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ABSTRACT
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distributions on actions induced by generalized correlated equilibria with
common priors.
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1. INTRODUCTION

It is customary in game theory to model a situation of differently
informed players in terms of partitions of a state space. 1In this paper we
study the correlated equilibria (Aumann (1974, 1987)) of games in which
players make information processing errors. To do this we replace partitions
by more general information structures called possibility correspondences. As
a result our players can ignore bad news, be unaware of events they do not
observe, forget, or even fail to imagine some contingencies. Possibility
correspondences have been examined by Shin (1986, 1987), Samet (1987), and
Geanakoplos (1989). This last paper also introduced the notion of Nash

equilibrium for games in which players make information processing errors.

In a correlated equilibrium the uncertainty pertains exclusively to the
actions chosen by the players. Hence the information processing errors
allowed for by possibility correspondences take the form of mistakes about
actions. For example, one player may ignore the bad news that another player
is making an unfavorable choice from the point of view of the first. We
examine the set of correlated equilibria obtained by wvarying the set of states
of the world and the players' priors and information structures. This enables
us to explore how the set of (conventional) correlated equilibria is changed
when information processing errors are permitted. In the Nash equilibria
studied in Geanakoplos (1989) the set of states of the world and the players’
priors and information structures were fixed. Hence the information
processing errors there were naturally interpreted to concern exogenous

events, rather than the players’ choices.

In comparing the sets of correlated equilibria--with and without
information processing errors--we adopt two approaches. In the first, the
perspective is that of the players themselves, that is, we focus on the
players’ strategies and payoffs. We show that any correlated equilibrium with
information processing errors is, from the viewpoint of the players, decision-
theoretically equivalent to some (subjective) correlated equilibrium in which
such errors are absent but players may have different prior beliefs
{Proposition 4.1). Conversely, we prove that any subjective correlated
equilibrium is decision-theoretically equivalent to a correlated equilibrium
with common priors, but with (significant) information processing errors

(Proposition 4.2). Together these results establish that information



processing errors and different priors are interchangeable as far as the
players’ decision problems are concerned. Moreover we show that allowing
players to make further errors in the caleulation of conditional probabilities
adds nothing new to the analysis: such miscalculations can already be subsumed

in information processing errors {(Remark 4.1).

In the second approach, the perspective is that of an outside observer.
We suppose the players share a common (objective) prior and we focus on the
distribution on actions induced by a correlated equilibrium. When the players
have partitions (i.e., make no mistakes) and share a common prior, the set of
correlated equilibrium distributions on actions is a closed, convex set (see
Aumann (1974, 1987)). Permitting mistakes, but keeping & common prior, must
maintain or enlarge the set of correlated equilibrium distributions. We
describe a class of information processing errors which nevertheless leaves
the set of correlated equilibrium distributions unchanged (Proposition 5.2).
We also characterize the set of correlated equilibrium distributions that
arise when we allow a larger class of mistakes by the players (Proposition

5.1). This latter set is again convex, but not necessarily closed.

The organization of the rest of the paper is as follows. Section 2
describes alternative information structures. Section 3 defines a generalized
correlated equilibrium. Section 4 establishes the results on decision-
theoretic equivalence. Section 5 characterizes generalized correlated

equilibrium distributions.

2. ALTERNATIVE INFORMATION STRUCTURES

The information structures discussed in this section all start with a
finite set 0 of possible states of the world. 1In the standard framework,
player i's information is represented by a partition H' of @, that is, a
class of nonempty disjoint subsets of I that covers Q. Given a partition
B', define a correspondence H' : Q =+ ol by letting H'(w) be the member of
H' that contains w. (Clearly the range of H' is then H'.) If the true

state is w, player i 1is informed of H'(w). A more general way of



representing information that allows for information processing errors is via
a possibility correspondence P' . (0 + 27\ {#}. The interpretation is that
if the true state is w, player 1 regards all states in P'(w) as
possible. Possibility correspondences have been studied by Shin (1986, 1987),
Samet (1987), and Geanakoplos (1989). 1In this paper we shall make use of

various combinations of the following properties of the correspondence P'.

