Wrp, 1is defined by (YTt,XE,Zi) Vt=1,...,T, T>1. In this case,
Assumption 2(c) is satisfied with 6 replaced by 6y under the same conditions on 7 as
are used above to verify Assumption 2(c) for the WLS estimator of the original PLR model
(2.6), viz., Assumptions WLS/PLR 1(e) and 2(c). This follows because with Y, as
defined above, we have |

(5.16) IVTRE(Op, ) = IVT[(rygty X ragg) i dP + VT (ry=rgg) By(rag=7,)/4dP]

and the right—hand side of (5.16) is bounded above by the same expression as in (3.31),

where %j, Tio and dP abbreviate -‘i-j(z), 'rjo(z) , and dP(z), respectively, for

j=1,2,3.
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In the GMM/CMR example, the sequence of CMR models are defined under local
alternatives to be such that ﬂT satisfies

(5.17) E({Zp, 0p)IX,) =0 a8 Vt=1,...,T, T21

and Wo, is defined by (Zd,, XE)' . In this case, Assumption 2(c) with §, replaced by
fp holds trivially, as in (3.26), because

(5.18) VT B4(bp, 7) = vlrE'fEr(Xt)ﬁZTt, 6r)=0 Vr, VI 1.
Local power results are given in the following theorem.

THEOREM L.5: Suppose Assumptions 2—Ip, 3, and 4 or 2**—{p, 3, and 4 hold under P
and 80 satisfies the null hypothesis. Then,

(a) W d xf(éz) and Assumption 2—-{p or 2**—{p can be replaced by 2*—~Ip and 3* if need
be,

(b) LM, 4 xf( 6‘2) provided Assumption 5a holds,

(c) IR, p d xf( 62) provided Assumptions 5a and 6a hold in place of3,

() LMy % x%(8%) provided Assumptions 5b and 6b(i) also hold, and

(e) LRy 1 q xf(&z) provided Assumptions 5b and 66 hold in place of 3,

where t is the number of restrictions, &= q'H'(HVH')"lHn , and xf(&z) denotes the
noncentral chi—square distribution with noncenirality parameter 62 and 1 degrees of

freedom.

COMMENTS: 1. Since T h(f) - Hn, power approximations can be based on 2 x3(62)
distribution, where &2 = Th(fy)’(HVH)'h(dy) . In particular, to approximate the
power of a test against an alternative # when the sample sizeis T, weset §= 0T and
take 62 = Th(4)’(HVEH)"'h(6).

2. Due to the local nature of the alternatives in Theorem 1.5, the approximations
described in Comment 1 usually are more accurate for close alternatives to the null

hypothesis than for distant alternatives.
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3. Local power results, such as those of Theorem 1.5, can be used to gauge and sum-
marize the evidence provided by an hypothesis test in those cases where the test fails to

reject the null hypothesis, see Andrews (1989c).

6. EXAMPLES

In this section, we illustrate how the results of Sections 2—5 can be applied in
sefreral examples. We do not, however, use the results above to give complete proofs of the
asymptotic normality of the estimators considered. Rather, the purpose of this section is
to show what the definitions and assumptions introduced above reduce to in particular
examples. For brevity, we concentrate our discussion on two of the key assumptions used
above to obtain asymptotic normality of MINPIN estimators, viz., the consistency of 7
(the second part of Assumption 2(b) or 2*(b)) and the asymptotic orthogonality condition
(Assumption 2(c)). Sufficient conditions for the first part of Assumption 2(b) and Assump-
tion 2(e.) are discussed in ASEM:II for some of the examples.

The examples discussed in this section are examples (3)—(7) listed in the Introduc-
tion. These examples have been chosen because each illustrates a different feature of the
results given in Sections 2-5. In addition, most of the examples concern estimators for
which no proof of yT—consistency and asymptotic normality is currently available in the
literature. None of the LM and LR tests discussed in the examples are considered else-

where in the literature.

6.1. Regression with Unobserved Risk Variables
In contrast to the GMM/CMR and WLS/PLR examples discussed above, the model
considered here is inherently a time series model. This model and the estimation procedure

considered for it were first analyzed by Pagan and Ullah (1988). Pagan and Ullah did not,
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however, provide a proof of the /T—consistency and asymptotic normality of their
estimator.

The model under consideration is & regression model with an unobserved regressor
o2 . 0% is a risk variable that equals the conditional variance of an observed rv ¥, given

%
an information set 7, (i.e. o2 = B((9, —E(¥,|7,))2|7,)) . The model is

. 2 —
(6.1.1) Y, =X;0,0+ 00y + U, for t=1,..., T,

where Y, and X, are observed dependent and regressor variables respectively and U, is
an unobserved error. It is assumed that E(U,|F)})=0 as, X, is F,—measurable,
E(¥,|7,) = E(%,]V;,) as. for some F,—measurable random vector V,, , and the o—fields
{Tt} are non—decreasing in t. For notational simplicity we take af to be a scalar and
the remainder of the regression function to be linear in 8,0 - Neither is necessary. See the
reference above for descriptions of and references to various applications of this model.

The model (6.1.1) can be re—written as
(6.1.2) Y, =X 0,0+ ¢20, + U, = X;6,+ 0, ,
where ¢ =9 —E(y,|V;,) , th =U, + (af— ¢f)920 , Xy= (X, ¢3)’ , and
By = (8, 020)' . Note that E(T,[7,)=0 as., but Eqbfflt does not equal zero in
general.

Let 7;(+) and 7,(-) denote nonparametric estimators of

(6-1-3) TIO(.) = E("btlvlt = ') and 7'20(') = E((¢t _E('I’tlvzt = '))2|v2t = ') ;
respectively, where V2t is some Tt—measurable random vector. Pagan and Ullah suggest
estimating 80 by applying an instrumental variables (IV) procedure to (6.1.2) in which

2 . - - ..
the unobserved rv ¢, is replaced by the proxy ¢f =(¥, - Tl(vlt))z and the IV is given
by Z, = (X{, #o(V,,)) . Thatis,

-1
- _ T- - , T.
(6.1.4) b= [Elztxt] $12,Y,,
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where Xt = (X¢, &f) .
The estimator § is a MINPIN estimator with W, = (Y,, X{, ¥, Vi,, V5,)
, , 2 Xy
d(m,7) = m’m/2, mt(o:'r) = (Yt - xt 01 - (ﬁt - Tl(vlt)) 02) )
T9(Vay)
(6.1.5) X

¥=151

t X4
1
72(Vad)| 72(Vay)

r=(r;,79)" , and =0, 6,) .} Theorem 1.2 sbove can be used to establish the

JT—consistency and asymptotic normality of # by verifying Assumption 2.

When Assumption 2 holds, the asymptotic covariance matrix V of @ is

v=MIsM™), where
T T . _.. 1T s <
(6.1.6) S = lunT ¥! I EUUZZ , M=]1limgE EZX:, and
Tao 8=1t=1 & '8 Tw
Z, = (X{ mgq(Vog) -
Assumption 2(c) is satisfied in this model only if 7, is consistent for 7, at rate

Tll 4. We have
VT 238, 7
@11 =@ A ) - e I, () dRy(x, vy, v

T P40 (7)) = g IR, oDy, vy, v,)
where P.(-,-,+) denotes the distribution of (X{ Vip V2t) If the right—hand side of
(6.1.7) converges in probability to zero, then Assumption 2(c) holds. For example, if X,
is bounded, 7,(Vy,) is bounded with probability + 1, and {V,,:121} are identically
distributed, then Assumption 2(c) holds if
(6.1.8) T1/4 U(‘i‘l(vl) - TlO(vl))zdP(vl)] 12 2.0 a8 Too,

where P(-) denotes the distribution of V.
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When Assumption 2(e) is verified using Theorem II.7 of ASEM:II, which allows for
strong mixing and near-epoch dependent rv’s, the metric py(-,-) is such that the second
part of Assumption 2(b) holds provided

. 2
J vl('rl(vl) - 110(v)) dvy B0 and
(6.1.9) X 9
where V,, and V,, are bounded rv’s that take values in 4] and Vo respectively.
The W, LM, and LR tests for testing the restrictions Hy: h( 00) = 0 are applicable
in this example. For the LR test, however, the following additional conditions are needed:

(i) E(ﬁflit) = o* a.5. for some constant o® > 0 and

(6.1.10) o
' (ii) {U,Z, :¢2 1} is uncorrelated.

