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ABSTRACT

In [4] Chan and Tran give the limit theory for the least squares coefficient in a
random walk with iid errors that are in the domain of attraction of a stable law. This note
discusses their results and provides generalizations to the case of I{1) processes with weakly
dependent errors whose distributions are in the domain of attraction of a stable law.
General unit root tests are also studied. It is shown that the semiparametric corrections
suggested by the author in other work [22] for the finite variance case continue to work
when the errors have infinite variance. Surprisingly, no modifications to the formulae
given in [22] are required. The limit laws are expressed in terms of ratios of quadratic func-
tionals of a stable process rather than Brownian motion. The correction terms that
eliminate nuisance parameter dependencies are random in the limit and involve multiple
stochastic integrals that may be written in terms of the quadratic variation of the limiting
stable process. Some extensions of these results to models with drifts and time trends are

also indicated.



1. INTRODUCTION

Suppose {yt} is generated by
(1) vy=0 gty t=1, ...,
with
f=1

from an initialization at t = 0 in which ¥y is any random variable. Interest centers on

the least squares estimate

b= [Bllly ?-1] _1(’31115’ Yi-1)

of B in (1). Chan and Tran [4] investigate the asymptotic behavior of 3 as n-w and

show that for a certain family of iid errors u, with infinite variance the limit distribution

1
of n(B-1) can be characterized in terms of a functional of a Lévy process. They assume
that y, =0, that u € Na), ie. u, isin the domain of attraction of a stable l]aw with

index a (0 < a < 2), and that the limit law satisfies the scaling condition
(2) L PRI
1 n’ - "1

where " = " signifies equality in distribution (both here and elsewhere in the paper).

Chan and Tran show that under these conditions

(3) n(B-1) » [gUdU/ U

where U™ denotes the left limit of U, U(r) is a Lévy process on the space of CADLAG
functions D[0,1] and " » " signifies weak convergence of measures. Their proof uses the

weak convergence (from Resnick [27]) of the component processes



(4) [aglzgn’]uj, afz{m]uﬁ] 2 (U(), V(D)

where (U(r), V(r)) is a Lévy process in D[0,1]2 and the normalization is
' _.1l/a

(5) a, =n"'"{n)

for some slowly varying function 4n). They also show that

(6) (1/2)(U3(1) = V(1)) = [gUdU

and then (4) and (5) together with the continuous mapping theorem give the final result
result (3).
We shall start with some remarks on these results, -

(i) Suppose U, belongs to what is known as the pormal domain of attraction of a

stable law with index a (see [12] Ch. 2 for a discussion of normal domains of attraction).

We shall denote this by writing

(7 U, € 4(a).

The tail behavior of L3 when 0 < a < 2 is then of the Pareto—Lévy form

c aa
(8) P(u, <u) = |—1F(1 +0(1)), u<0
u
' czaa
(9) P(u; >u) =-+{1+0(1)), u>0
u

as ju| - o ([12}, p. 92). Here ¢; and c, are constants with c¢;,cy 2 0 and

¢; + ¢ =1 (by suitable selection of a ). We shall call a the scale parameter. In this

1/a

case the norming sequence in (5) is of the simple form a, =an so that £(n) =a in

(5).



(ii) Second, when (7) applies we have uf € ¥0(af2) . Moreover, (4) can be replaced

with an explicit limit law given as follows in terms of a stable process U a

-1 -2 2 2
(10) | [an z{m]uj, . z{‘“luj] 4 [Ua(r), f(au ) ]
where a = a.nll @ Here Ua(r) is a standard stable process with index a and unit scale
coefficient. When u, =—u, (so that the distribution of u, is symmetric), U () is 2
a
symmetric stable process and the characteristic function of U_ (1) has the form e—c|s|

where

(1-a)cos(raf2), a1

o
i

/2 , a=1

(12, pp. 44—45]. Moreover, U a(r) /ey 01(1) . These and other properties of stable