(1) (Nondelusion) For all wefl, we P'(u).
(2) (Knowing that you know, KTYK) For all we @, w' € P'(w) implies
Pl(w')y c P'(w).

To define the properties of balancedness and positive balancedness, we need a
preliminary definition. Say a set E c 1 1is self-evident if for every
weE, P'(vw) c E. That is, E is self-evident if whenever E happens, i
knows that E happens (i can only imagine states in which E happens).
Given a possibility correspondence P' : 01 =+ 2n \ (g}, let P' denote the

range of P'.

(3 (Balancedness) TFor every self-evident set E Cc {§ there is a function
B : P+ & such that
XE = E ﬁ(R‘)XR‘
RleP!
R'CE
where X, denotes the characteristic function of A (i.e., X, (w) =0

or 1 according as w & A or w € A).

(4) (Positive Balancedness) For every self-evident set E C {i there is a

function g : P' + B. such that

Property (1) of P' says that player i always imagines the true state
to be possible. Property (2) says that if 1 knows some set A at w, and
can imagine w', then he would know A& at w'. In other words, 1 knows
what he knows. It can be shown (see Geanakoplos (198%9)) that, assuming

nondelusion, KTYK implies balancedness. In fact, in the context of certain



correlated equilibria with information processing errors, balancedness is no
more general than KTYK (see Proposition 5.1 and Remark 5.2). Clearly,
positive balancedness is more restrictive than balancedness but weaker than
assuming a partition. Nevertheless, we also show that for certain correlated
equilibria with information processing errors, positive balancedness is
equivalent to assuming a partition (see Proposition 5.2). For a discussion of
the kinds of information processing errors captured by possibility
correspondences satisfying various combinations of Properties (1) - {(4), see

Geanakoplos (1989).

It remains to discuss the issue of player i’'s beliefs. The usual
Bayesian approach is to assume that i has, in addition to a partition H'
of 0, a prior probability distribution =x' on . If the true state is w,
the probability that 1 assigns to a set A c 2 is then given by the
conditional probability ﬂ‘(A[H‘(w)). Likewise, when 1 has a possibility
correspondence P', it is natural to suppose that if the true state is w
then 1 assigns probability ='(A|P'(w)) to A. We could also imagine
allowing for mistakes in computing probabilities by supposing that player 1,
rather than calculating conditionals as just described, possesses a more
general "belief function™ §' : 0 + A(R) giving i's beliefs at each state
of the world. (Here A({l) denotes the set of all probability measures on
0.) The probabilities 6&'(w)(A), A Cc 1, might not be obtained by taking
conditionals with respect to a prior «' and possibility correspondence P',
that is, 6§'(w)(A) # n'(A|P'(w)). For example, player i might miscalculate
conditional probabilities. 1In fact, we can show that this extra generality
adds nothing new: errors in calculating probabilities can be captured in

information processing errors (see Remark 4.1).

3. GENERALIZED CORRELATED EQUILIBRIUM

This section begins with a review of the usual notion of correlated
equilibrium as introduced by Aumann (1974). Consider an n-person game
' =<A', ..., A" ; u', ..., u"> where, for each i =1, ..., n, A' is

!

sl
player i's finite set of actions and u' : jxl Al 4 R is 1i's payoff



function. For any finite set Y, let A(Y) denote the set of probability

measures on Y. Given sets Y, ..., ¥, ¥~'  will denote the set
Y1 x ese x Y171 x Y*'1 x see x YY", and y o' = (y', ..., ¥y, oy, L0y
a typical element of Y '. To define a correlated equilibrium of I', omne

must add to the basic description of the game a finite state space I and,
for each i, a prior =' on 1, a partition H' of 0, and a map

f£' : 0+ A' satisfying H'(e') = H'(w) implies f'(w') = f'(w). A
correlated equilibrium (CE) of I 1is a collection < Q:n',H',f'> where for
every i and each w € {1 the conditional expected payoff to i of fl(w)
is at least as great as the conditional expected payoff te 1 of any other

action a':

' (0 |[H (w)) v (T (w) £ (w")) 2 E: ' (w' [H (@))u'(a' £ (w'))
w'el (w) w'eH' (w)

for all a' € A'." 1If all the =n''s are the same (the Common Prior
Assumption) then the CE is an objective correlated equilibrium (OCE). If we
wish to emphasize the possibility of different priors, we will refer to a CE

as a subjective correlsted equilibrium (SCE).?