*

Under these conditions, Assumption 6a holds with b = o and the LR test statistic is

given by
(6111) LR g = Ting(d,, ) 3mg(d,, 7) - By(B5) me(BA)/5,

where f_ is a restricted estimator of 6, that minimizes d(fq(4,7), 7) over © subject

to b(f) =0 and 5% is some estimator of o° that is consistent under the null.

6.2. Weighted Censored LAD Estimation of the Censored Regression Model under
Conditional Median Restrictions |

This example makes use of Assumption 2* rather than Assumption 2, because the
criterion function considered is not everywhere differentiablein 4.

The T—consistency and asymptotic normality of the weighted censored least abso-
lute deviations (WC-LAD) estimator considered here has not been established in the
literature. Such results have been established, however, for a one—step version of the

WC-LAD estimator, see Newey and Powell (1990). The one—step estimator is also a
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MINPIN estimator, but for brevity we do not discuss it here. We note that the method of
this paper allows one to establish asymptotic normality of the WC—LAD estimator and |
one-step versions of it without sample splitting and for the case of temporally dependent
Iv’s.

The model is
(6.2.1) Y, = min{X;6,+ U, C},t=12,..., T,

where Y, isan observed dependent variable, X, isan observed p—vector of regressors,
C, is an observed censoring point, and U, is an unobserved error with conditional median
zero given Z, = (Xi, Ct)' . For simplicity, {(Yt’ X, Uy, Ct) :t=1,2, ...} is assumed
to be identically distributed.

Suppose Ut has an absolutely continuous distribution function in a neighborhood
of 0 conditional on Z, . Denote its value at 0 by -ro(Zt) . Let 7{Z,) be an estimator

of TO(Zt)' A weighted censored LAD estimator # of 00 minimizes
To - .
(6.2.2) 212721 Y, ~ min{X{ ¥4, Ce}l
over f¢€ © ¢ RP. Under suitable assumptions, it also solves the first order conditions
T,- y 5
(6.2.3) 0 = B12H(Z,)1(X; @ < C,)egn(Y, — X{ )X,
with probability + 1. Thus, ¢ is a MINPIN estimator with
‘ d(m,y) = m’'m/2 and
(6.2.4) 6,r) = 2r(2,)1(X; 0 Y, - X;6)X
mt( 1) = 27( t) ( % <Ct)55n( g"xta) t°

Note that mt(a,r) is not everywhere differentiable in 4.

When Assumption 2* holds, the asymptotic covariance matrix V of 9 is

B P g2 , ,
V=MSM"", where M = -4E75(2,)1(X; 6, < C,)X,X{ and

(6.2.5) 4T T
§ = '}i?: Tsil tﬁlro(zs)l()(éoo < C,)sgn(U)7o(Z,)1(X 14, < C,)sgn(U )X X! .

When the observations are independent or the error Ut has conditional median zero given
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(X,, C,» X, C,, U) Vs # t, the asymptotic covariance matrix of § simplifies to

. -1
(6.2.6) V= [E4T0(xt)l(X£ , < ct)xtx;] .

In consequence, @ attains the semiparametric asymptotic efficiency bound for the model
(6.2.1), see Newey and Powell (1990), when the observations are iid.

In this example, the second part of Assumption 2*(a) holds if (6.2.3) holds.
Assumption 2*(c) holds trivially for any estimator 7 of 7, by (3.26)—(3.27), because

(627 JT @4(4, 7) = VT En(Z)1(X; 6, < C,Jegn(U)X, = 0,

since E(sgn(U,)|Z;) =0 a.s. by the conditional median zero assumption on U, .
When pseudo—metric of (3.32) is used in verifying Assumption 2*(e), we have
28 {(6:7), (8, 7)) = Ellm,(8,7) = m (6, ro)II?
(6.2.8)
= 4/[(x,0)1(x" 8 < c)sga(u—x(-89))-rp(x)1{x" B <clsga(u) x| 2aP(xcn) ,

where P(-,-,-) denotes the distribution of (Xt, Gt, Ut) . With this pseudo-metric,
(L (6y) 7o) (i-e., the second part of Assumption 2*(b) holds), if

(8) J(Hx,c) = 7g(x,0)) x| %dP(x,c) B0,
(6.2.9) (b) #-4,B0, and
(c) P(X;0,= C)=0,

where P(:,-) denotes the distribution of (Xt, C;) - Part (b) just requires the standard
sort of consistency for a finite dimensional estimator and can be established by Theorem 1.1
above.

The LM and LR tests do not apply in this example because qeither Assumption 2
nor 2** holds. The Wald test, however, does apply. |

This example can be extended to the case where the errors in the model (6.2.1) have
some constant conditional quantile other than the median. For brevity, we do not discuss

this extension.
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6.8. MAD-DUC Estimalion of Indez Regression Models

This example exhibits the case where the preliminary infinite dimensional nuisance
parameter estimator 7 is a function of the finite dimensional parameter #. This compli-
cates the way in which MAD-DUC estimators are defined as MINPIN estimators, but still
allows the results of Sections 2—5 above to be applied to them.

Examples of MAD-DUC estimators include Ichimura’s (1985), Ichimura and Lee’s
(1990), and Klein and Spady’s (1987) estimators of single index, multiple index, and biﬁa.ry
choice models respectively. | Proofs of the yT—consistency and asymptotic normality of
these estimators are already available in the literature (for the case of independent observa-
tions). Other estimators, for which yT~consistency and asymptotic normality results are
not available in the literature, are also included in the MAD-DUC class described below.
The LM and LR test statistics discussed below have not been considered elsewhere in the
literature.

The model is
(6.3.1) Y, = ¢(h(X;, ) + U, for t=1,.., T,
where E(U,|X,) =0 a8, {W}={(Y,X;) :t21} ate identically distributed, the
multiple index function  h(.,:): RL « RP 4 Rka is known, the transformation

o) : Rka'-tR is unknown, and the distribution of U, is unspecified. Additional
assumptions are needed to identify the parameter 00 . These assumptions vary from one
index model to the next, 50 we do not specify such assumptions here. Numerous economet-
ric models with latent errors of unspecified distribution are of the index regression form
including censored and truncated regression and qualitative choice models (although there
is a loss of information in many such models if they are viewed solely as index regression

models). In the binary choice model, for example, the function ¢(-) is given by
ov) = P(Yt=1|h(xt,00) =v).



MAD-DUC estimators of §;, Minimize the Average "Distance" between the Depen-
dent variable Unconditional and Conditional on the index: # is defined to minimize

(632)  FEINY,, #(6 h(X,, 0)))

over f€ 6. Here, #(:,:) is an estimator of 7y(+,-), 7((+,*) is defined by

(6.3.3) 7o(6v) = E(Y,|h(X,, §) = v) for ve Rk“ ,

and 1(-,-) is some "distance" function. Note that 7,(f,, -) = ¢(-) . Ichimura's (1985)
and Ichimura and Lee's (1990) estimators take
(6.3.4) nY,, 7) = (¥, —n?/2.
Klein and Spady’s (1987) estimator takes
(6.3.5) WY, 1) = Y, o7 (1- Yt)ln(l—'r)
and applies in the binary choice model in which Yt equals 0 or 1 and ka = 1. Numerous
other functions 5{-,-) can be considered.

The estimator 7(-,-) consists of a family of univariate nonparametric regression
estimators of Y, on h(Xt, f) — one for each value of §€ © ¢ RP . In each of the papers
referred to above, kernel estimators are used. Other nonparametric methods also could be

used.