processes are derived in Ito [13, pp. 157-162]. Figures 1—4 in the Appendix display typical
trajectories of stable processes for various values of @ . These may be contrasted with that

of a typical Wiener process (Figure 5). We shall henceforth write

U, (r) = SP(a)

to signify that U a is a standard stable process with index o . Note that the class
{SP(a): 0 < a< 2} is a subclass of the Lévy processes and that each member of SP{a)
has no Wiener component in its Ito representation [27, p. 72] when @< 2. (Thus, § =0
and a = 0 in equation (10) of [4].)

In the representation (8) above, [ B(dU a)2 is a multiple stochastic integral which
represents the usual quadratic variation (or square bracketed) process. This is sometimes
represented in the notation [U] (e.g. [19, p. 175]). But we prefer the integral notation in
the present context because it helps to make the weak convergence that is given in (10)
more intuitive and easily understood. In fact, Resnick proves (10) in [27, p. 94] but uses a

notation for the limit in terms of point processes rather than stochastic integrals.



(i) In place of the distributional equivalence of (6) (Theorem 2(ii) of [4]) we have

indeed the direct equation
1 2 2 1..—
(11) V(1) = IO(dUa) = Ua(l) - 2]0UadU

This follows from the Ito calculus for semimartingales (see, e.g., Kopp’s second formula on
page 160 of [15]). |
It is most easily understood by noting that the stochastic differential dUi can be

broken down as follows:
— 2 2
= (Ua+ dUa) —(U;)
o1 2
= 2UadUa+ (dUa) .

Integration then yields formula (11) directly.
(iv) Finally, we note that when o= 2
U(r) = W(r) = BM(1)

or standard Brownian motion (BM). In this case
2 _ 2
(12) (dU)" = (dW)" =dr
and (11) reduces to the usual formula
1
[qWdW = (1/2)(W 20)-1)

for the Brownian motion stochastic integral. This is, in fact, the only case for which
(dU a)2 is nonrandom. Note also that since u, € ¥P(a) we necessarily have a finite vari-
ance o° = E(u?) <o when a=2 (see [8], p. 92) and the scale factor is a = onll? .
The limit distribution given in (3) is them the ratio of Brownian functionals

fswaw/iw? .



2. GENERAL I(1) MODELS WITH INFINITE VARIANCE ERRORS

In econometrics there has recently been a good deal of interest in models such as (1)

where allowance is made for some weak dependence in the errors u, .

series are known as I(1) or integrated processes. My review paper [23] and Park and

The resulting time

Phillips [20, 21] provide a general discussion of models where these processes occur. In an
earlier paper on scalar time series [22] I showed how to deal with such general error pro-
cesses in constructing tests for the presence of a unit root. This involved a semiparametric
correction to eliminate the bias in estimation of the regression coefficient that is due to the
serial correlation in u, . It is interesting to explore how this procedure needs to be

modified when u, has infinite variance.

2.1. Models with MA(1) Errors

Let us start by considering the simple case of MA(1) errors

(13) u, =€ + ey

where ¢ € #D(a), 0< @<2, {0 <1 and ¢ isiid with ¢ =—e

rically distributed). When 0 < @ < 2 the taiis of €, are of the Pareto-Lévy form with

scale parameter a and Cp=¢Cy = 1/2. When a=2, a? = E(e%) < o . Define

; (i.e. ¢, is symmet-

Pt=2{5j and then
D i 1t+”2’3npt o€y + P g€y + 0P oe

2
=3P, 16 + ¢°5]P L+ e g + P, ol + ¢ y)

17 t—25—
(14) = 5Py + PBIP o6y + TP 16 + BPy oe )
+ @]ff mnft 1% -
2 2
(5) ey =P+ PP, + 2P P .



