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ABSTRACT

Traditional agency theory assumes that the principal has no more
information about the agent's actions than the enforcement authorities
have. This is unrealistic in many settings, and in repeated models,
additional information possessed by the principal changes the nature of
the problem. Such information can be used in implicit, self-enforcing
contracts between principal and agent, that supplement the usual
explicit contracts. This paper studies the way in which the two kinds
of contract are combined in constrained efficient equilibria of the
agency supergame. The agent's compensation is comprised of both
gﬁaranteed payments and voluntary bonuses from the prinecipal. We give a
simple characterization of the composition of remuneration in the
optimal dynamic scheme.

* We are grateful for the financial support of the National Science

Foundation and the Center for Economic Policy Research at Stanford
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1. Introduction

In this paper, we investigate the relationship between two ways of
sustaining cooperation in repeated principal-agent models. A principal
can typically make commitments to an agent by offering him a legally
enforceable contract that specifies payments contingent on information
available to the courts. 1f the principal can observe more than the
publicly verifiable information, implicit self-enforcing agreements
between principal and agent supplementing the terms of the explicit
contract may be mutually beneficial. We show how explicit contracts are
designed to support constrained efficient equilibria of the agency game
and emphasize the role of renegotiation of legal contracts in providing
the appropriate incentives for both parties.

Although it is usually realistic to assume that the principal has
information (related to the agent's action) beyond what is verifiable in
a court of law, the distinction has played little role in agency
theory.l The reason is that in a static setting, unverifiable
observations are useless, except in conjunction with certain "revelation
schemes" discussed later. In indefinitely repeated relationships,

however, such information is vital to implicit agreements that exploit

the multiplicity of equilibria in the supergame to make both players'
payoffs depend on this information. For example, an agent whose actions
are observed directly by the principal expects that by failing to exert
the implicitly promised amount of effort, he would adversely affect his
future payoffs, beyond the indirect effects his failure might have on

the compensation guaranteed by the explicit contract he holds.

The recent literature on incomplete contracts is an exception that we
discuss below.



Selecting an institutional setting in which to explore these ldeas
involves specifying the kinds of contracts that will be enforced, and
the opportunities open to the agent. Should a court enforce a contract
having lotteries as contingent payments, for example? Over what period
are contracts valid, and are they binding on both parties? How much
access does the agent have to capital markets or storage technologies?
The modelling is fairly traditional in these respects. The explicit
contracts considered are one-sided commitments requiring the principal
to pay the agent deterministic amounts contingent on the realizations of
publicly observable random variables (taken for simplicity to be gross
profits). The agent cannot borrow, lend or save but can in any period
elect to abandon the principal in favor of earning a fixed salary
elsewhere. The agent's action is observable to the principal but not to
the courts. Only single~period contracts are enforceable.

We find that optimal equilibria exhibit a form of remegotiation:
on the equilibrium path, the compensation actually received by the agent
usually differs from that which he is promised ex ante by his legal
contract. At the end of each period the agent receives a "bonus" whose
reciprocal varies directly with the compensation promised by the
explicit contract and with the agent's expected payoff from the
remainder of the equilibrium. This transfers some risk from the
risk-averse agent to the risk-neutral principal without diminishing the
agent's incentives to take the correct action.

There is a large body of work on infinitely repeated
principal—-agent problems beginning with Rubinstein (1979) and Radner

(1985); to our knowledge, none of this studies the interplay of explicit



and implicit contracts. Our paper is related to the growing literature
on incomplete contracts (see, for example, Green and Laffont (1987),
Grossman and Hart (1986), Hart and Moore (1988), Huberman and Kahn
(1986) and Tirole (1986)) which emphasizes the distinction between
observability and verifiability of information, and gives renegotiation
a prominent role. The analysis 1s quite different, however; because
these papers consider two or three period games, questions of optimal
long-run relationships do not arise. The equilibria that we study are
unusual in that all the renegotiation that eventually takes place is
perfectly predictable at the beginning of the game as a function of
verifiable information, and yet the ultimate terms of compensation
cannot be specified in the original explicit contract.

In their paper on incomplete contracts, Hart and Moore (1988)
consider revelation schemes in which the terms of the explicit contract
depend upon messages sent simultaneously by the two contracting parties
to the courts; this is a powerful device having its origins in the
literature on the implementation of social cholce rules (see, for
example, Maskin (1977)). Even in a one-shot moral hazard problem in
which the principal (but not the courts) could observe the agent's
action, there are schemes of this kind having fully efficient
equilibria. We disallow such contracts on the grounds that they are not
likely to be legally enforceable. We suggest one theoretical
justification for (but probably not an "explanation of") courts’
unwillingness in practice to enforce these revelation contracts.
Suppose that provisions such as the following were deemed enforceable:

two parties independently send the court the message "conformed" or "did



not conform"”, and both are assessed enormous penalties if the messages
disagree. This amounts to writing the contracting parties a judicial
blank check. While the provision could be used to ensure that an
employee exert the appropriate amount of effort and that the principal
fully insure him, it could equally well support an implicit agreement
that the agent will be compensated for illegal activities such as
committing perjury or murder.