MAD-DUC estimators are MINPIN estimators with
(636)  d(m,2) = m'm/2 and m(6,7) = 1 (Y,, (6, h(X,, §))T5r(0, h(X,, ),

where 97(-,-) denotes the derivative of 7(-,-) with respect to its second argument.
When Assumption 2 holds, the asymptotic covariance matrix V of a MAD-DUC

estimator is given by
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V=M1sM 1, where
S=1imkE I E (Y., o)’ (Y,, o,)H H
1m ﬂ' !w ﬂ’ ,w ”
Tap Tg=1 t=1 8" 7B 13 T

M = Eq¥Y,, got)Htﬂi, v = v(h(Xt, 80)) ,

_[ 8 d * 8
Ht = [‘a‘g?h(xt, 90) - E[‘g‘g‘rh(xt: 90)|h(xt: 00)]] w‘i’(h(xt: 90)) ’
and 9"(y,p) denotes d2q(y,(p)/d¢p2 . The expression for M uses the assumption that

(6.3.7)

E(n(Y,, ¢,)|X,) = 0 a.5., which usually follows from the conditions o 7{-,+) needed for
consistency of . This assumption holds for 7(,+) as defined in (6.3.4) and (6.3.5). The
vector Ht arises in the expressions above because it can be shown to equal
-g-g-ro(ao, h(Xt, 00)) . When estimating V , the appropriate sample analogue of Ht to use
is #1(8,n(x,, 9) + [B%h(xt, b)] "), b(x,, 9) , where #I) denotes the deriva-
tive of 7 with respect to its j-th argument.

if {Wt} is an independent sequence of rv’s and
(638)  E(n'(Y, 0 Ih(X,, §)) = E(1"(Y,, 0 |B(X,, 6;)) s,
for some scalar c¢#0 , then Assumption 6b holds with th(Wt, 8, 7)
= (Y, 7(6, h(X,, ))) and the LR, statistic for testing H,: h(6,) =0 is asymptot-
ically chi-square under the null hypothesis. In addition, the W, LMa , and LMb
statistics simplify as in (5.14). With Ichimura’s and Ichimura and Lee’s estimators, (6.3.8)
holds with ¢ =~o® if E(UZ|b(X,, 6;)) = o> as. The latter does not hold, however, in
most index models. In the binary choice model, (6.3.8) holds for Klein and Spady’s esti-
mator with ¢ = 1. In this case, the LR, statistic ig given by

LRyp = —2z'f [Yt & 78, h(X,, 8,)) + (1 - Y, )m(1 - 73, h(X,, ﬁb)))]

(6.3.9) T . X ar :
+ 28] [Yt & H8, h(X,, B) + (1 - Y )a(1 — 78, h(X,, 0)))] ,

where 79b is the restricted MINPIN estimator defined in Section 5. Note also that Klein
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and Spady’s estimator attains the semiparametric asymptotic efficiency bound when {Wt}
are independent.
The asymptotic orthogonality condition, Assumption 2(c), holds for MAD-DUC

estimators if

|vr Geecmzcey, . ) |
_ " VT (i, (8, B(X,, 6,))) [gyf(oo, k(X,, 4y)) —-gvfo(eo, h(X,, 00))] ") —t
< (o)t Fap ) [sz (RN eI

(6.3.10) 1/s
Onre . 1
+ 1 2 [lP1#2 0y) - PGP aB(v.0) / s]

Bo

where 61 + 62 =1/2, r21, 821, 1/r+1fs=1, P(-) denotes the distribution of
(X, fp) B(-,") denotes the distribution of [h(Xt, fo): 5o-h(X,, 90)] and #) and
'r{(]-’) denote the derivatives of 7 and Ty With respect to their j-th arguments. The
equality  in (6.3.10) holds provided Eqg (Y., (8, h(X,, 00))|Xt)
= En’(¢,, (6, h(X,, 00))|Xt) a.s., using the fact that
d :
E[—avro(ﬂo, h(X,, 6,)) |(X,, 6) = v] = E(H, |h(X,, f)) = v) = 0 Vv. The former condi-
tion holds, for example, with Ichimura’s, Ichimura and Lee’s, and Klein and Spady’s

estimators. )
For Ichimura’s and Ichimura and Lee’s estimators, sufficient conditions for (6.3.10)

and Assumption 2(c) are

- 1/2
[0 vrro( 8 ap()] "y,

6311) T :["‘i'(1)(00,v)—r(()1)(00,v)||2dP(v)]1/ ’Bo,

T 2 'J|| %(2)(oo,v)-—-f(()z)(ﬁo,v)||4dp(v)] Py, , and E"B%Th(xt,ao)”4 <w.

For Klein and Spady’s estimator, sufficient conditions for (6.3.10) and Assumption 2(c) are



67

(6.3.11) plus

(6.3.12) inf min{ |78y V), 11 =6, v)[} > € with probability - 1 for some ¢ >0,
v

where the inf is taken over all v in the support of h(Xt, 00) .
For py asin (3.23), the second part of Assumption 2(b) holds if

. 1/2
o) ¢ [0+ 0t9), 38 m) - 7 g wIPap(um) /
1/2
+ [t + ot o 2172 m) - {8y PaPiv.) /
(6.3.13) +[Jra + o), 18 = 1 + ), 7l BN (0g)

1/2
+ z’782)(80,v)||2dP(u,v,z)] /

Bo

where P(-,-) denotes the distribution of (U,, h(X,, 6;)) and P(-,-,-) denotes the distri-
. a
bution of [Ut, h(X,, B, 5orb(X,, ao)] .
For Ichimura’s and Ichimura and Lee’s estimators, sufficient conditions for (6.3.13)

are

(138 9 = ot 2P R0, 1710y, v) - o gy, wiltar() B,

(6.3.14) jn {24, v) - 1§24, IPap(v) B0, BV} <o,

8
B8, h(X o < =, £\ 2 (8, b(X ) < &, and E“E,g,-h(xt,ao)u <.

The same conditions plus (6.3.12) suffice for Klein and Spady’s estimator. In this case,
EU% < o holds trivially, since lUtI is a bounded rv.

6.4. Three—step Estimation of Sample Selection Models
This example illustrates the case where a preliminary finite dimensional nuisance
parameter estimator appears that is not asymptotically orthogonal to the estimator of

.~ interest. In this case, Assumption 2(c) fails. It is shown how the definition of the MINPIN
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estimator can be adjusted to circumvent this problem and allow the results of Sections 2—5
to be applied.

The three—step sample selection estimator considered here has not been considered
elsewhere in the literature. It is quite similar, however, to the two—step estimators of
Powell (1987) and Newey (1988). The difference is that it uses 8 WLS estimator that takes
account of the heteroskedasticity that necessarily arises in the equation that is estimated,
whereas the two—step estimators of Powell and Newey use the ordinary LS estimator.
Some efficiency gains should result from the use of the WLS estimator.

The model is given by

?t = i{:ﬁﬂ +U; and D, = l(h(Zt, ao) +e> 0), where

(Y, Dy, X,, Z,) = (¥, D,, Dt,)'(tDt, Z,) areobserved for t=1, ..., T,

(6.4.1)

i’t is unobserved when Dt =0, it may or may not be observed when Dt =0, the real
function h(-,-) is known, {(U,, ¢, X,,Z,):t 21} are identically distributed, and
(U;,¢) is independent of (X,,Z,) and has unknown distribution. ~Additional
assumptions must be imposed to identify a, and ﬁo , €.8., see Powell (1987) and Newey
(1988). Such assumptions allow X, and Z, to have elements in common. The first

equation of model (6.4.1) multiplied by D, can be re—written as
Y, =X, + Dtg(h(zt, ao)) + p, , where
(642)  §(v) = B(U,l¢, > ), b = D(U, ~ glb(Z, a)) , and
E(utlDt =1,X,, Zt) =0 as.
The function g(:): R - R is unknown, since (U,, ¢,) has unknown distribution.
The three—step estimator # of ﬁo is defined as follows. First; one purges Yt and
X, of their correlation with h(Zt, ao) by subtracting from Y, and X, nonparametric

estimates of their conditional expectations given h(Xt, ao) and Dt =1, where a prelim-

inary estimator & of o is used in computing the nonparametric estimates. Second, one
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weights the transformed Yt and X, variables using a nonparametric estimate of the con-
ditional variance of 4, given h(Zt, ao) and D; = 1. Third, one regresses the weighted
and transformed Y, variables on the weighted and transformed xt variables to obtain a
WLS estimator f of ﬁo .