A generalized correlated equilibrium (GCE) is exactly the same as a CE,
except that the players have possibility correspondences P' in place of
partitions H'. Thus < @;n',P',£'> is a GCE of I if for every 1 and

each w € O:

(1) P'(w') = P'(w) implies f'(w') = £'(w);

'The conditional distributions ='(+|H'(w)) are assumed to exist for
every H'(w), even if #'(H'(w)) = 0, and to satisfy ' (' (w)|[H' () = 1
(i.e., properness in the sense of Blackwell and Dubins {(1975)).

2 gtrictly speaking, our definition is that of an & posteriori
equilibrium (Aumann (1974, Section 8)) since optimality on every H'(w) is
required.



(2) (o |P w)u (F (W) £ (w")) 2 Z ' (0’ |P (w))u'(a’ £ (w"))
w'eP* (w) w'eP {w)
for all a' € A'. If all the x''s are the same, we refer to an objective

generalized correlated equilibrium (OGCE). 1If we wish to emphasize the
possibility of different priors, we will refer to a GCE as a subjective

generalized correlated equilibrium (SGCE).

We illustrate the definition of a GCE by means of the familiar game of

Matching Pennies depicted in Figure 1.

2
L R
-1 1
U
1 -1
1 r,
1 -1
D
-1 1
FIGURE 1

Recall that in any OCE of T, the conditional expected payoffs to the
players are always 0 (see Aumann (1974)). By contrast, we now describe an
OGCE of T 1in which the conditional expected payoffs to each player are all

strictly positive.
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Figure 2 depicts the state space Q = {1,2,3,4,5,6}, the maps f!' and f£2,
and illustrates player 1's possibility correspondence P!. Player 2's
possibility correspondence satisfies: PZ(1) = P?(4) = P2(5) = (1,4,5}, P%*(2)
- P?(3) = P2(6) = {2,3,6}. Finally, the common prior = assigns probability
1/5 to each of states 1 and 6, probability 3/20 to each of states
2.3,4, and 5. It is readily verified that < @;n,P',f'> is an OGGE of T.

The conditional expected payoffs to player 1 are either 1/7 or 1;
the conditional expected payoff to player 2 1s always 1/5. Notice that the
possibility correspondence P! satisfies nondelusion and KTYK (hence
balancedness), but is not positively balanced. In Section 4 we define a

notion of decision-theoretic equivalence between GCE's. This definition



permits a general characterization of conditional expected payoffs that arise

in GCE's in terms of those arising in CE's.

In the example above, the distribution on actions assigns probability
1/5 to each of (U,L) and (D,R), and probability 3/10 to each of (Db,L)
and (U,R). A general characterization of the distributions on actions

induced by OGCE's is provided in Section 5.

Let us now consider the interpretation of a GCE. In the definition of a
GCE players are permitted to make information processing errors about the
state of the world. On the other hand, they are not allowed to be mistaken
about the actions chosen by the other players as a function of the state of
the world. This latter is not & restriction but is rather a tautology since
the description of a state includes, via the maps f', the actions chosen by
the players at that state (see Aumann (1987)). Players can indeed make
mistakes about other player’'s actions by making mistakes about w. In the GCE
of Matching Pennies described above, when w = 2 say, player 1 "should"
recognize that since he has not been informed of the set (1) but has been
informed of (1,2} the state must be «w = 2. 1In other words, he should
deduce that player 2 is playing R. Instead, player 1 acts as if he ignores
this finer information and places probability 4/7 on player 2 playimg L.
Given the fact that he is playing U at w = 2, we might say that player 1
ignores the "bad" news that player 2 is actually playing R. Notice that what
is "good" or "bad" news for player 1 is determined endogenocusly by the

equilibrium.