In the above we use the initialization Yo = 0 to simplify formulae but this involves no loss

of generality for the subsequent argument. Next observe that

(16) a2 1g0p? o l,

(17) a2 OBp, e, 3 (1/2{U (1) — J5(aU )%} = [qUaU,
and

(18) st Hos s phau )?

where U (r) = SP(a), whereas

-t 0.

-2 -2/a
(19) a2/ 1661 >

The latter follows because although the product ef € #)(af2) the cross product €.,
does not liein AP(a/2) . In fact, ¢, € X(a) as shown by Cline {5] and Breiman [2]
and (19) then follows directly. Note that the norming sequence for sums of these cross
products is b_ = b(néa 1)}/ ® with b= a® as shown in the Appendix.

Combining (14)—(19) we obtain the following limit result for the least squares

estimator J
1+621lu—du arlau )?
sy o CEOTIVGHY, + 0150
(1+6)“1U2
1,.— 2,1, 40 12
) _ 1qUgdu, + 0(1+6)"%[5(dU )

2
IoV5

This formula generalizes (3) to the case of models with a unit root and MA(1)
errors. Note that the second term in the numerator of (20) is random when a < 2. When
a =2 it is simply the constant 6/ (1-+~8)2 . In that case (i.e. a=2) the expression was

given in my earlier paper {22, p. 283]. The effect of serially correlated errors in the unit



root model (1) is therefore to induce a second order random bias term in the limit distribu-
tion of the least squares estimator. When the errors on (1) have finite variance this bias
term is nonrandom and, as shown in [22], it depends on the serial correlation properties of
the errors. The latter is still true in the infinite variance case but the bias term also has a
random factor which depends on the quadratic variation | [l}(dU 0)2 .

The simplest way of dealing with the bias that is induced by MA(1) errors is to use
instrumental variables (IV) estimation with Yy_p acting as an jnstrument for Yy In

(1). Call the resuiting estimator 3= Exllytyt_z/fllyt_lyt__z. It is easy to see that
% 14— 2
n(B-1) s fyUdU /15U

as in (3). IV estimators of this type have been suggested in the finite variance case by Hall
(11} and Phillips and Hansen [26]. It is interesting to see that they continue to work as a

direct method of eliminating the second order bias in the infinite variance case also.

2.2. Models with Weakly Dependent Errors

Let u be generated by the linear process

(21) u, = d(L)et = E?:Odjet-j ydg=1, d(1)#0
where ¢, has the same properties as in (11). As shown in Brockwell and Davis (3, p. 480]

t

(see also [14]) the series defining u, converges almost surely if the coefficients dj are

t
;—~summable i.e.

(22) z‘g|dj|‘5<m,with 0<f<aAl.

If u, is generated by a stable ARMA process then its moving average representation (21)
has coefficients which decline geometrically so that (22) is certainly satisfied in this case.
We shall assume that this is so and that there exists some K >0 and ¥ (0 < 7<)

such that



(23) |djl<K7j, all .

This includes a wide class of processes like ARMA models although it can certainly be
weakened substantially—but that is not our object here.

Define the partial sum processes

- -2 2
Xn(r) = anIE{mlut » Yp(ry=a) B}nr]ut

The following theorem gives us a time series extension of the limit law (8).

THEOREM 2.1

(24) (Xyle), Yole)) 4 (X@), ¥(0)) = [0 of5), P13(a0,)°)
where

(25) w="5d;=d(1), o= Sgdﬁ .