As it happens, the asymptotic distribution of the three—step estimator B depends
on the choice of preliminary estimator & . Thas, if onertakes 00 to equal ﬂo and one
takes o, to be part of the nuisance parameter 7,, then the orthogonality condition 2(c)
fails to hold. This problem can be circumvented by defining 6, to equal (a, ﬂé)' and
8 to equal (e, ﬁ) , i.e. by treating the nuisance parameter oy a8 though it is part of
the parameter of interest. This same method of avoiding failures of the orthogonality con-
dition can be applied in other examples as well.

To compute the three—step estimator B, one needs estimates of rjo(ao, h(Zt, ay))
for t=1,...,T and j=1, 2,3, where

ro(@v) = E(Y,|b(Z,, @) = v, D, = 1),
(6:43) Toola@v) = E(X,|b(Z;, a} = v,D, = 1), and

Taol@v) = Var(Y, — X!, |h(Z,,@) = v, Dy =1).
Tao(a,v) is defined such that 74,(ay, v) = E(pf|h(zt, ag) =v, D, = 1) . As an altern-
ative to the definition of (6.4.3), rao(a,v) could be defined to be E(p%|h(zt, a)=yv,
D, =1). The definition of Tgg(®v) in (6.4.3), however, has the advantage t&t
fao(a,v) can be estimated via a nonparametric regression with variables that are con-
structed using preliminary estimators of ﬁnit-erdimensiona.l parameters rather than infinite

dimensional parameters.

Let '?-j(-,-) denote an estimator of Tjo(' ,») for j=1,2,3. In practice, one only
needs to compute i'j(&,-) for j=1,2,3. 7,(&-) and To() are obtained by nonpar-
ametric regressions of Y, and X, on h(Z,, &) using the observations for which D, =1.

R s a2
Note that 74,(e,v) = E((Y,-X{5,)"|h(Z,,a) = v, D, = 1) —(ryplav) - Tool@v) By)” -
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Thus, one can take 74(&-)= 74 (&) —(7y(&-) - %2(&,-)'3)2 , where T (&-) is
obtained by a nonparametric regression of (Y, — X{ﬁ)z on h(Z,, &) using the observa-
tions for which D, = 1 and J is some consistent estimator of f,. The most convenient
choice for B is just the two—step estimator of fy, which is the LS estimator of f, from
the regression of Y, — 7,(& h(Z,, @) on X, — 7,(& h(Z,, @) .

Let the estimator & used above be a semiparametric MINPIN estimator of ay
based on the second equatioﬁ of (6.4.1). Suppose & satisfies Assumption 2 and has defin-
ing functions d(m,7) =m’'m/2 and m,(6,7)=m, (e 7,), where 7, denotes some
nuisance parameter that enters in the estimation of ag - For example, & could be Klein
and Spady’s (1987) or Ichimura’s (1885) semiparametric estimator for the bina.ry choice
model (see Example 6.3).

The three—step estimator B of ﬂo is obtained by regressing

(Y, — #,(& b(Z,, @))/33/%(&, h(Z,, &) on
(X, — (&, B(Z,, @))/73/ % (& h(Z,, &)

using the observations where D, =1 . Letting 9= (&',[3’)' , wesee that & is a
MINPIN estimator of §) = (ap,85) with W, = (YD, X;, t)', 7= (1,75707g) s

(6.4.4)

d(m,7) =m‘m/2, and

(6.4.5)
m2t(asf) = Dt[Yt - f]_(ash(zt’ a)) - (xt - Tz(a! h(ztia)))’ﬂ]
x [xt - Tz(a! h(Zt,a))]/ra(a, h(zt’ a)) .
When Assumption 2 holds and the observations {W,:t21} are temporally

independent, the asymptotic covariance matrix V of # is given by
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g -l Ao yy~Lyy,ag-l
| Mg M s, MMM,
v=Mlsm Yy =
MMMt M MpL(s , + MpMTTs MMM
S, 0 M, 0

where S = , '
0 5, M, M,

3
Sy = Emyy(ay, 740)my4(ag: 749)”
S, = ED[X, — 7oqty 1%y, a0) X, = 7a0(0r BZpsaoD/EGE |B(Z,00), Dy=1)
M, = Eggom, (ap, 40)
My = B amg,(0,7g) = ED,[X, — maq(aq,h(Zy,a0))] 1B3753)(aqy B(Zy,0)

- .,(2)(00, h(zt,ao))]rh Z,00) [E(k2 | n(Z,, a), D, = 1), and
M, = Bglmg,(f7) = =5,

Here, 'rgg)( ,* . and 7(2)( +) denote the derivatives of 7,4(-,) and Tool*s*) » Tespec-

(6.4.6)

tively, with respect to their (scalar) second argument. The expression given for S, uses
the fact that E(uZ|h(Z, ay), X,, Dy = 1) = B(42|1(Z,, ap), Dy =1) as. An estimator
of V can be constructed by taking sample analogues of the quantities above.

‘For the case of temporally dependent observations, the asymptotic covariance

matrix V of @ is as in (6.4.6) except that S is given by %11: Va.t[vlrﬂ'fmt(ﬂo, T.O)] .

Note that Powell’s (1987) and Newey’s (1988) two—step estimators equal the three-
step estimator J when the latter is defined with "‘rs(&, h(Z;, @) =1. Powell uses
(higher order bias reducing) kernel estimators to estimate 7,4 and 7y, , whereas Newey
uses series estimators.

Neither Assumption 6a nor 6b need hold in this example. Thus, only the W and
LM a statistics are available for testing parametric restrictions.

To verify Assumption 2(c) for the three—step estimator, we treat mlt(a, 7,) and

mzt(ﬂ,-r) separately. The former is assumed to satisfy Assumption 2(c) by choice of &
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For the latter, we have

VT Emgy(8, 7)| . = V1D = ))ry (e, v) — 7(ap, v)]
« [rgq(ags ¥) = oy, M)/ 75(aq, ¥MP(D;7)
+VI[UD = 1)(ryglag, v) - Ty, ) 6y
« [rgq(ay v) = Falag: W)/ 5(ag, YIP(D;v)

(6.4.7)

where P(-,-) denotes the distribution of (Dt’ h(Zt, ao)) . Hence, Assumption 2(c) holds
if
1/4{[1en _ 1ys 2 1/2
T UI(D = 1)(#;(agv) — 730(ag¥)) dP(D,v)] Bo,
(6.4.8) T1/4U1(D = 1)||«‘r2(a0,v)-r20(a0,v)||2dp(n,v)] 2, , and

inf|74(a,, v)| 2 € with probability - 1 for some ¢ >0,
vey

where ¥V denotes the suppo:’ of h(Zt, ao) .

As stated above, Assumption 2(c) fails when one tries to establish the asymptotic
normality of f# with & defined as part of the nuisance parameter 7 rather than as part
of &. The difference in Assumption 2(c) between these cases is that in the former &
enters the expression Emzt(ﬂo, 7) | p=7 Whereas in the latter @y, enters this expression.