4. DECISION-THEORETIC EQUIVALENCE

In this section we demonstrate an equivalence between correlated
equilibria that allow for information processing errors and correlated
equilibria in which the agents do not make such errors but may have different
priors. This result is based on the following notion of decision-theoretic

equivalence between equilibria of a game.



DEFINITION 4.1. For a fixed game T, let < Q;n',P',f'> and
<{:;x',P',f'> be SGCE’s. The two equilibria are decision-theoretically

equivalent if for every 1 there is an isomorphism ¢' : P' + P such that:

(1) F'(o) = f'(w) when P'(w) = ¢'(P'(@));

(2) for R' eP' and R' = ¢'(E")

E: ' (wfRMu' (@', E (@) = E: rH(w[Ru'(a' 7" (@)

weR! weR !
for all a' e a'.

It is easy to see that this notion of decision-theoretic equivalence is indeed
an equivalence relation. If one SGCE is decision-theoretically equivalent to
another, then behaviorally the two equilibria are equivalent in the sense that

strategies and conditional expected payoffs agree.

PROPOSITION 4.1. Let < Q;n',P',f'> be an SGCE of a game TI'. Then

there is a decision-theoretically equivalent SCE < fi;=' H',f'> of T.

Proof. Let fi =P! x es» x P° and for each i let H'(R', ..., R") =
(R') x P~'. By construction, H' 1is a partition and there is an isomorphism

6" : H' + P'. Let #n' be defined by

#'(RY, ..., R"|[{RY) x P7') = #'({w : PI(w) =RI for j# i}|R")
and

(R x P71 = ;3%7
Define f' : i+ aA' by f'(R', ..., R") = £'(w) for w such that

Pi(w) = R'. Now, using the definitions
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' (RY, ..., R (RY) x P"YHu'(a' TR, .. LRY)) =
R™'ep!
Z ' ({w:PI(w) « R for j#L)V|[RVu'(a' ,£7"(RY,... ,R")) =
R ep?
Z Z ' (w|R')u'(a' £ () =
R 'ep™! {w:PJ (w)=RJI for j#i}

Z PR (a' £ W), m

weR!

Proposition 4.1 says that
theoretically more general than
general than OCE's. That is to
common prior, in any equivalent

different priors. For example,

the notion of an SGCE is not decision-
that of an SCE. However, OGCE's are more
say, given a GCE where the players have a
CE the players may be required to have

refer hack to the OGCE of Matching Pennies

described in Section 3. The state space f} and the players’ conditional

probability distributions in the decision-theoretically equivalent CE

constructed according to the proof of Proposition 4.1 are illustrated in

Figure 3.
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P? P?

{1,4,5) {2,3,6) {1,4,5) (2,3,6}

{1} 1 0 {1} 2/5 0
{1,2) &/7 3/7 {1,2) 0 3/10
(1,3} 4/7 3/7 _ {1,3} 0 3/10

P Q P 0

(4,6} /7 4/7 (4,6) 3/10 0

(5,6} 3/7 4/7 (5,6} 3/10 0

{6} 0 1 {6} 0 2/5
1's conditionals 2's conditionals

FIGURE 3

Could these conditionals have arisen from a common prior on {i? The answer

is no, as can be seen either by direct calculation (by showing that the
restrictions that such a prior would have to satisfy are inconsistent}, or by
recalling that in any OCE of Matching Pennies the conditional expected payoffs
to the players are always 0. Hence, Proposition 4.1 implies that starting
from an equilibrium in which players have a common prior but may make
information processing errors, there is a decision-theoretically equivalent

equilibrium in which players have partitions but may have different priors.