Section 2 presents the underlying agency problem and characterizes
the constrained efficient equilibria of the supergame. Brief concluding

remarks are found in Section 3.

2. Constrained Efficiency in the Agency Supergame

This section studies a model in which a principal and a single
agent interact repeatedly, but the explicit contract held by the agent
in any particular period commits the principal to {output-contingent)
payments in that period only. Such a restriction is relevant if

long-term contracts are either unenforceable or prohibitively costly.

Information and Payoffs in the Component Game

The agent chooses from the finite set of available actions
A= {ao,al,...,an}. The principal observes the choice, but the court
sees only whether or not ag is chosen. Whereas dyssve,a  are
alternative actions the agent may take while working for the principal
(perhaps effort levels or degrees of care), a, represents

"non—-participation". If the agent selects a5, he works for some

outside employer at the reservation salary r > 0. Define



R := R {~ =}, The agent's von Neumann-Morgenstern utility

function U : IR+ x A > R takes the form {with an abuse of notation)

U(c,ai) = (e} - d, ,
where ¢ is his monetary compensation or consumption, and di = d(ai)
is the disutility associated with taking action a, .
Each action induces a probability distribution over verifiable
outcomes, which are assumed for simplicity to be finite in number.
Without essential loss of generality the outcomes are taken to be the
gross profits of the principal. Let I = {nl,...,nn} be the space of

gross profits, and Pig = P[nklai], i=0,10e,n; k=1,4s.,m, where

P[nglai] denotes the probability of m  conditional on a,-

Assumgtions:

(Al) U 1is differentiable, strictly concave and strictly

increasing in c.

(A2) pik>0, 1= l,---,n; k = l,occ,m.
m
(A3) E P is minimized when i1 = 0.
k=1
Normalizations:
I
d, = 0 and Pay T = 0 .
0 kel 0k 'k

The agent's sole sources of money are the principal and the
reservation salary. The strict concavity of U reflects his
risk-aversion. The principal 1s risk-neutral, caring only about the
actuarial value of his profits, net of the payments to the agent; he

faces no bankruptey constraints.



The discounted (average) value to the agent of an infinite sequence
{(c®,a%)} of compensations and actions is
-1

—= T s ue®y - 4],
t=1

where d% is the disutility corresponding to action a and & ¢ (0,1)

is the discount factor. Similarly, the principal's value of the stream

{(nt,ct)} of outcomes and compensations is

Explicit Contracts

At the beginning of each period t, t = 1,2,.4., the principal
offers the agent a legally enforceable contract (called an explicit
contract) making payment contingent on the outcome and/or the agent's

1

participation. Thus an explicit contract is a vector s ¢ Eﬂ& s

where
S, = payment to the agent if he takes action a, (doesn't
participate)

S = payment guaranteed to the agent when he participates and

outcome k arises, k= 1,...,m.

The guaranteed payments s, are called salaries, and are received by

k
the agent at the end of the period once output is realized. The
principal may then choose to supplement the salary with some bonus

bk-z 0, so that the agent's total compensation when T, occurs is



Gl = Sy + bk' Allowing for such gifts introduces the possibility that
in equilibrium, the agent's consumption may depend not only on the
verifiable outcome, but also on his choice of action. (One can show
that no purpose is served by considering two-sided gift-giving: as we
explain later, for any equilibrium in which the agent voluntarily
returns some of his salary inlsome contingency, there exists another
equilibrium with the same actions and patterns of consumption in which
this does not occur. It is clearly redundant to allow for a bonus
corresponding to nonparticipation; such a bonus could be incorporated
into the salary.)