PROOF. Define the approximating time series

ol
U= EOdJet -

and the random elements

nr 2
Xpdt) =2y E tt’ l’)‘a 1 ly Uig
with a_ = an!/® . For fixed ¢ we find just as in the MA(1) case that
(Xo o), Yo # (R, ¥ o) = (380 o000, (3edsgav ]
as n-o. Moreover ii is clear that

(R ), T 40) » (X(2), Y(r)

as {- w. To prove (24) we then need only verify that for any 6> 0 we have



(26) lim limsup P(d(Z_p Z,) 2 6) =0

o Dow

where Z_,= (X » Y ) and Z = (X, Y,) —see Billingsley [1, Theorem 4.2, p. 25]. In
(26) d(-,-) denotes the Skorohod metric on the product space D[O,l]2 . Since

dZ,p Z,)< ma.x{suprlxnt—xnl, suprlYnz—Ynl}

we have the inequality
(27) P(d(Z,p Z,) 2 &) < P(sup | Xy, — Xy ] 2 8) + P(sup | Yy~ Yyl 2 ).

It is therefore sufficient to show that the limits of the two members on the right side of
(27) are zero.

Write

u,) = s Bl dee

~lg(nr
Xn(r)—Xnér) =3 2£ ](u - +175t—j

t
and

(28) P(sup, | X, (1) — Xp o) 2

< | £ 2
P[ max 4710157, 1dje 1oyl $20)1 > O |

+ P [sup a2 {08, e, i(le gl > 31 > i2)

2 2 t
Let §,= £+1 it Jl(le |$a.n), an=E(et1(|et| <a ))” and 7 =a(es:s$t)

i.e. the natural filtration associated with {e;} . Then

$ =
B¢y |7 H) = z?l—l—l)Vm i Jl(lft _|| $ay)

and
B{s(6# ™) = [Fesrynt])d = Yuch

so that {{, } constitutes a mixingale array [18; 10, p. 25] with ¥ = O( mvt') because



10

of (23). Setting S, = 8¥=15tn we have by McLeish’s inequality [18; 10, p. 26)

2
E{maxS ] <K a
k<n £

with K,=O(). Thus

2
2
P[max a’ls >62]<46_E[ma.xa. S I]
1<k<nl akl > ¥ 1<k<n R

=45_2E[ max a. Snk] <45_2a na2K£

A1¢k¢n B
Observe that
2 gl <o) e | Hgden —BE
o. =E{e1(le ]| €a =J efe)dew~
z tht T -4 (2—0)35_
and therefore

. 2,2
limno fa, = af(2-a).
n-o

It follows that

lim lim sup P[ max |a; Snk‘ > 6/2] <lim 46"20:(2—0:) le- 0.
Ho B-o 1<k<n bo

This deals with the first term on the right side of the inequality (28).
Turning {0 the second term and setting 7, = Z’; +195% Jl(l €, Jl >a ) we note

that forany 0 <f< aal
P(sup_|a7 /™y, | > §/2) = P(sup |o7 5[™n, | > (¢/2)h
¢ P(azis|n, T > (52
<5ty 140 B g Mgt > 2)

= th £+1|dj|fE(|et|{1(|£tl >a)).
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But
i —
Bl U1, | > 3,) = aa®(a-g e (™D
50 that
. ~f f—a _ —a
lim na a “=a .

n-w

Since 23+1|dj|f = O('y&) -0 as {-+o we deduce that

lim limsup P(suprla;1}3£m]ntn| > §/2)=0.
o n-w

It follows from (28) that
lim limsup P(sup | X (1) - X A1) 2 §) =

Lo n-o

Treating the second term of (27) in the same way we deduce that (26) holds and the

theorem is proved. o
We may now proceed as in the MA(1) error model to obtain the limit distribution of

the least squares estimator 3. Note that

a;ZElllyt_lut = (1/2){(;;;12111%)2 - a_22]iluf} + op(l)

n

ﬂmm%%wﬁmwj}

(29) = FIIUAU_ + (1/2)(® - ) (U ).
Also
(30) n-laf}lxllyf_l 2 uf J éUi :

Since joint weak convergence applies we deduce that
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-1
(31) n(f-1) » { [:‘)Ui} {f}JU;dU o+ /2~ ) Ié(dUa)2}

generalizing both (3) and (20). Note that when a = 2, (31) reduces to the expression
derived eatlier in [22, Theorem 3.1]. In that case the second term of (29) is simply the
constant (1 /2)(:42 - 02) and the second order bias induced in the numerator of (31) is
nonrandom.