We now establish a converse to Proposition 4.1: we show that any SCE is
decision-theoretically equivalent to an OGCE. Hence, in the context of
correlated equilibrium, arbitrary differences in players’' priors can be
interpreted as having arisen from a situation in which the players have a

common prior but make information processing errors.

PROPOSITION &4.2. Let < Q;n',H',f'> be an SCE of a game T. Then
there is a decision-theoretically equivalent OGCE < fi;n,B',£'> of T in
which the P''s satisfy KTYK.
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Proof. let f =0 x {1, ..., n}. Player 1i’s possibility

correspondence P' is defined by

Pl(w,j) = ((w',i) € 8 : w' € B' ()}

% (w,i) = a'(w|P (W)
for (w,i) € § and

a*(w,i)

wl{w,i) =
Y ot D
(w', jleh

Finally, the map f' : G + A' is given by f'(w,j) = f'(w) for
(w,5) €f. =

In the decision-theoretically equivalent OGCE just constructed, the
players know their own actions (see Section 5) and the possibility
correspondences satisfy KTYK but not nondelusion. Imposing nondelusion is
restrictive. For example, in Matching Pennies there is an SCE is which all
the conditional expected payoffs are 1. This clearly cannot happen in an

OGCE of Matching Pennies if nondelusion is satisfied.

Taken together, Propositions 4.1 and 4.2 provide an explanation of
differences in priors in terms of bounded ratiomality on the part of the
players. The standard assumption in game theory has been what Aumann has

termed the "Harsanyi doctrine,"” namely that all players begin with a common
prior. In this case it is impossible for rational players to agree to het or
trade risky securities with one another based solely on differences in
information, when that information is represented by partitions (Milgrom and
Stokey (1982), Geanakoplos and Sebenius (1983)). If the possibility of
arbitrary differences in priors between players is admitted, then there is of

course no difficulty in explaining betting and securities trading. But the
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approach of postulating at the outset that priors may disagree has proved
rather unpopular--only a small minority of papers (e.g. Harrison and Kreps
(1978)) consider "subjective" priors. We have seen that differences in priors
can be justified as a manifestation of bounded rationality om the part of the
players. This suggests that speculative behavior might usefully be explored
rom this point of view. In fact, the OGCE of Matching Pennies described in
Section 3 shows that betting can occur with a common prior and information
processing errors: the players are effectively betting with each other over
which outcome of the game will obtain. Geanakoplos (1989) characterizes the

kinds of information processing errors that permit speculation.

Remark 4.1. Proposition 4.1 shows that information processing errors
subsume errors in calculating conditional probabilities. To see this,
consider a further generalization of correlated equilibrium in which each
player 1 has a belief function §' : 1+ A(Q) giving 1's beliefs at each
state w. (cf. the discussion in Section 2). An equilibrium of a game T

would then be a collection < 0;6',£'> where for every 1 and each w € Q1!

(1) 6" (w’') = §'(w) implies f'(w’) = £'(w);

(2) E: §' (W) (£ (), £ (")) 2 E: §'(w)(w Hu'(a' £ ("))

w'eP (w) w'eP (w)

for all a' € A'. Llet D' c A(Q) denote the range of §'. By analogy with
Definition 4.1, we say that two equilibria < ;6',f'> and < (;8',f'> of

I are decision-theoretically equivalent if for every i there is an
isomorphism ¢' : D' + D' such that whenever §'(w) = ¢'(§'(w)) then

f'(w) = f'(w) and the conditional expected payoffs to 1 at w and w are
equal. A careful reading of the proof of Proposition 4.1 shows that any
equilibrium < 0;6',f'> of T is decision-theoretically equivalent to an SCE
(and hence to an SGCE) of T. Thus no new correlated equilibria arise by

miscalculation of conditional probabilities.