Next, we consider the second part of Assumption 2(b). With py defined by (3.23),

we have

py(7, 7g) € [Ellmn( ag 74) —my (o, 'r40)||2| ry=? 4] e
(6.4.9) \ 1/2
+ [E"m2t(00’ 7) —mgy (8 ) |r=-‘r] '
By choice of &, the first summand on the right—hand side of of (6.4.9) is assumed to have
probabih’fy limit zero. The second summand of (6.4.9) squared equals
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[1D = D) = 7y(7) + () = 7)) By}
(6.4.10) x [x = Fo(W)]/74(¥) + Mraq(¥) — To(¥)}/74(v)
+ pbx = Tp(V)][rag(v) — Fo(M/(F4(M)7ag(v)I2aP(kD,x,v) ,
where -rjo(v) and i-j(v) abbreviate rjo(ao, v) and %j(ao, v) for j=1,2,3 and
P(-,+,*,*) denotes the distribution of ('“t’ D,, X, h(Zt, go)) . Thus, sufficient conditions

for the second summand of (6.4.9) to have probability limit zero are
s 4 _
[10 = Dliragw) - rlagml*aPDW) RO for §=1,2,3,

(6.4.11) in]f)| Taolag¥)| > 0, in)i;l’r3(a0,v)| 2 ¢ with probability - 1 for some ¢ > 0,
vE Y€

8
ED,U} <o, and EDJIX,|° <@,

where P(-,-) denotes the distribution of (Dy, h(Zy, ap)) -

6.5. Adaptive Linear Regression Estimation with Asymmetric Errors

This example illustrates how the MINPIN results given above can be applied to a
model in which some parameters are adaptively estimable, while others are not. The
MINPIN results can be used to obtain the y/T—consistency and asymptotic normality of
estimators of the adaptively estimable parameters. The model considered is inherently a
time series model. The estimator considered has not been considered elsewhere in the Lit-
erature (to the best of my knowledge). In contrast to most of the previous examples, the
estimator utilizes a preliminary nonparametric density estimator rather than a nonpar-
ametric regression estimator.

The model is
(6.5.1) Yt=){£00+Ut fort=1, ..., T,

where (i) {(X,, U,):t2 1} is a stationary asymptotically weakly dependent (e.g., near-
epoch dependeni) sequence of square integrable rv’s in RP and R respectively, (ii) Xt
and U, are independent Vt', (i) E(X; —EX )X, - EX,)’ is nonsingular,
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(iv) EX, =0 and (v) for some integer r20, {U,:t21} is an r—th order Markov
process with density 7,(u,fu,_ 4, ..., ) of U, givea (U,_,, ..., i) (with
respect to some measure p) H r=0, the errors {U} are independent and
Toluglu;_y» ---» u_,) denotes 7,(u,), the unconditional density of U, . This case is
considered by Bickel (1982), although Bickel considers a different estimator from the one
discussed below. Bickel’s estimator is a8 one—step version of the one considered below.

Under assumptions (i)—(iii), the location of U, is not specified, and hence, assump-
tion (iv) can always be made to hold by redefining X, and Ut . Assumption (jii) implies
that Xt does not corntain an intercept. The intercept is not deemed important here and is
incorporated in the error Ut . Since the error need not be symmetric about some point,
there is no unambiguous deﬁnition of the intercept in this example.

We consider an estimator # of the slope parameters 80 that is adaptive in the
sense of being asymptotically efficient for any distribution of the errors {U;} within a
given nonparametric class of distributions. Let 7 be an estimator of the density Ty iven
Ut—l y teey Ut—r . For example, for 121, 7 could be the ratio of nonparametric esti-
mators of the densities of (Ut’ vens Ut—r) and (Ut-—l’ ceey Ut_!) based on the LS
residuals {ﬁt} . An estimator & of the regression slope parameters f, is defined to
minimize
(6.5.2) S Tlog U ()| U,_y(8), ..., U,_(#)
over #€©CRP, where Ut(ﬂ) =Y, —X;0. The estimator ¢ is a MINPIN estimator
with W, = (Y,, X;)",

r 'r(j)(U (0|0, _,(8),...,U,__(6)
=m’ = t Lt AN e |
(053)  dm) =mrmf2, aad m{br) = B RO O U O i

where 71J) denotes the derivative of  with respect to its j—th argument.

When Assumption 2 holds, the asymptotic covariance matrix V of 8 is
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e or oY -

—1 -1
6.5.4 v=sl=(mM1=|z :£E EX, X; ,
(6.5.4) (-M) =0k=0 20 Ptk

where 76) and 7, abbreviate 7{N(U,|U,_j,eee, U,_) and 1y(U,[U, y,..., U, )
respectively. This is the same covariance matrix as that of the maximum likelihood

estimator when the latter uses the true conditional density To - Thus, & is adaptive and
asymptotically efficient.
Assumption 6b holds in this example with

(655)  ppy(W,, 8, 7) = —log (U(O)|T,_y(8), ..., Uy_(9)
and ¢=¢&=-1. Thus, the LR, statistic for testihg Hy: h(BO) =0 is given by

T - -
LR, = -2 [zl log {U,(B ) U;_y(B)s +--s Uy_(B)

T . . - -

- 3T 1og HUW®I Uy 4B, -, Ty,

where 8 is the restricted estimator that minimizes (6.5.2) over #€© subject to the

(6.5.6)

restrictions. The W, LM_, and LMb statistics simplify as in (5.14).

a L]
Assumption 2(c) holds trivially in this example by (3.26)—(3.27), because

(j)(
r (U U e Uy )
6.5.7 JI’mT‘*B,‘r -_—JPEE il X ._—O,VT, VT?I,

provided  B|7(U,|(U,_,, .00 Uy /MU, IU,_, oo Uy )l <o Vi=1, ..o,
gsing the independence of Ut and Xt and the mean zero property of Xt .

If Assumption 2(e) is verified using the pseudo—metric of (3.24), as is convenient for
the case of dependent errors (r> 1), see Tﬁeorem IL7 of ASEM:II, then X, and U,
must be bounded (or the observations where X, and the residuals flt lie outside a given
bounded region must be trimmed out) and the second part of Assumption 2(b) holds if
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i)y 2

j | SPTRPP “t-r)__r((lj)(“tlut—l’ ey U )
U Huglo, 45 --os ut_!) (A C EMETRETRRIL )

(6.5.8)
' udutx cen xdut__rnﬂ

forall j=0, ..., 1, where ¥ (¢ R”'l) denotes the support of (Ut’ ceny Ut—r) .
Alternatively, if Assumption 2(e) is verified using the pseudo—metric of (3.23), as is
convenient for the case of independent errors (r =0), see Theorems II.4 and IL.5 of

ASEM:1I, then the second part of Assumption 2(b) holds if

(6.5.9) oy, 7o) EIIX, | = I[T_,(%} 7 )] dP(u) B o,

where P(.) denotes the distribution of U, .

The model discussed above has errors that are homoskedastic but are not necessarily
symmetric. Analogous results can be obtained for (linear and nonlinear) regression models
that have heteroskedastic symmetric errors. See Manski (1984) for the analysis of a one-

step estimator for such models.



APPENDIX

For notational simplicity, we let mp(6) abbreviate my(6,7) and m(f)
abbreviate m(4, -ro) throughout the Appendix except in those places where the depen-
dence on T or 7o mMust be made explicit for rea.sbns of clarity.

The proof of Theorem 1.1 uses the following lemma, which is similar to numerous
results in the literature. The lemma appears in this form in Pdtscher and Prucha (1989,
Lemma 3.1} (with a different proof than that given below) and perhaps elsewhere in the

literature.

LEMMA A-1: Suppose 8§ minimizes ¢ random real function QT(O) over fe© uwith
probability - 1, where © is a pseudo-metric space. If

(a) ;:gIQT(G)-—Q(B)I B0 for some real function Q on © and

b) for every neighborhood ©, of 6., inf Q(6) > Q(4,),

(®) 0 66/8, 0

then 08 00 .