It is convenient to introduce a "public randomization device" as
follows: at the beginning of each period, before the contract is
offered, the players commonly observe the realization of a random
variable uniformly distributed on the interval [0,1]. The random

variables are independent (across time). A strategy for the agent in

the supergame specifies for each t the action to be taken by the agent
in period  as a measurable function of the entire history of the game
until that time, including realizations of the randomization devices and
gross proflts, the contracts offered by the principal in periods 1 to t
inclusive, the agent's previous choices of action, and the bonuses

paid. A strategy for the principal specifies for each t the explicit

contract to be offered as a measurable function of everything that has
happeﬁed in the first t - 1 periods and the outcome of the period ¢t
randomization device, and specifies for each t the bonus to be paid as
a measurable function of the history, including the period t values of

the randomization device, the contract offered, the action taken, and



the realization of gross profits. A pair E of strategies for the
agent and the principal, respectively, induces a probability
distribution over streams of actions, outcomes, and compensations, and
hence yields a pair v(E) of expected values for the respective
players.2

We are interested in the pure strategy subgame perfect equilibria3
of the repeated game, which will usually simply be called equilibria.
There 18 no need to employ a more sophisticated definition of
equilibrium because the game Is one of. perfect information. Denote by
I' the infinitely repeated game we have described. The equilibrium

value set is

V := {WE)|E is a subgame perfect equilibrium of P}_Eimz.

We denote by [ the (infinite-horizon) subgame of T that
follows any realization of the public randomizing device in period 1,
and let V be the equilibrium value set of I. Notice that the
equilibria of I are probability distributions over equilibria of f,
and hence V = co V. It is convenient to abuse notation by letting
v(E) represent the payoff pair associated with E even when E is a
2

profile of ' rather than of T. Any particular value in V ¢ R

can be expressed as a coavex combination of no more than three points in

For some strategy profiles a player's expected value may not be
finite, but such profiles cannot arise in equilibrium.

3 It can be shown that for these games, by introducing public
randomization devices before each move of each player (rather than
just at the beginning of periods) one renders redundant the
consideration of mixed strategies. This would have been cumbersome
but would not have changed the nature of our results.



ﬁ; therefore, without loss of generality we henceforth restrict
attention to equilibria which randomize over at most three equilibria of
P at the beginning of any perioed.

Theorem 3 of the Appendix establishes the existence of an
equilibrium of f (and hence of I, since the probability distribution
over equilibria of I can be taken to be degenerate) and the
compactness of the equilibrium value set V. The following notation is

used extensively in the analysis below, and is illustrated in Flgure 1.

Let

min{u|(u,v) ¢ v}

e
(]

max{u{(u,v) ¢ v}

[={}
]

v = min{v|(u,v) ¢ V}

<
I

max{v|(u,v) e V}

= max{u{(u,¥) ¢ V}

For each u ¢ [u,U] define f£(u) := max{v|(u,v) ¢ V}. The set

upper(V) := {(u,f(u))}u ¢ (u,u]} is called the upper frontier of V.

Since V is convex, f : [u,d] + R is concave. The pair (u,v) ¢ V

is Pareto-efficient in V if for all (u',v') ¢ V distinct from (u,v),

either u' < u or v' < v. An equilibrium E of either I or [ ig

efficient relative to V if (E) is Pareto—efficient in V.

(Insert Figure | here)

Qur analysis is in the spirit of dynamic programming, and in

addition owes much to Abreu (1988). It is useful to view the value to a



player of an equilibrium of I as being the sum (1-8)(first period
payoff) + & (expected future value), where we mean by "expected future
value" the player's payoff in equilibrium from the beginning of the
second period onward. A similar decomposition i1s often a convenient way
to check the equilibrium incentive constraints associated with a
player's first-period choices. When the principal, for example,
considers not paying (or 'seizing") the bonus in period 1, he weighs the
immediate savings against the resulting change in the expected future
value. Similarly, in determining whether to deviate from the action
prescribed by an implicit agreement, the agent takes into account the
immediate gain, if any (including the change in the bonuses) and the
change in the future payoff. The incentives to stay on the equilibrium
path are strongest when a deviation is followed by the worst possible
equilibrium for the deviating party in the resulting subgame. Thus we
restrict attention without loss of generality to equilibria in which the
principal's expected future value if he seizes the bonus in any period
is v, his payoff from offering the wrong contract does not exceed v
from the beginning of the current period onward,4 and a deviating

agent has expected future value u and receives bonus zero. As noted
earlier, allowing for two-sided gift-giving serves no purpose. In an
equilibrium in which the principal and agent simultaneously exchange

positive gifts after some history, no incentive constraint is tightened

By the definition of vy, there cannot exist a deviation to some
contract s* such that the principal’'s payoff in the worst equilibrium

of the ensuing subgame exceeds Ve But 1f the contract he offers
uniformly promises extravagant salaries, for example, the principal's
worst equililibrium continuation value could fall short of Ve

-10-



(and some are loosened) if the gifts are reduced by the same amount
until one of them is zero. If it is the agent's gift that remains
positive, It cannot exceed his salary (consumption is constrained to be
non-negative); reduce the salary by the amount of the gift, and change
the agent's gift to zero. Incentives for conforming to the equilibrium
are preserved, and equilibrium payoffs are unchanged.