We close this section by mentioning briefly the connection between the

results of this section and the solution concept of rationalizability due to



-14-

Bernheim (1984) and Pearce (1984). In a 2-person game I, the set of
conditional expected payoffs to a player i from the SCE's of T coincides
with the set of 1's rationalizable payoffs in T (Brandenburger and Dekel
(1987, Proposition 2.1)). The same equivalence holds in games with more than
two players, provided the term "rationalizable" is replaced with "correlated
rationalizable” (op. cit. p.1394). Hence Proposition 4.1 implies that
conditional expected payoffs from GCE's are (correlated) rationalizable

payoffs.

5. CHARACTERIZATION OF EQUILIBRIUM DISTRIBUTIONS

This section characterizes distributions on actions that arise from
OGCE's. Recall that for an OCE <«Q:n,H',f'> of T, there is a naturally

induced distribution on actions X € A(A! x »++ x A"} given by
xal, ..., @ =a{{w : f'(w) =a', i=1, ..., n})

for (al, ...., a™) € A' x +++ x A" (see Aumann (1987)). This will be called
an objective correlated equilibrium distribution (OCED). There is a well
known characterization of the set of all OCED's. Given a probability measure
A€ A(AY x +ss x A"), and an a' € A' such that A{{a'} x A™') > 0, 1let

x(+|a') € A(A™') be the conditional probability measure on the actions of the

other players. Given a game T, a distribution XA € A(A?! x s+« x A") is an

OCED if and only if for every i and each a' € A' with A({a') x A™') >0

Aa tat)ul(a',a™ty 2 E: Ma '|at)u'(b',a™)
a~tea™? a~tea™t

for all b' € A'. The set of all QCED's is thus a closed, convex set defined

by the above system of linear inequalities.

Given an OGCE, there is a precisely analogous induced distribution on
actions, to be called an objective generalized correlated equilibrium

distribution (OGCED). To illustrate these definitions, Figure 4 depicts first
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the (unique) OCED of Matching Pernies, and then the OGCED induced by the OGCE

of Matching Pennies described in Section 3.

L R L R
o 3| IR
| 1| | 3|
OCED A OGCED A
FIGURE 4

In characterizing OGCED's in general, we will make use of the following
assumption. A player i 1is said to know his own actions if for each R' € P
there is an &' € A" such that f'(w) = a' for all w € R'. This assumption
says that 1 1is sure about what he is playing. (However, i may be mistaken
if nondelusion is violated.) Notice that a player always knows his own

actions (correctly) if his information is described by a partition.

We make two different sets of assumptions in characterizing OGCED's. 1In
Proposition 5.1 we suppose that the players know their own actions in
characterizing OGCED's and that the possibllity correspondences satisfy
nondelusion and either balancedness or KTYK. The proposition provides a way
of calculating whether a distribution on actions is an OGCED. In Proposition
5.2 we suppose the players know their own actions and that the possibility
correspondences satisfy nondelusion and positive balancedness--in this case

all OGCED's are OCED'’s.

In order to state the first result, we need some notation. Given a
distribution A € A{A! x sse x A™) and an a' € A' such that

A({a'Ixa™t) > 0, let
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Q,(a') = { g € A(A™Y) : Supp g € Supp A(-]a'),

gla ™" )Y[u'(a*,a"") - u'(b',2a™')] 20 ¥ b'e A’ }

a~t'e A7

where Supp denotes the support of a measure. In words, QA(a‘) is the set
of all distributions gq on A™', with support contained in that of X(-|a'),
under which a' is an optimal action for i. Note that QA(a‘) is a
compact, convex subset of A(A™'). Given a set Y, let aff Y denote the

affine hull of Y. That is, aff ¥ = {Znamym : Ym €Y and Znam - 1).

PROPOSITION 5.1. Given a game TI', & distribution X € A(A! x +ee x A™)
is an OGCED induced by an OGCE in which the players know their own actions and
the possibility correspondences satisfy nondelusion and balancedness if and
only if for every i and each a' € A' with A(la') x A~') > 0,

A(+]a') € aff QA(a‘).3

Remark 5.1. The stronger requirement that A(-la‘) S QA(a1) is exactly
the condition for X to be an OCED.