PROOF OF LEMMA A-1: By Assumption (b), given any neighborhood 6, of 80 ,

there exists a constant §> 0 suchthat inf Q(6) > Q(fy) + &. Thus,
66,/8,

(A1) P(Be8/8y) < P(Q) - Q(f) > 90,
where -0 holds provided Q(8) B Q( 6y) - Using Assumptions (a) and (b), the latter
follows from

0 < Q(8) — Q(6,) = QB — QD) + Qp(9) — QU4

A2 N N
(-2 < Q(6) "QT(B) + QT(GO) - Q(ﬂo) + Op(l) <2 %‘éngTw}‘Q(a)l + Op(l) Bo.o



PROOF OF THEOREM 1.1: We show that Assumption 1 implies that conditions (a) and
(b) of Lemma A-1 hold with Q(f)=d(@(6,7),3) and Q(6) = d(m(9, 7o) %) -
Condition (b) holds by Assumption 1(d). Condition (a) follows from

so‘elgld(m'r(aﬁ), %) = d(m(#, Tg)a 70)'
< Solelgld(m-r(ﬂ,‘?), 7) —d(m(6,7),9)| + slelgld(m(aﬁ), %) — d(m(6, 75), 1)

< sup |d(d~y(8,7), 7) —d(m(8,7), 7)| + 0 (1
%e,rg’l (Bp(8,7), 7) — d(m(6,7), 7| + o0,(1)
1EF0

(A.3) .
+ Z‘égld(m(aﬁ): :7) -d(m(ﬂ, To)v 70)'

Bo

b

where "B 0" holds using Assumptions 1(a)—{(c). o

PROOF OF THEOREM 1..2: First we suppose Assumption 2 holds. Element by element
mean value expansions of /T -gvd(ﬁlT( 8), %) about 0, give: Vj=1, ..., p,

op(1) = VTggdtag(®), 3

(A.4) 5., i £ .. . .
= VTgga(g(fy), ) + gyrgpalag(# N0~ &),

where #* is a rv that depends on j and lies on the line segment joining # and #,, and
hence, ¢*B 8, . (See Jennrich (1969) Lemma 3 for the mean value theorem for random
functions.) The first equality holds because 9 minimizes d(@.p(f), 7) and & is in the
interior of | © with probability - 1 by Assumption 2(a). The second equ:;lit:,r actually only
holds with probability - 1, since the mean value expansions require & ¢ 90 .

Below we show that

(a5) w%jd(mT(w), 3) = m?érjd(mwo), 70) + 05(1),
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where Byg;;d(m(ﬂo), 1) = M‘DM , and

(A.6) JT 2 (6;), %) 4 N(0, MDSDM) .

These results, equation (A.4), and the nonsingularity of M‘DM give
(A7) JT(i-g) = M-DMY Famg(0),) + 0p(1) S NQ.V)

To show (A.5), we proceed as follows:

ay?;yzd(ﬁlrp(f‘),’r) = W%%(M’S;d(ﬁﬂﬂ %)

2
() Gl By () (0.

By Assumptions 2(a), (b), and (g),

(A.8)

B (8*) — m(8p)l| < llmp(6*,7) — mp(6*, )l
(A-9) + [[mp(6*,7) — m(6*,7)]| + lm(8*,7) — m(4y, 7o)l Bo.
Using this result, the continuity of -gad(m,'y) at (m(fy),7,) (Assumption 2(f)), the
Assumption 2(b) that 7 B T and the continuous mapping theorem, we get

(A10)  Saw@p(e), ) B Iza(m(8y), 1) = 0,

where the equality holds by Assumptions 2(b), (c), (f), and (g). Using Assumption 2(g) and
Markov’s inequality, it is straightforward to show that W%Zm,r(a*) = Op(l) . This
: J

result and {A.10) imply that the first term of (A.8) is op(l) .

2
Similarly, the continuity of EEgﬂTd(m,-y) at (m(6,), 1) (Assumption 2(f)),
equation (A.9), 7B 7y » and the continuous mapping theorem give

ik g 02
(Al)  gderd(mg(84),5) B grardm(8y)7g) = D
It follows from Assumptions 2(a), (b), and (g) that M = M(ﬂo,'ro) and
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(a12)  |fmp(er) - M < [5mp(e) —Mier, )| + IM(er.5) - MG o)l RO
Equations (A.11) and (A.12) imply that the second term of (A.8) equals
[M'DM]J.(+ op(l) , and hence, (A.5) is established.

To establish equation (A.6), we write

TEAL(0), 9 = VT {558 (y)] Fdlmg(6y). 9
= M VTgd(my(f), 3) + op(1)

using 2(g) provided ,/I'gad(fﬁ.r(ﬂo), y) = Op(l) , a8 we now demonstrate.
By the mean value theorem, the j~th element of yT9=d(my(6,7), ) can be

(A.13)

expanded about (6, 7) to get:

VT5E-d(@(6,7), %)
J
(A.14) 0 rnrn o s 5 ‘s _ o mwn
= ﬁBI;Jd(mT(GO’ T)s 7) + md(m ’7)Jr(mT(00= T) - mT( 80’ T)) ?
where m* is on the line segment joining Mmn(d,, 7) and M@7(f,, 7) , and hence,
m* B m( 00) . (More precisely, (A.14) holds with probability - 1.)
The first term of the right—hand side of (A.14) is op(l) by Assumption 2(c). Also,

&

. : . an .
using Assumption 2(f), md(m ) = [D].i + op(l) , where [D] f denotes the j—th
row of D. Hence, if JT(mp(6,7) - mp(d,7)) = Op(l) , the above results and (A.14)
yield
d = Ay 2 _ R o

(A.15) ﬂ'ﬁd(mT(ﬂo,'r), ¥ = DyT(y(fy, 7) — B3(Gy, 7)) + op(l) .

The proof based on Assumption 2 is complete once we show that
(A16)  wy(#) = VT(my(8), ) - (8, 7)) 4 N(0S),
since this implies that (A.15) and (A.13) hold, which establishes (A.6).

Using Assumption 2(d), one sees that (A.16) holds if wp(F) —vp(r,) B 0. The
latter follows from Assumptions 2(b) and (e) by (3.12).
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Now, we prove the second part of Theorem I.2. Suppose Assumption 2* holds.
Element by element mean value expansions of ,/I‘gvd(m}(ao), %) about @ give:
¥Yj=1, ..., p

(A17) o (1) = Jra%d(m;(ao), 3) = Jl'y%d(ﬂ}(?!), 5)— Wi’—;j«l(m;m, SWT(D - 4y),

-~

where 6* is a rv on the line segment joining # and 8, . and hence, o+ B 60 . The first
equality holds by Assumption 2*(c), because

(A18)  VTEm3(6,), %) = [Gma(8y, D] VIGAmI(6y 1), D)
and wo-mH(6y, 1) = M + 0,(1) by Assumptions 2*(b) acd (g).
By an argument analogous to that used to establish (A.5) above, we have

(A.18) M,Qzazgd(mi:(m, 7) = [M/DM]; + 0,(1) .

This argument uses the fact that Assumptions 2¥(b), (c), (f), and (g) imply that
Fmd(m(8), ) = 0.

Next we show that
(A20)  JTgA@p), D) = [7504d)] VTEzams(®, ) 4 N, M/DSDM) .
Equations (A.17), (A.19), and (A.20) combine to give the desired result.

To show (A.20), first note that 3-‘3,-1?1,}(‘8) =M+ op(l) by Assumptions 2*(a),
(b), and (g). Next, expand ,/I'-&%jd(m,}.(@), 3) sbout m(B,7):

(A.21) yT52-d(m$(8),5) = VT5o-d(m(8,7),3) -ﬁ‘%@d(m*mmmﬂ 8,7)-m(h,7),
J J

where m* is on the line segment joining mp(8,7) and mA(4,7) , and hence,

m* B m( 8y 7o) - The first term on the right—hand side of (A.21) stacked for j=1, ..., v

to form a vector and premultiplied by ['Hgﬂi'i‘( 3)] " s op(l) by Assumption 2¥(a). The

&

matrix md(m*,ﬁ) equals [D]j + op(l) by Assumptions 2*(b) and (f). In addition,
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VT(?,%) = J’I‘(mT(@,i-) —mii.(b,’:-)) converges in distribution to N(0,S) by Assumptions
2*(a), (b), (d), and (e) (by an analogous argument to that of (3.12)). This gives (A.20)

and the proof is complete.

Last, suppose Assumption 2** holds. The difference between Assumptions 2 and
2*%* is that the latter specifies 7 to be finite dimensional and it replaces the stochastic
equicontinuity of {wp()} 8t 7, by Assumption 2**(e). Stochastic equicontinuity of
{vp(-)} is used in the proof above only to show that wq(7) — vp(7)) B(__) . Thus, it
suffices to show that Assumption 2**(e) implies vp(7) ~ vep(7,) B 0.