Similar results apply for other functionals like the t—ratio

) _ _ ) -1
tg=(-1/sp, 5?3::1 50, ‘ﬂyt-l)z[grllyf—l] '

Here we have

-1/2 .
21472 1y~ 2, 2,1 2
(32) tg2 (w/a){ fiau)) fgua} { v+ (1/2)1-o%A) (v ) } .
Again this reduces to the formula given in (22, p. 282] for the finite variance case.

2.3. The Effect of Semiparametric Corrections
When {¢} isiid(0,1) (ie. @=2 and var(¢) =1) and v, is defined by (21) we

see that

o= var(u,) WP = 2xf (0)

where fu(-) is the spectral density of u, . When a <2, the variance and the spectrum

of u, are not finite because E(ef) = o . The quantities o® and o do exist in this case

at least as they are defined in (25). We shall call them pseudo—variances because they rep-
resent what would be the contribution to these variances in the usual formulae after the

variance of ¢, is scaled out. These contributions remain finite even in the infinite

t
variance case.
Similar remarks apply to the spectrum. When o = 2 the autocorrelogram se-

quence for u, in (21) is given by
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(33) () = E(uyu, ,,)/B(wp) = B}dd; /5543, B=1,2, ...

Again the effects of E(cf) are scaled out and p(k) is well defined as the final member of

(33) when a < 2 (see also [4] and [5] on this point). The p—spectrum of u, may then be

defined as the Fourier transform of (33) i.e.
1 . i
Py = 5 2 o(n)e A
=

Davis and Resnick [7, 8] show that the sample autocorrelations are consistent for p(h)

when a < 2 ie.
_ yi-h 2
() = By gy g /370 —5 Ab)
and that when € has Pareto—Lévy tails
1
(34 x(h) - a(h) = O ((ta n/a)"/%) .

In consequence, it is simple to construct consistent estimators of f1(1p )(A) using conven-
tional spectral estimates based on the sample correlogram {r(h): h=1,2, .. g}

In [22] I suggested some semiparametric corrections to n(3-1) that asymptotically
eliminate the nuisance parameter dependencies in the finite variance case. The statistic

based on the coefficient estimate # has the form

. . -1
(35) 2(h) = (1) - @25y} WP -4

where i° and ° are consistent estimators of W= 21rfu(0) and 0% = E(uf) , respec-

tively. Noting that in this case

W = o® +2) with A=T2_ E(ugu)

we may write Z(f) in the alternate form
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. -1 .
(36) 2(5) = (728} ) @By - )

-

where ) is consistent for A . As shown in [22] in the finite variance model
oo [l L1
(37) 2(3) » [IGW ] Jiwaw

whose distribution is free of nuisance parameters. Thus, Z(f) forms the basis of a test for
the presence of a unit root which is asymptotically similar for a wide class of weakly depen-
dent errors with finite variance.

In the infinite variance {& < 2) case we have already seen that
-2¢qn 2, 2,1 2 2 2
a, Elllut 3 0°[o(dU,)", where 0" = Egdj .

Since [ is consistent the same result holds if we replace u,_ by the residuals

|1
ﬁt =¥, - fiyt_l . Thus we may write

(38) na 2% 3 o2/ (dU )%

Turning to W , we note that this parameter is usually estimated by a kernel procedure

that leads to an expression of the general form

-2 . M . .
(39) o =21 (0) = B __pk(i/M)e(}
where
N | .
(40) c(j) = 2~ Eu,u, 4j» 1EtHICn

and the lag window k( ) is a bounded even function defined on the interval [-1,1] with
k(0) =1. M is a bandwidth parameter in (39) and it satisfies M -+o and M/n-0 as

n-wo . For example, when k(j/M)=1-|ji/M, i

is the Bartlett estimator of what
would be the long run variance of v, if a=2 (see [16] for further discussion).