Remark 5.2. As the proof will make clear, Proposition 5.1 remains true
if the assumption that the possibility correspondences satisfy balancedness is
replaced by the assumption that they satisfy KTYK. In general, under the
hypothesis of nondelusion, KTYK is a more restrictive assumption than
balancedness. By contrast, in the context of OGCE’'s in which the players know
their own actions and the possibility correspondences satisfy nondelusion,

KTYK and balancedness turn out to be equivalent.

Remark 5.3, Proposition 5.1 implies that if A({a'} x A™') > 0, then
a' is a correlated rationalizable action for player i. To see why, for each
player 1 let B' = {a' e A' : A({a') x A™') > 0}. For any a' € B!, QA(a*) ¥’
¢ and for any q € QA(a‘), Supp q € B™'. Hence there is a subset

B! x »e+ x B" c A x ses x A™ such that for each i, every a' € B' is a

At the time we were working on the first draft of this paper, Dov Samet
mentioned to us that he was also working towards a result similar to our
Propeoesition 5.1.
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best reply to a distribution on B~'. That is, a' 1is correlated

rationalizable.

COROLLARY 5.1. Given a8 game T, the set of all OGCED's induced by
OGCE's in which the players know their own actions and the possibility
correspondences satisfy nondelusion and either balancedness or KTYK is

nonempty and convex, but may not be closed.

Before providing proofs, we illustrate Proposition 5.1 and Corollary 5.1
in the context of Matching Pennies. Recall that the unique OCED for Matching
Pennies assigns probability 1/4 to each pair of actions. Proposition 5.1
implies that the set of OGCED's induced by OGCE's in which the players know
their own actions and the possibility correspondences satisfy nondelusion and
balancedness is much larger: it consists of all strictly positive
distributions on (U,D} x {L,R}. Notice that this is a convex set, but is not
closed. To see that any strictly positive X is an OGCED with the
aforementioned properties, observe that for player 1, U is a best reply to
the distributions (1,0) and (%,%) on |(L,R}. Hence if A has full
support, aff QA(U) = A((L,R}) and Proposition 5.1 places no restriction on
A(-|U). The argument for D, L, and R is analogous. Conversely, no OGCED
A with the aforementioned properties can assign probability O to any pair
of actions. Suppose A(U,L) = 0. Then if A(U,R) > 0, QA(U) = @ hence A
cannot be an OGCED. Thus X(U,R) = 0, but then by symmetry X is

identically 0, which is a contradiction.

Proof of Proposition 5.1. To prove sufficiency, we construct an OGCE by
sub-dividing the elements of Al x see x A™ into states w € {}. The
construction proceeds player-by-player and for each player, action-by-action.
So fix a player i and an a' € A' with X({a') x A™') > 0. By hypothesis,
A(+ja') = Zmamin for gm e Q,(a') and Ymam = 1. In fact, since QA(a‘)
is convex, we can write A(-}ja') = aq + (l-a)q’ for q, q' € QA(a1). Without
loss of generality o < 1. Note that if 0 < g <1 and B 1is sufficiently
close to 1, then Bq + (1-B)r(-ja') € Qx(a‘).
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Since Supp q C Supp A{+|a'), we can find a section S, of the
rectangle {a') x A™' such that X (+]|8,) = q. Letting ~S, be complement

~S5), we know that A(+]a‘') 1lies on

of S5, in {a'} x A™* and q = A(¢
the line segment from gq through q. Hence if 0 <y <1 and v is
sufficiently close te 1, g + (1 - 1)& € QA(a‘). Now divide up ~5, into
disjoint sections S,, ..., S¢ such that X(<|8k) = q for k=1, ..., K.
Let Tx = S, U S¢ for k=1, ..., K. Then if K is sufficiently large,
A(+|Tk) € Q,(a’) for all k.

Player i's possibility correspondence P' 1is given by

S if we §,;
P‘(w)s{ a 1]
Tk if we Sk for k=1, ey Ko

Clearly, nondelusion and KTYK are satisfied and hence balancedness also holds.

