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THE SHAPES OF POLYHEDRA

by

Ravi Kannan, lLdszlo Lovdsz and Herbert E, Scarf1

I. Introduction

Let A be a real matrix with n+d+l rows, numbered 0,1,...,n+d, and with
n > 1 columns. We assume that all nxn submatrices of A are non-singular and
define the condition number C = C(A) to be the ratio of the largest nxn
subdeterminant to the smallest nxn subdeterminant of A in absolute value. In
addition we assume that there is a positive vector n such that zxA = 0. This
implies that for any b, the body Kb - {x]Ax < b} is bounded,.

Two such bodies Kb and Kc are salid to have the same shape if one of
them is a translation and expansion of the other, i.e. if there exists a
vector £ and a positive scalar A such that Kb - AKC + £. We shall use a
variant of the well known Banach-Mazur metric p(Kb,Kc) on the set of non-
empty, full dimensional bodies which is unchanged if either bedy is
translated by an arbitrary vector or expanded by a positive factor; the

metric gives a distance of zero if and only if the bodies have the same
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shape. The distance between two bodies will be small if their shapes are
roughly the same., OQur main result shows that for an arbitrary positive ¢,
there will be a finite subset, of small cardinality, of these bodies such
that every body is within ¢ of some member of the subset. The result will
then be applied to a version of Lenstra’'s algorithm to determine whether a
convex body contains a lattice point, to study those bodies Kb which are
free of lattice points and to obtain some new conclusions about neighborhood
systems assoclated with the matrix A and Minkowski’s successive minima for
the family of symmetric bodies (Kb ~- Kb).

We define a set § of the rows of A to be dual feasible if there is a

vector « with L >0 for i € §, o= 0 for the remaining rows and =A = 0,
Given our assumption that all nxn minors of A are non-singular, the cardin-
ality of a set of dual feasible rows is at least n+l. The body Kb is a
simplex if it is defined by a subset of n+tl of the inequalities whose cor-
responding rows are dual feasible; it is easy to see that two simplices
defined by the same subset of nt+l rows are identical aside from translation
and scaling. We denote the number of distinct simplices, or equivalently the

number of minimal dual feasible sets of rows, by f = f(A). Obviously

£ < [n+d+1

atl ] - O(nd) for fixed d; a more refined analysis, based on the Upper

Bound theorem of McMullen (McMullen and Shepard,1971), would permit us to
assert that f = O(nd/z). In addition, we define r = r(A) to be the number of

rows of A whose complementary sets of n+d rows are dual feasible.

Our variant of the Banach-Mazur distance p(Kb,Kc) for an arbitrary pair
of non—empty full dimensional bodies Kb and Kc is defined as follows:
1.1 (Definition) Let Al be the smallest A for which Kc - AKb + gl for

some fl and Az the smallest X for which Kb c AKC + 52 for some_&z. Then



p(K LK) = log(X.2,).

It is easy to see that the distance function satisfies the following
elementary properties:

1.2 (Lemma) 1. p(Kb,Kc) 2z 0 and is equal to 0 if and only if the two
bodies are identical aside from translation and scaling.

2, p(Kb,Kc) - p(pKb + E,Kc) for positive p and arbitrary §£.

3. the triangle inequality: p(Kb K ) p(Kb K) + p(K K )

Proof: 1. Since K - Ale + E for some E and Kb c A2KC + 52 we see
that K G Al 2K + {E + Alfz}. Therefore A1A2 z 1 and is equal to 1 if and
only if both inclusions are equalities.

2. Using the same notation we see that Kc C (Al/p)(pr + £)

#1E" = (/W) and pKy + € € WK+ (uE + §) and therefore p(uK, + £.K))

=< log(ll.Az) - p(Kb,KC). Equality is obtained by reversing the argument.

3. Let
b,c c,b
Kp €2, cRe T 67 Ko C A 1] + ¢
c,d
chl\c,de-'-E ,KdCAdCKC+E ,sothat
p(Kb K ) = 1og(lb o ) and p(K K ) log(Ac'd.Ad’c).
But then
c,d b,c
Kb c A @) d 4 + £ ) + €
Ky € Ay + 9Py 4+ ¢%C 5o that
d e, b '
p(K Ky = log([/\b,c.}\c’d}.(Ad’c.lc,b)) = (KK ) + p(K K. O

Two bodies in the family Kb are identical, aside from translation and
scaling, if their Banach-Mazur distance is 0; they are similar in shape if
the distance is small. The major result of the paper will be to show that
for any ¢ > 0, there exists a finite subset of the bodies K of cardinality

not larger than



£(8) | 2log, (ncy /e | ¢
such that every body is within ¢ of some member of the subset, using the

Banach—-Mazur measure of distance.

II. The Cone B

Let C be the set of vectors b in Rn+d+1

for which the body Kb is non-
empty. C is a polyhedral cone of dimension n+d+l which contains the linear
space LA‘ of dimension n, spanned by the columns of A. Any two vectors in C
whose difference lies in LA yield bodies which are translates of each other.
We define B = C/L,, i.e., the set of equivalence classes of those b for
which K, is non empty, with two vectors identified if they differ by a
linear combination of the columns of A. Since n dimensions are removed by
this identification, B is a closed polyhedral cone of dimension d+l, A
single representative from each equivalence class may be chosen in several
ways: we may, for example, translate the bodles Kb so that n particular

coordinates of b are equal to zero, or alternatively so that b is orthogonzl

to the columns of A,

The cone B lies in the vector space Rn+d+l/LA. The dual of this sub-
space can be thought of as the set of those linear functions, x.b, which are
constant on each equivalence class, i.e., those linear functions with
nA = 0. The dual cone of B, denoted B*, is the set of such linear funcﬁions
with #.b = 0 for all b in B. It is easy to see that B* = {x|xA = 0 and
n = 0}, For if n, with #A = 0, is non negative, then certainly n.b = 0 for
any b such that the inequalities Ax < b yield a non empty set, i.e. for any

equivalence class of vectors in B. Conversely for any such b, if =.b > 0 for

all non negative n for which xA = 0 then, by the duality theorem, there is




an % for which Ax £ b and b belongs to B.