Observe that for fixed j
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na Ze(j) » (Spd,d; , ) [odu ).

The same result also applies when u, is replaced by the residual @, in (40). I shall not

give a complete derivation here but using the same approach as that in the proof of

Theorem 3.1 of my paper [24] it can be shown that, if M = o(nll 2

) as n- o, then
~2.2 1 2
(41) na_2? » oA [(du )2 .

Now note that we may write

N N -1
2(8) = n(p-1) - (/N 8y} ek - )

From (31), (38) and (41) we deduce that
. -1 4
(42) 2B) » [ féUi] (Jiusav ).

This result generalizes (37) to the infinite variance case and of course also includes (37)
since U 0!(r) = W(r) when a=2.
The t—ratio statistic may be analyzed in the same way. The statistic I suggested in

[22] is based on t 8 and has the form
-1
1) = (5/0)5 - (1/2)(@ - Pt By? )P
As n-o we find that
-1/2
(43) 7(t) » { J3(dv )? j}JUi} / JSUAU,

When « = 2 the limit distribution becomes

~1/2
] / [Awaw

v

as given in [22].
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These results show that the semiparametric corrections suggested in [22] continue to
work when the errors have infinite variance even though they were designed specifically to
eliminate nuisance parameters in the finite variance case. The reason for this is that in the
infinite variance case there are still parametric dependencies in the limit distributions of
the coefficient estimator and its t—statistic (as shown in (31) and (32)). These depen-
dencies involve the parameters (02, wz) that we have described as pseudo—variances.
They represent what would be the (short and long run) variances of u, if o were equal to
2 and E(ef) < o. The semiparametric corrections eliminate these pseudo-variances from

the limit distributions in the infinite variance case just as they do when the actual

variances are finite.

3. ADDITIONAL REMARKS

(i) The final results (42) and (43) apply under somewhat weaker assumptions than
those given here. We may, for example, replace the requirement that € € M(a) with

¢, € 7(c) . This affects the norming sequence a, but we still find for a suitable choice of

a, that
-1 -2 2 22
(44) [a.n zivle,, o z{nfht] 4 [Ua(r), [X(au,) ]
and
-2 ) . ,
a3 Erllftet+j_§"0' 1<t+j<n, j#0.

These limits ensure that {38) and (41) hold, giving the final results (42) and (43) as stated.

(ii) We may also relax the symmetry condition € =—€ although many of the
arguments given in Section 2 will then need modification. When @ <1 no further
requirement beyond ¢, € ?(a) seems to be needed. When a>1 we require E(¢,) =0,

as in [4], so that sums involving ¢ do not need to be centered. When a=1 an
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additional condition such as
(45) b = E{¢1(je| <a )}} =0, forall n

ensures that centering of the sums involving € is unnecessary, although this is hardly
weaker than the symmetry condition €, = —¢, . An alternative proof of Theorem 2.1 under
such conditions will be reported elsewhere.

(iii) Our analysis and results extend easily to models with drifts and time trends (or
other deterministic functions) in place of (1). In such cases the time series may be regard-
ed as filtered prior to their use in regressions such as (1). The effects can then be
determined by treating the filtered series as regression residuals. For instance, when there
is polynomial detrending we construct the residual process Y4 from the least squares

regression
= i - 5 P

Then in place of (29) and (30) we have

- 1qy— 1
(29) aZisly, WP fQUSAU + (1/2)( - ?)13(dv )
and

~1 —2cn_2 21,2
(30)° B gy Elllxt—l i joga

where U =QU , is simply the projection of U, in L2[0,1] on the orthogonal comple-
ment of the space spanned by the polynomial functions {0(r}, 1(x), ..., p(r); i(x) = ri} .