To demonstrate the existence of an equilibrium of I' with some
desired properties, it is often easiest to specify the equilibrium path
in the first period (the contract s offered, the agent's action a5
and the bonuses bk’ k=l,.+.,m) and expected future values (uk,vk) €V,
k =0,.c0.,m where (uo,vo) is the expected value following
nonparticipation.5 If the players' incentive constraints are satisfied
in period 1 (when they believe that conformity results in the future
values (uk,vk) and deviations are met with the severest "punishments"
described above), then it is easy to check that there exists an
equilibrium of I with first-period path (s,ai,b) and continuation
values (uk,vk). For any profile E of f, we denote the components of

the first-period path induced by E, by

o(E) := the contract offered
a(E) := the action taken by the agent

B(E) := the vector of bonuses B(E)y k= 1,.00,m.

Although the expected future value following nonparticipation could,
in some equilibrium, depend on current realized profits, only the
average (uo,vo) of these expected values is relevant.

-11-



Our goal is to characterize the (constrained) efficient equilibria
of the agency supergame. For & very near ! or 0, this is quite
simple. If players are extremely impatient, their future payoffs are of
little concern to them, so self-enforcing agreements collapse: the
solution colncides in every period with that of the static agency
problem. 1If instead players are sufficiently patient, the folk-theorem
of Fudenberg and Maskin (1986) implies that the first-best payoffs can
be approximated in equilibria of f, without recourse to explicit
contracts. We are interested in the intermediate cases in which some
implicit cooperation can be sustained, but incentives pose a substantial
constraint. While the results presented below appear to characterize
only the first period of an efficient equilibrium, they hold at every
point on the equilibrium path. This follows from the fact that an

efficient equilibrium induces, after any t-period equilibrium history, a

continuation equilibrium that is itself efficient: when an inefficient

continuation equilibrium is replaced by a Pareto-superior equilibrium
(without changing what is specified after any alternative history),
incentives to conform to equilibrium play are improved (or at worst
unchanged). The result is not immediate in other agency environments;
this issue is explored in Fudenberg, Holmstrom and Milgrom (1987).

A central feature of optimal implicit agreements is the way in
which the agent's rewards are divided among salaries, bonuses, and
expected future values. Considerations of efficlency place some
powerful restrictions on the pattern of rewards following any t-period
history h, as long as players are not so patient that incentives

compatibility is consistent with the agent's receiving a constant

-]Z=-



compensation (regardless of realized profits) in period ¢ + 1

following h. Notice that if we could ignore the principal's temptation
to seize the bonus, it would always be useful to decrease some salary
and increase the corresponding bonus by the same amount, leaving
players' payoffs unchanged but strengthening the agent's incentive to
take the appropriate action (since one of the bonuses he might lose by
cheating is now larger). This striet incentive compatibility would
allow an adjustment of salaries that would decrease the variation in
compensation received in the period in question, shifting risk from the
agent to the principal. Taking the principal’'s incentives into account,
one sees that a bonus can be increased only until it equals the wedge
betwaen the principal's expected future value after paying the bonus,
and the worst punishment value v he can be given for seizing the
bonus. Thus, an equilibrium of [ is inefficient if the bortuses are

not equal to the appropriate "wedges”; Theorem 4 makes this precise,

Theorem 4:
Let E be an equilibrium of . Let s := a(E), a; = a(E),
b := B(E), and (uk,vk) €V, k=0,...,m, be 1its expected future values.
Suppose
i) 1#0
11) there exists 2 such that b, # [5/(1-6)](v2 - v) and
Sy >0

111) consumption ck = sk + bk is not constant in k.

_13_



Then there exists an equilibrium E* that Pareto dominates E:

v, (E*) > vA(E) and  V(E*) = v(E) .

Proof:

Note that bk.i [6/(1—6)](vk - v) for each k = 1,...,m.
Otherwise, for some k, seizing the bonus bk would be a profitable
deviation for the principal: the adverse effect on his expected future
equilibrium payoff is at most [6/(1—6)](17k - v). Hence, (ii) implies
by < [6/(1=8)1(v, = v).

We first construct an equilibrium E' as follows: ofE') := s',

a(E') := ag» B(E') := b', and the continuation profiles (from the second

period onwards) are equilibria of I' with values (uk,vk), k=0,004,m,

where
' sk 1if k¥ 2 i bk if k # 2
Sp T R bk r= { s
8y~E if k=2 b1+e if k=2

and € 1s any number in (O,min{sl. [8/C1-8)1(v, - ¥) - bl})' 1t is
easily checked that E' is indeed an equilibrium, and that wWE') = vw(E).
However, in E' the agent strictly prefers a; to any other action aj
with j # 0: his payoff from choosing a, is the same as in E,

whereas deviating to a, entails a greater loss in bonus when Ty

3
occurs, and pjl > 0.