Foreach j=1, ..., v, a mean value expansion yields
(a22) ) —vpfr) = [ o) I 1),
where * lies on the line segment joining # and 7, . The right—hand side above is
op( 1) under Assumption 2**(e}, since VT(7— 1) = Op(l) and

72 ] = [ (oo - Bm o | |

1:T[8 2
(A.23) < ;‘3"1"3 I [—H;mt {8, 7) — B, (8, f)] |[
Ro,

where g?Emtj(GO’ 1-)| r=r* = E'g?mt 5(00, r)I —r* (which is used in the equality above)
holds by the moment condition in Assumption 2**(e). o
PROOF OF THEOREM 1.3: Under Assumptions 2 or 2**, DED and MEM by the
arguments used in equations (A.9), (A.11), and (A.12). Thus, under these assumptions
plus Assumption 3, 7B7, 7~ 1p I 1 (since J is nonsingular by Assumption 2(h)), and
VBv.

Under Assumption 2*, ﬁT(b,?) R m(f,, 75) by 2*(b), (e), and (g), %8 T by

2

2*(b), and Bigx?d(m"") is continuous at (m(§,, 7). 7,) by 2*(f). Combining these
results gives D 2 D when Assumption 2* holds.
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Next, suppose Assumptions 2* and 3* hold. We show that MEBM as follows. Let

Mj and Mj(ﬂ,'r) denote the j-th columns of M and M(4,7) respectively. With some

abuse of notation, let Emt(b,’r) denote Emt(ﬂ,f) evaluated at (6,7) = (6,7) . We have
. o 19Tim (7 X . .
I - M) < "M i~ T (Emy (B + ege, 7) — Emy(9— eqe; 'r))/(2cT)h

+||%E¥(Emt(-0 + ege;, ) — Emt(a — €7e;, ?))/(25.1.) - %Erf -ag:i-Emt( 8,%)

(A.24) 1.T 8o (s - -
+ ||TsleEmt(a,r) ~M (87 + I, - M)
Since

1 Y a 1 - -
Assumptions 2*(e), 3*(a), and 3%(c) combine to yield A;n Bo. Assumptions 2*(a),
2%(b), 3*(a), and 3*(b) imply Ayp Bo. Assumption 2*(g) implies Agr Bo and
A4TRO' Hence, MBM . Inturn, VBV asabove. o
PROOF OF THEOREM L.4: Under the assumptions, part (a) follows from Theorems 1.2
and 1.3 and the continuous mapping theorem.
Next we establish part (b). Standard arguments give

(A.26) 7R7, ABH, and VBV,

Mean value expansions about 00 yield: Vj=1, ...,p, ¥6=1, ..., 1,
(A.27) Jra%;i(mT(ba)ﬁ) = Jragj«i(mT(eom) + W?';yj;d(mT( 0, VI3, — 8)).
(A28)  VTh(B) = VTh(8) + gh (8,WT(0, - 6)

where 01 and 82 depend on j and s, respectively, and lie on the line segment joining

ﬂa and 00 ,

(A.28)for j=1,...,pand 8=1, ..., r and write them as

and hence, satisfy 6, B g, and 4,B6,. We stack equations (A.27) and
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(A2)  VTZmEg(8,), %) = VTgA(RL(8), 1) + Jy/T(D, - ) and
(A.30) 0 = Hyy'T(8, - 6;)
using the fact that h(8,) = h(fy) =9.

By equation (A.6), ﬂgpd(ﬁ'r(oo)’ ¥) 4 N(Q,7) . By standard arguments, J; Bg.
Hence, using the nonsingularity of J, we get J,J, = JIIJI =L, where (-)~ denotes
some g—inverse and = denotes equality that holds with probability + 1. By Assumptions
4and 52, Hy RH. Pre-multiplication of (A.29) by HyJ] now gives '

Hy (VT ga(ng(3,),3) = Byl (VTG (6,),3) + Hof i, VT(D, — 0)

(A.31) ) X
< HyfVIgA(ma(6)%) § N, B 17 ).

Below we show that

(432)  JTggmy(d,), 9 =0,(1).

Equations (A.26), (A.31), su1 (A.32) yield

(A.33) 17T amo(8,), %) d N, BVE) .

The desired result now follows from equations (A.26) and (A.33) and the continuous
mapping theorem.

For part (b), it remains to show (A.32). With probability - 1, ba is in the interior
of © and there exists arv A of Lagrange multipliers such that

a39)  Gamp(d)n)+H =0,
where H = -3-‘3,—h(?a) . Equations (A.31) and (A.34) combine to give
(A38)  —HyfiEYTR 2 ByfiyTgA(mr(3,)%) = 0,(1)

Since Hzfi‘ﬁ’ BH/IH and Bl s nonsingular, equations (A.34) and (A.35)
imply that yTA = Op(l) and that (A.32) holds.
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We now prove part {c). Suppose that Assumption 6a holds. A two—term Taylor
expansion of d(fr(8,), 7} about 8§ gives

LR,y = 2T[d(my(?,),) - d(my()7) /b

A3) =20 amg (AN, - /6 + (3, 0 gplrdlEg(0g),3)(B, — /6

‘% T(aa - b)'-’g,@; - a)/E’ !
where 03 lies on the line segment joining 3a and 9, and hence, 03 R 00 » Jg 18 defined
implicitly, and " = " holds by the first order conditions for the estimator 9.

Applying the mean value theorem element by element and stacking the equations

yields

VToR(m(3,), ) = VEGA(RL(8), 3) + TvT(D, - 0)
(A.37) -
% J 41,r (-Ba - a)
for a matrix J, that satisfies J, B 7. Pre-multiplying (A.37) by J3J, and substituting
the result in (A.36) gives
LR = Tpord(my(B,), WIaTp) T57aT7 SAMR(B,), M/B
(A.38)
= Tyhd(my(D,), N GlE (D), /b + o (1)

This follows because (A.5), (A.26), and (A.32) imply that Ty =1 D
ToA(m(3,), ) = 0,(1), 7,741, and F-75R0.

Since T7=bJ and HBb by Assumption 6a, V =571+ 0,(1) - In this case,
LMaT simplifies to

(A39) DMy = Tohdag() 0 Flmg(D,), /6 +0,(1) = LRyp + 0y(1)

using -g-ad(ﬁlT( 8,),%) =-H’X, asabove. The desired result now follows from part (b) of

the Theorem.
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The proof of part (d) is the same as that of part (b) given in equations (A.26) to
(A.35) with the following changes: (i) J, J, d(@p(-), %), 8,, J;, and I are
replaced by M, M, ﬁT(-,‘?) , Eb , M;, and S respectively, everywhere they appear,

where M, has j-th row equal to -W‘,zzyj‘ﬁfr(ﬂ ,7) (asin (A.27)), (ii) V and V are

defined by V=737 1 = 1ML and V=777 = MISM™! respectively, and
(iii) the assertion following (A.30) that ,/I'-gﬁT( 8 7) ! N(0,5) is verified by noting that

V25285, ) = VI(Rag(By, 7) — B3(6y, 7)) + VIO=d(m2(0,, 7, 3)

© (A.40) g NGS)

by (A.16) and Assumption 2(c).

The proof of part (e) is the same as that of part (c) given in equations (A.36) to
(A.30) with the following changes. First, consider the case where Jon. (Wo, 4, 7)
= mTt(WTt’ 6,7} Yt<T, T>1 in Assumption 6b. (In this case, the constant ¢ in
Assumptior 6b(ii) is positive.) The changes are: (i)vl’d(ﬁT(-), M, 3a y LRyp s b, Jq
JysJ, 1,7, b, and LM, are replaced by pm(-,7) , bb, LRy, &, Mg, M,
M, S, M, c, and LMbT respectively, everywhere they appear, where M3 and M 4
are defined implicitly in (A.36) and (A.37), respectively, and satisfy M32M and
M, BM, (i) V is defined as V= MISM and V satisfies V=eMl+ o5(1).
and (iii) the references to Assumption 6a and Theorem I.4(b) are replaced by references to
Assumption 6b and Theorem I1.4(d). Next, consider the case where th(th’ 6, 1)
= _mTt(th’ 6, 7). (In this case, the constant ¢ in Assumption 6b(ii) is negative.) For
this case, the same changes are made as above except that |&[, -My, -M,, -M,
-M, and c, rather than &, My, M, M, M, and c, are used to replace b, I35
Jy4> J, J, and b. (This explains the appearance of |&| rather than & in the

denominator of the LRy . statistic.) o
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PROOF OF THEOREM L5: First we prove part (a). The proof of Theorem 1.3 shows
that DBD and MBM, since #B¢,, #8 To s 5B 7o » and Assumption 2(g) holds.
We have: HVH’ is nonsingular, SBS, and HE H, by Assumptions 4, 3, and 2—¢p and
4, respectively. Thus, (f[\?ﬁ')"l R (lE[VH')"'1 .