(In verifying balancedness directly, the nontrivial self-evident sets to check

are of the form {a'} x A™'. The balancing weights are 1 for each Ty, k =
1, ..., K, and -(K-1) for §,.) By construction, player i knows his own
actions.

We divide up any other rectangle (b') x A™', b' ¢ a', in a similar

fashion. The same procedure is then repeated for every other player. At the
end, the states w € {3 consist of the intersections of all the divisions of

rectangles,

To prove necessity, let < Q;n,P',f'> be an OGCE of I in which the
players know their own actions and the possibility correspondences satisfy
nondelusion and balancedness. The first step is to show that if P' is

balanced, then for any self-evident set ECfl and any FC Q
x(F[E) € aff (a(F|R') : R' € P', R' C E).

To see this, write
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n(F|E) = z Xe(wiXe(w)n{w)

n{E) =l

1
- Z Z B(R' )X g1 (@)X (w)n(w)
mE)  Zn R'ep’

R'CE
using balancedness. Hence

1

1
n(F|E) = E: B(RY )n(R")

Y Xt @ @)
n(E) n(R")

R'eP! well
R'CE

1
- z: B(R" )x(RT)x(F|R).
ﬂ(E) RiEP1
R'CE

But using balancedness it is easy to show that

1
Z B(RY)n(R') = 1
7 (E) R'ep'
RICE

and so
x(F|E) € aff (x(F|R') : R"' € P', R' C E}.
Now for any i and a' € A', let E(a') = (we @ : f'(w) = a'}. Since
i knows his own actions and P' satisfies nondelusion, E(a') is self-

evident. Hence, letting E(a™') = {wefn : £ ' (w) = a™ '},

Ma'|a') = n(E(a”)|E(a")) € aff (x(E(a"")|R") : R' € P', R' c E(a')).
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But for any R' € P' with R' c E{(a'), the measure q € A(A™') given by
q(a”') = n(E(a™')|R'") for a”' € A™' 1is a member of Qx(a'). {The
optimality of a' given q follows from the hypothesis that <Q;=,P',f'> is
an OGCE, and the support condition is straightforward to verify.) Thus

A(-|a') € aff QA(a‘). |

Proof of Corollary 5.1. The set of all OGCED'’s is nonempty since any
OCED A is also an OGCED. To show convexity, suppose A, A are OGCED's and
let p=al + (l-a)X for 0 <a < 1. We have to show that if
p({a'} x A™') > 0, then u(+|a') € aff Q“(a‘). Now p(efa') = ga(+|a') +
(1-8)x(+|a') for some 0 < B <1. (If x({a') x A™') =0 then B =0. If
X({a') x A”') = 0 then S =1.) Also QA(a') c Qp(a‘) so A(+|a') €
aff Qp(a‘). Similarly, X(<]a') € aff Qp(a'). Hence pu(-|a') € aff Qp(a’)

since aff Qp(a‘) is convex. =m

Our final result shows that strengthening the hypothesis of balancedness
in Proposition 5.1 to that of positive balancedness leads to an eguivalence
between OGCED’s and OCED's. Thus in the context of OGCE’'s in which the
players know their own actions and the possibility correspondences satisfy
nondelusion, positive balancedness is no more general than assuming a
partition. Proposition 5.2 mirrors the Generalized Sure Thing Principle
established for single-person decision problems and Nash equilibria in
Geanakoplos (1989).

PROPOSITION 5.2. Let < Q;n,P',f'> be an OGCE of & game T in which
the players know their own actions and the possibility correspondences satisfy
nondelusion and positive balancedness. Then the induced OGCED X 1is an OCED
of T.

Proof. Repeat the necessity part of the proof of Proposition 5.1,
observing that because of positive balancedness the conclusion that A(-la‘) €
aff QA(a‘) can be strengthened to assert that A(e+}a') 1lies in the convex
hull of QA(a'). Since QA(a‘) is convex, it follows (using Remark 5.1) that
A is an OCED. =
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