Note that Cr = si + b& for each k = l,...,m. Let

m m
w:= ] p Ule) and T := ] p,,c
Ly Pk Lo Pk

-14=-



Define the contract s* by
Sl*(+bf(=(l—k)ck+ AE k=1,no-,m,

where M ¢ (0,1) is to be determined below. The consumption distribution
ci i Si + bL, k=1,.0.,m is "smoother" than c¢: the movement

from c* to c¢ is a mean—preserving spread. Consider a profile E%*

such that o(E*) = g*, g(E*) = a5 B(E*) = b', and with continuation.
profiles that are equilibria with values (uk,vk), k=0,ie0,m«a We claim
that E* is an equilibrium. Since in the first period of E' the agent
strictly.prefers ai to any other action aj, j # 0, for sufficiently
small X > 0, this remains true in E¥* (recall that the action set A

is finite). By assumption, the first perio& compensation ¢ of E is

not constant, therefore U(€) > w and

m m
wh 1= T op U(e®) > (1-A) T p..UCcy) + AU(E) > w .
£y Ptk P

Hence VA(E*) > vA(E') = vA(E). Incentives to pay the first-period
bonuses are the same as in the equilibrium E', because for each k, the
size of the bonus bi and the wedge v, - v are the same in E* and
E'. Since c#* := ZE_lpikci = &, we have vP(E*) = vP(E') = vP(E),

and the principal's payoff from conforming and deviating, respectively,
are not changed in the transition from E' te. E*, Thus E* is an

equilibrium with the required properties. Q.E.D.

In the notation of Theorem 4, if v > v and cl > 0, the bonus

b, can be assumed (strictly) positive without loss of generality even if

—-15-



condition (iii) does not hold. (If bl is zero, §, mst be positive;

Sl can be decreased slightly and bl correspendingly increased without
viclating incentive constraints.) One way of guaranteeing that
compensation is non-zero in equilibrium is to impose the following
restriction on the agent's utility function, which will be in force for
the remainder of this section.
Assumption: (A4} 1lim U(e) = - =,

c-0
Definition: Let C be the inverse of the utility function U. (C can

be viewed as a cost function.)

If any salary offered on the equilibrium path were zero, the
agent's incentive constraints in the corresponding contingency would be
slack: taking the wrong action results with positive probability in a
consumption of zero, which has utility -eo. Consequently, the salary
could be increased slightly and the bonus reduced by an equal amount,
while maintaining the correct incentives. Without loss of generality,

then, we confine attention to equilibria in which all salaries offered

on the equilibrium path are positive.

We simplify the statements of Proposition 2 and Theorem 5 below by
asspuming that the function f defined in Figure 1 is differentiable (at
the relevant point); the discussion following the proof of Theorem 5
indicates the nature of the results In the absence of differentiability.
Proposition 2 provides another link between current and future rewards,
essentially stating that the marginal cost to the principal of

increasing the agent's utility in some contingency should be the same

-16—



whether he gives extra compensation today, or forgoes some profit
tomorrow (moving clockwise along the efficient frontier of V). The

result is similar to Proposition 1 of Rogerson (1985).

Proposition 2:

Let E be an equilibrium of f, efficient relative to V. Let
s := o(E), a; i= a(E), and b := B(E), and suppose that i # 0 and E

has continuation values (uk,vk) €V, k=0,¢e0e,m« Let + b

Cp % S T Py

k=1,.00,m« Then for each k = 1,...,m for which u ¢ 4y < 4,

c Ul ) ) = =€ (up)
Let (u,v) := v(E}). 8Since E isg efficient, v = f(u) and
vy = f(uk) for each k =1,...,m« Let X be such that u < uy < u.
Then since vy = f(ux) and f 1is concave, Ve > v. Therefore it is

unrestrictive to assume b2 > 0.

By contradiction, assume that C'(U(cl)) > - f'(ul) (the case

C'(U(cl)) £ -f'(ul) is similar)s Let A be a small positive number.