Mean value expansions of h () about h.(fy), stacked for 8=1,, ..., r, yield
(A41)  JTh(d) = yTh(by) + B*/T( - 0y)
for an rxp matrix H* that satisfies H* BH . Assumption 4 and element by element
mean value expansions give Th(dy)-Hy. Part (a) now follows by the continuous
mapping theorem once we show that
(A.42) JT(8- 6 dNQE,V) .

This follows using Assumption 2—§ by the proof of Theorem 1.2 with 80 replaced by OT
everywhere except in the paragraphs (or parts of the paragraphs) that conmtain (A.5),
(A.8)—(A.12), (A.19), and (A.21) and except in those cases where §, appears in an
expression that is the limit as T + w of some sequence.

To prove part (b), note that under Assumptions 2—fp, 3, 4, and 5a the proof of
Theorem 1.4(b) above goes through with the following changes: The parameter 00 is
replaced by BT in equations (A.27)—(A.29) and equations (A.30), (A.31), and (A.33) are
replaced by

(A43) 0= VTh(fp) + Ey/T(B, - bp),

(A4)  EVTgAmg(d,), 3) = Bl VT GA(R(fp), 3) - VTh(6y)
4 N(-Hn, HVH') and

(A.45) i7" $a(me(d,), %) 4 N(-Hn, BVE')

respectively.
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Part (c) is proved using the proof of Theorem I1.4(c). The latter goes through under
Assumptions 2—{p, 4, 5a, and 6a with the only changes being that references to Theorem
1.4(b) are replaced by references to Theorem L5(b).

Part (d) is proved using the proof of Theorem I.4(b) with the changes to that proof
that are described in the proofs of Theorems I.4(d) and L5(b), with 6, replaced by 6 in
(A.40), and with the changes described in the proof of Theorem I.4(d) also applied to
(A.43)— A 45).

Part (e) is proved using the proof of Theorem I.4(c) with the changes to that proof
outlined in the proof of Theorem I.4(e), but with references to Theorem I1.4(d) in the latter

replaced by references to Theorem 1.5(d). o
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2This is not to suggest that existing metbods are incapable of being extended in such
directions.

3Manski’s maximum score estimator fails a full rank condition, Assumption 2(h), introduc-
ed below when one takes d(m,y) = m . Horowitz’s smoothed maximum score estimator
fails a CLT condition, Assumption 2(d), introduced below.

4The criterion function d(ET( 6,7), %) is allowed to depend on fwe preliminary estimators

7 and 7. In contrast, Burguete et al (1982), Gallant (1987b), and Andrews and Fair
(1988) allow the criterion function to depend on one preliminary estimator. In the latter
papers there is no loss in generality from doing so. In the present paper, however, the use
of two preliminary estimators allows one to simplify and weaken the assumptions. In par-
ticular, with two preliminary estimators, VT(—) only has to be indexed by 7 in
Assumption 2(e) rather than by (7,7) and similarly in Assumption 2*(e).

The estimator @ is required to solve (2.1) only with probability + 1 to enable one
to define the same estimator using different mt(a,'r) and d{m,7) functions for the pur-

poses of (i) consistency and (ii) asymptotic normality and testing. See footnote 7 below.

The infinite dimensional estimator 7 is only required to liein 7 with probability
-1, because 7 is taken below to contain elements that satisfy certain properties, e.g.,

smoothness properties. In many cases, not all realizations of 7 satisfy these properties,
but the realizations in a set whose probability - 1 do satisfy them.
In most examples the function mTt(""') does not depend on T . In some

examples, however, such as spectral regression estimators and feasible GLS estimators for
models with autocorrelation of unknown form, it must depend on T . For notational
simplicity the possible dependence of mt( 6,r) on T is not shown explicitly.

In cross—sectional applications the dimension th of Wor, usually is finite and

does not depend on T or t. In time series and panel data applications, on the other
hand, it is sometimes convenient to allow th to be infinite or to dependon T or ¢.

Stn contrast, the one—step GMM estimator considered by Newey (1987) is defined by

, o T SO
0= 0 - [PTAK) A7 X )p0-0Z,, )] 151 AK) AT (XN, #),
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where #* is some preliminary yT—consistent estimator of 00 . This estimator is a MINPIN
estimator with d(m,y) =m’'m/2, m(67) =1 — ToTy(XIWZ, 1) — 6 for

T= (71: 72: 73(')) ' and 7= (? ’ %2: %3('))
= ["" [BaTac) iz, ) A(-)'fr"(-)] . Tn this case,
o= (7190 Top T3g(*)) s Ty = 0o €RP, Ty = (EAO(Xt)'nal(xt)Ao(Xt))_l e RP*P

and 1-30(-) = AO(-)'OEI(-) . For brevity, we do not discuss the one—step GMM esti-
mator further.

by desired, m/(fr) in (2.10) can be replaced by m,(8,7) =(Yt—rl(Zt)

— (X, — 75(2,))" )%/74(Z,) ~ U3/14(2,) . This yields numerically the same estimator 7
as (2.10), but it allows a slight weakening of assumptions. For example, for Assumption 1

below to hold, it does not require li‘im %}}}‘EU‘;’,/ T4(X;) to exist whereas (2.10) does. In
-m

other scenarios, this trick of subtracting off a term from mt( f,7) that does not depend on
 often can be used to weaken the requisite moment assumptions on the underlying rv’s.

7A number of estimators, including LS estimators, M—estimators, and ML estimators, can
be defined in terms of an underlyin% minimization problem (UMP) or in terms of the first
order conditions (FOC) of this problem. Both definitions can be accommodated by the
definition of an extremum estimator given in (2.1&. Equations (2.10) and (2.11) exemplify
this for the WLS estimator of PLR model. The choice between the UMP and FOC defini-
tions depends primarily on Assumption 1{d). If Assumption 1(d) is satisfied using the
FOC definition (i.e., 2.11gefor the WLS estimator), then this is the most convenient
deﬁulllition because it must be used in any event for the asymptotic normality and testing
results. :
On the other hand, the limiting FOC may have multiple solutions even though the
function d(m( ﬂ,ro), 7o) that corresponds to the UMP definition has & unique solution. In

this case, one needs to use the UMP definition to establish consistency and then redefine
m,(4,7) and d(m,7) and use the FOC definition to establish asymptotic normality and

testing results. If 4, isin the interiorof ® and m(4,7) is differentiable in ¢ using the

UMP definition, then an estimator that solves (2.1) using the UMP definition also solves
(2.1) using the FOC definitior with probability - 1.

8Here and below, pseudo—metrics p(-,-) are defined using a Gummy variable N (rather

than T ) to avoid confusion when we consider objects such as plim p(7, 7)) . Note that
=-m
the pseudo—metrics are assumed to be independent of the sample size T .
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%Here and below, consistency of ¥ for 7, "at rate Tl/4n or convergence of 7 to 7
"at rate T4 " means that T/ 4(-?'— 7o) converges in probability to zero in some sense

(such asin L9 ).

1044 necessary, the nonsingularity of HVH’ can be avoided by using asymptotic distribu-
tional results for quadratic forms with g—inverted weighting matrices and singular limiting
weight matrix — see Andrews (1987a).

e estimator # also can be defined as a MINPIN estimator with 4 = I . With this
definition, however, the likelihood ratio-like statistic of (6.1.11) does not have a
chi—square asymptotic null distribution.
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