We deduce that if 2 is the least squares estimator of § in
(1) Y = Mg+ Bt et pptp + By, g+

under §=1 and pp::o then
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-1
Gy a(aa)e {15} {RURav, + /e - Frdigau )

Semiparametric corrections to eliminate the nuisance parameters in (31)’ may be made as
in Section 3.2. The situation here is entirely analogous to that explored in the finite
variance case by Park and Phillips [20, 21].

(iv) The limit theory given here also has applications in the context of limit
theorems for self normalized sums. These have been considered elsewhere recently by

several authors [1, 17, 25, 27). In [25] the bimodality of t—ratio statistics of the form

1/2
_ 2
te= Ty 73]
was explored when €; € M a) and 0 < a<2. The reason for the bimodality in the
distribution of t ¢ which occurs in both finite and asymptotic samples, is the statistical
dependence between the numerator and denominator random variables in t ¢ When

€= €5, € € 7(a) and €; is iid it follows immediately from (44) that

1/2
(46) te» U0/ [15(d0 )7

as n-o. Using (9) we may now write the limit law in the form

1/2
(47) Ua(l)/{Ua(1)2—2j(1)U;dUa}/ .

The bimodality (with modes at +1) then arises because of the occurrence of U a(l) in the
numerator and denominator elements of (47) when 0 < a<2. When a =2 the denom-
inator is nonrandom, of course, and (46) corresponds to the conventional limit theory for

the t—ratio in the finite variance caseie. t 3 Uo(1) = N(0,1) .
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APPENDIX: ON THE TAIL BEHAVIOR OF THE PRODUCT
X=xx, OF INDEPENDENT VARIATES X, € ¥ a)

Suppose x; =—x; and then X=-X. Let f(x) be the density of x;, which we
take to be continuous over (—ww). Setting c; =c,=1/2 in (8) and (9), we have the

following tail behavior
£(x) = (1/2)oaf|x| 771 + 0(1)) , x| >k
for some (possibly large) constant k > 0 . The density of X is now

£(X) = 2/5(1/x)f; (x)fp(X/x)dx

- 2{;0 + 5k g2 /k}(llx)fl(x)f2(X/x)dx

Suppose X > k% andlet ¢ bea generic constant in what follows. The first integral is less

than

2¢/K(1/x)8,(X/x)dx = 2cx—1““{ 1 0ax%x + 0(1)} - o(x 1~y
The third is less than

2/ (1) (x)dx = 2c0a?f% /kx-de = o(x~ 179 .
The second integral dominates and has the form

(1/2)a?2%8x 10X k(1 x)x = (1/2)aPa 529X~ X(1 + o(1)

so that f(X) = O({fm X)X"I"O’) as |X| - o . Integrating again we get the tail behavior

of the cumulative distribution function
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edf(—=X) = (1/2)f &(—X)(=X)"%1 + o(1))

1 — cdf(X) = (1/2)f(& X)X~ %1 + o(1))

as X -o where f= aa?a.g . Since &() is slowly varying at infinity these tail probabil-

ities ensure that X €7(a) [12, Theorem 2.6.1. Setting b_=b(n mn)/® with
n

b= a,a, we have

n(cdf(b_X)} - (1/2)(-X)"%, X <0

a1 — cdf(b_X)] - (1/2)X™%, X>0.

The norming sequence for sums of iid variates distributed as x is therefore
b, = a.la.g(ntnn)ll ® by the argument in [12, p. 76].  Explicitly we have
b, = inf{x|P(|X| >x) ¢ 1/a} = a,3,( &rn)}/®. Note that X €(a) and not 4%(e)
because of the presence of the slowly varying function é( } in the tail formulae.

When the variates x; € 4%(c;) o, # a, we obtain by a similar argument the result
X € M(a; Aoy). In this case the product variate X is in the normal domain of

attraction of the law of the component variate with the smallest exponent.
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Brownian Motion (o = 2.0)