Define

bk if k# 1 u if k# 2
b¥ = { , uf i= { ,
- k1l = % =
bl A 1f k=28 u} if k=2
vi 1= f(ut) k=0,000,m,
where u} solves the equation
(1'6)U(Sx+bi) + Su¥ = (1—6)U(s£+bjr) + buy . (1)

-17=-



Let E* be a profile with o(E*) = s, a(E*) = a,, P(E*) = b*, and
equilibrium continuation profiles with values (u*,vi), K= 0,000,0

o= * ez *
Define Ul : U(ck) and I.l’Q : U(s£+b£). We have

vk

% f(ui) = f(ux) + f'(ul)(ui -u

P

= v, + f'(ux)[(l-é)/G](UJI - Ui) (from (1))
- 1_6 ' 1
-V1+Tf (ul)U (CI)A
- £'Cuy) -
= v, + lgé-ETTﬁfT A > Ve - ngél A (by assumption)

The expected values to the principal of deviating in the first
period of E* are the same as they were in E; thus he has no
incentives to deviate from E* if his payoff from conformity is no

lower in E* than in E. This is the case, because

svk - (1-6)0% > 5(vy = 52 a) = (1-8)(b =) = bv, - (1-8)b, ,

80 vP(E*) > vP(E). The agent has the same incentives in E* as in

E to take action a;: equation (1) implies that action a, is equally
lucrative in the profiles E* and E. Therefore E* is an equilibrium
and vA(E*) = VA(E). This is a contradiction:  w(E) is not efficient

in V. Q'E'D.

Theorem 5 describes precisely how the explicitly and implicitly

promised rewards are used in combination to create the appropriate

-18-



incentives for the agent. Suppose that it is desirable to give the
agent greater total rewards following some history h (ending in some
profit realization) than following another history h'. The current
compensation, the salary, and the agent's expected future payoff are all
higher after h than after h'. But the bonus moves in the opposite
direction: the more an agent is being rewarded, the smaller is the
bonus he receives. Although this initialiy sounds counterintuitive,
note that when an agent is being rewarded, his (guaranteed) salary is
relatively high, and this is only partially offset by a low bonus. The
variation in the bonuses has a moderating effect on total compensation

when the agent conforms to the implicit agreement; this enhances

efficiency without threatening incentives. The differences between
contractual guarantees and compensation actually paid can be viewed as

anticipated renegotiations of the terms of payment.

Theorem 5:

Adopt the assumptions and notation of Proposition 2, and suppose
that compensation S is not constant. Then salaries S ust be
positive, and the following statements are equivalent:

(1) e <y

(11)  u <y,
(111) v > v,

k 2
{(v) Sy < Sy

(iv). b, > b

Proof:
1f 8, Wwere zero for some k, the agent's payoff from deviating in

period 1 would be —=, and hence none of the agent's incentive

=19~



constraints {not including the participation constraint) would be
binding. Then compensation could be smoothed slightly (as in Theorem 4)
thereby improving the agent's payoff without violating incentive
compatibility. This contradicts the fact that E is efficient relative
to V.

From Proposition 2, C'(U(cq)) = -f'(uq), q=k,2, and since U
is strictly concave, C' is strictly increasing. Therefore (i) and
(1i) are equivalent. Since E 1is efficient relative to V, (uq,vq)
is an efficient point of V, q = k,2, so (ii) is equivalent to (iii}.
Theorem 4 implies that bq = vq -v for q = k,!, hence (iii) is
equivalent to (iv). Also, sq = cq - bq, so (i) (and (iv)) implies
{v). Finally, suppose ck_z Coe Then bk.ﬁ bl and Sy = Gy b, >

k k =
¢y = by = s,. Hence [not (1)] implies [not (v)]. Q.E.D.

Without invoking (A4) or differentiability of the efficient
frontier of the equilibrium value set, one can obtain somewhat less tidy
versions of the results above. The equality wC'(U(ck)) = f'(uk) in
Proposition 2 is replaced by the statement that —C'(U(ck)) lies in the
subdifferential of f at Upe Consequently, it is possible for two
different compensations to correspond to the same expected future
payoff. Nonetheless, a slight modification of Theorem 5 still applies:
if any one of the conditions (i) through (v} (in the statement of the

theorem) holds (with strict inequality as before), the other four

conditions must be satisfied as weak inequalities. Thus, a comparison

of rewards in two equilibrium contingencies will never reveal bonuses
moving in the same direction as salaries, compensations, or expected

future values.
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Ge Conclusion

In a repeated agency model in which the principal has better
information than the courts regarding the agent's actions, optimal
cooperation between the players requires the use of both explicit and
implicit agreements. This paper illustrates the interplay of external
and self-sustaining enforcement mechanisms by studying the constrained
efficient equilibria'of supergames based on a particular, fairly
standard agency model. The equilibria conform to a simple pattern.

When an equilibrium history calls for the agent to be rewarded
generously, his guaranteed salary is high, his total current
compensation (salary plus bonus) is high, his expected future payoff is
high, and the bonus (the voluntary component of the payment made by the
principal) is low. The presence of the bonuses helps to discourage the
agent from cheating, and their variation (across contingencies)
partially smooths the risk-averse agent's consumption.

The discrepancy between realized and contractually guaranteed
payments can be viewed as a kind of renegotiation. We are currently
working on a model with long-term explicit contracts which we conjecture
exhibits a more Involved form of remegotlation: long-term contingent
contracts are frequently replaced on the equilibrium path by new
long-term contracts, despite the fact that the eventually realized terms
of the relationship could have been specified In the first contract that
was offered. While renegotiation of explicit contractual arrangements
can be explained by appealing to various problems of complexity and
incomplete information, we wish to emphasize that it also emerges
naturally as a way of exploiting multiple equilibria to provide

incentives as efficiently as possible.
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APPENDIX

We show here that the equilibrium value set V of the supergame is
nonempty and compact. This appendix draws extensively on results in
Abreu, Pearce and Stacchetti (1986, 1987)., The proofs of Theorem 1 and
2 below are omitted; they are straightforward modificatlions of the
self-generation and factorization theorems found in those papers. The
reader is directed to Abreu, Pearce and Stacchetti (1987) for a more
formal and detailed account.

The definition of Admissibility below captures all incentive
constraints that an equilibrium of the repeated game must satisfy in the
first period. An equilibrium E of I is factorizable into its first
period recommendation (s,ai,b) € E&#l X A x Ef to the
players, and the values (uk,vk) €V, k=20,s0.,m of the strategies
induced by E on the subgames beginning in period 2. Since each
subgame beginning in period 2 is identical to I, the strategies induced
by E on these subgames must be equilibria of I, and therefore their
values must be in V = co V. Initially we do not know the set ﬁ. S0
we draw values from an arbitrary set W ¢ mﬁ, and use them as if they

were equilibrium values of [I. Thus, the conditions (1) = (iv) of

Admissibility have the following interpretation:

(i) Continuation values implicitly promised in the first period

are equilibrium values.
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(ii) The agent has no incentives to deviate in the first period:
Fz(s,ai,b,u) is the supergame payoff he expects in
equilibrium, and FA(S’ai) is his expected payoff when he
chooses action aj instead.

(1ii) The bonus bk promised in equilibdrium is no greater than the
wedge between the principal's expected future value and the
worst punishment value.

{iv) The principal has no incentive in the first period to offer a
contract s' different from the contract s prescribed by
the equilibrium: Fg(s,ai,b,v) is the supergame payoff he
expects in equilibrium, and FP(s') is his expected payoff

if he offers contract s' instead.

Definition: Admissibility
Assume W c IR2 is bounded, and let
w, = inf {wAl(wA’"f) e W for some wP},
Yo

s= inf {WPI(WA,WP) ¢ W for some wA}.

The tuple (s,ai,b,u,v) € ]Rf”' X A x ]R_;'_1 x ]Rm"'1 x RT1 is

admissible w.rete W 1if:

1) (uk,vk) € coW for each k= 0,l,c0.,m.

ii) Fx(s,ai,b,u)‘z FA(s,aj) for each j # 1, where

m

k):1 Py [(1-8)UCs #b,) + bu ] - (1-8)d;, if 140
F*(s,a,,b,u) := =
ANS 30

(1-6)U(r+so) + éuo - (1—6)d0 if i =0,

and
m
kzl Py [(1=8)U(s)) + &w,] - (1-8)d, 1f j40
FA(s,aj) 1=
(1—6)U(r+so) + QEA - (1-6)dO if 3=0.
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iii) (1-6)bk-£ 6(vk - Ep) for each k = 1,...,m.

iv) F;(s,ai,b,v)_z FP(s') for all s' € nﬂ#*. where

m
[ pyplovy + (1-8)(m = 8y = b)] 1f 140
k=1
FE(s,a;,b,v) := m
&vq + (1-5)(k§1p0kﬂ:k - sq) £ i=0,

and FP(S') is the optimal value of the following optimization problem:
inf F;(s',aj,b',v')
Ssta aj € A, b' ¢ ﬂﬂf, (u&,v&) € co W for each k=1,...,m,

FK(S',aj,b',u')‘Z FA(S"ak) for each 2 # j

(1-6)bi_§ é(v& - Ep) for each k = 1,.4.,m.

The value of a tuple (s,a,b,u,v) ¢ ]§f+1 X A x nﬂf x
Bfnkl x ]fn*l is F*(s,a,b,u,v) = (Fx(s,a,b,u),Fg(s,a,b,v)).
Definition:

For each W & Eg bounded, let

B(W) := {F*(s,a,b,u,v){(s,a,b,u,v) is admissible w.r.t. W}.

Proposition 1:

If Wce Hg is compact, B(W) is compact.

Proof:.

The reader may check that if W is bounded, B(W) is bounded.
Hence, we show that B(W) is closed. Let {(s%,2a9,6%,u%,v3)} be a sequence

of admissible tuples w.r.t. W such that F*(sq,aq,bq,uq,vq) = wl s owx,
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We will show that w* ¢ B(W). Since W is bounded, {ul}, {v?} and

{bd)} are bounded (for the latter use condition (iii) of admissibility),

q

and therefore we can assume wW.l.o0.g. that u? » u*, v* + v*, and

bd > b*, Since A is finite, we can assume that al = a, for all gq.

Y

Finally, if i = 0, condition (iv) of admissibility implies that {sg}
is bounded, and w.l.o.g. we assume that 51 a2 () for each k = l,ses,m

and q > 1. Similarly, if i # 0, w.l.o.g. we assume that sg = )

for all q > 1, and condition (iv) implies that {s4) is bounded.

Therefore, in either case we can assume that {s1} is bounded and that

s1 + g*,

Because c¢o W is compact, (ui,vt) € co W, and since b?{ £ v?{ - ¥

for all g, bii vt - ¥p for all k= 1l,.4s,m« Clearly,
F’f‘A(s,a,b,u) is continuous in (s,b,u) and FA(s,a) is continuous in

s. Hence, for all j # i, FK(sq,a p3,udy > Fx(sq,a ) for

i!
b*,u*) > FA(B*,a

]

all q iwmplies that F;(s*,a ). Finally

i |
Fg(s,a,b,v) is continuous in {a,b,v) so Fg(s*,ai,b*,v*) > FP(s')
for all s's Thus (s*,ai,b*,u*,v*) is admissible w.r.t. W, and since

by continuity w* = F*(s*,ai.b*,u*,v*), w* ¢ B(W). Q.E.D.

Definition:

Wwe II»‘.2 is self-generating if W < co B(W).

Theorem 1: Self-Generation

If We 1R2 is compact and self-generating, then co B(W) < V.

The following theorem corresponds to the factorization theorem In
Abreu, Pearce and Stacchetti (1987). The converse inclusion is stated

below in the Corollary of Theorem 3. However, to show the converse
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inclusion it is first necessary to establish, for example, that the
worst continuation values for the agent and the principal are attained;

this is implied by the fact that 'V is compact.

Theorem 2:

\'j _C- co B(V)o

Let (s*,a*,b*) be the path of a Nash equilibrium of the principal-
agent component game described in Section 2. (Clearly we can assume
b* = 0 w.l.o.g.) Let E¥ be the profile of I specifying that in
every period, after any history, the principal offers s* and pays no
bonuses, and the agent takes a myopic best response to the current
contract in that period (if there is more than one, choose one that is

best for the principal). Suppose a* = a;, and let

m

I pUsp) - d, if 140
u* = { k=1

U(56 +r) - d0 if 1 =20

m

) Py [m = st 1f 140
vk 1= k=1

]

Pa [, - sX] if 1=0.
= 0K K 0

It is easy to see that E* is an equilibrium of I with value
v(E} = (u*,v*). Therefore V # @.
= .. om
Let m : lgggn iym] Pik™c» 30nd recall that by A3,

0 -O?ig X:zl Pi™c = XE=1 Por™c* The principal can guarantee himself
n

-26-



a supergame payoff of 0 by ocffering the contract s =0 in svery
period. On the other hand, the best outcome he can ever expect is that
in every period the agent chooses the best action for the prinecipal and
receives no payment. This gives the principal an expected supergame
payoff of 7. Let p := min {éikll £in, 1 {k<m} and ¢ :=
min {di}' Since the principal knows that his continuation value, after
any history, is in the interval [0,%], we can assume he will never
offer a contract s having g > &n/(1-8) or 8y > éﬁi[gﬂl-é)] for
some k= 1l,...,m« The agent can guarantee himself a salary r in
every period by taking his alternative job in every period. Hence, for
each (u,v) ¢ G,

&n -

U(r)-do_(_uS_U(m)-i and 0 {v<mo.

Since V = co ﬁ. V 1is nonempty and bounded.

In the next theorem we use the fact that B is monotone in the

sense that 1f W < W' c R®, chen B(W) < B(W').

Theorem 3:

¥V i1is a nonempty compact set.

We need only show that V 1is closed. We have V < co B(V) ¢
co B(ec2 V), and since V is bounded, ¢ V is compact and co B(cl V)
is compact. Hence, ¢ V € co B(cl V), and by self-generation,

¢l V = V. Therefore, V 1is closed. Q.E.D.

Corollarz:
V = co B(V).
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