2.1 (Theorem) 1. B has f(A) facets. Each facet is defined by a subset §
of n+l rows of A which are dual feasible. The bodies corresponding to
vectors b on this facet FS are precisely those bodies Kb which may be

translated so as to satisfy bi -0 for i ¢ § and bi z 0 for the remaining
rows.

2. B has r(A) extreme rays. Each extreme ray corresponds to a row of A,
say £, such that the remaining nt+d rows are dual feasible. The bodies cor-
responding to vectors b on the ray R£ are precisely those which may be
translated so as to sa;isfy bi = 0 for all i different from £ and bg = 0.

Proof: 1. For each §, the vectors in FS’ as defined above, form a
subcone of B of dimension d. To show that they all lie on the boundary of B
we argue as follows: By the definition of §, there exists a = with nA = 0,
Lf > 0 for i € 5 and Pl 0 otherwise. Any vector X satisfying a;x = 0 for
i € S must then satisfy a;x - 0 for these same rows and — by the nondegen-
eracy assumption — is therefore the zero vector. It follows that for b in
FS’ Kb is the degenerate simplex defined by the n+l rows of § and satisfying
the remaining d inequalities, some of them strictly. It is on the boundary
of B since a small perturbation will make this body empty. FS is therefore a
facet of B.

Conversely, any body Kb with b on the boundary of B must consist of a
single point, since otherwise arbitrary small perturbations of b would
retain feasibility of the system of inequalities A# < b. Let this point be
translated to the origin. But then at least n+l hyperplanes, defined by a
dual feasible set of the rows of A, must pass through the origin and the

body is contained in at least one facet F. This demonstrates that the union



of the facets Fs is the entire boundary of B.

2; An extreme ray {Ab]A = 0) must lie on the boundary of B and, by the
previous argument, must be contained in a facet FS defined by n+l rows of A
which are dual feasible. After translation of Kb we may assume that bi =0
for i € S and bi > 0 for the remaining coordinates. But if more than one of
these remaining coordinates is strictly positive, b can be written as a
convex combination of two non proportional vectors in the same facet and is
not an extfeme ray of B. It follows that only one of these remaining
coordinates is strictly positive and the ray is as asserted in the statement
of Theorem 2.1. O

2.2 (Theorem) B* has r{A) facets and f£{A) extreme rays. Each facet of
B* corresponds to a row of A, say £, whose complementary set of rows is dual
feasible. The facet consists of those non negative n's with my = 0 and #A =
0. Each extreme ray of B* corresponds to a set of nt+l rows of A which are
dual feasible. The vectors on the ray are those x with 7A - O, T > 0 for
i el and o 0 for i1 not in 5.

Theorem 2.2 follows from standard arguments relating the facets and

extreme rays of a polyhedral cone to those of its dual.

III. An Example

Let us consider, as an example, the following matrix with &4 rows,

nunbered 0,1,2,3, and 2 columns:



“P q
-1 0
A =
o -1
1 1

with p > q > 0. The matrix has two sets of 3 rows which are dual feasible;
rows 0, 2 and 3 with the dual vector xl = (1,0,p—q,p) and rows 1,2 and 3
with the dual vector nz = (0,1,1,1). By Theorem 2.2 the dual cone B* has two
extreme rays generated by non-negative multiples of these two vectors. The
cone B consists of all b for which wl.b and xz.b are both greater than or
equal to zero. If we translate the bodies Kb so that b2 - b3 = 0, the

vectors in B consist of all pairs (bO’bl) in the non-negative quadrant,

(p-q,1) B’
(p, 1)

Figure 3.1
Figure 3.2 exhibits four examples of the bodies Kb' with the vectors b
- (bo,l,0,0). If b1 is taken to be a positive number different from 1, the

bodies differ only by a scale factor.
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Figure 3.2

1f bO is greater than p, inequality 0 is irrelevant; all of the correspond-
ing bodies Kb will be precisely the same triangle. The bodies will be
similar triangles, different from the former one, if bo is less than p-g.
The full set of bodies Kb are, therefore, obtained by considering all non-
negative multiples of the vectors b =- (bo,l,0,0) with p—q = bo < p: the
subcone B’ of Figure 3.1.

Let us calculate the Banach—-Mazur distance between the pair of bodies

B,  and B_, the first of which is given by b0 ~ r and the second by b = s,

0

with p—~q = r < s = p. If A is the smallest ) for which Br < ABS + 51 for

1

some &l and Az the smallest A for which BS < ABr + 52 for sonme 52, then

p(Kb,KC) - log(Al.Az). Clearly Br is contained in BS, but not in any

translated, scaled down version of the latter body; therefore A, .= 1, Also

1

Bs is contained in (s/r)Br. but not in any smaller multiple of this bedy,

even if translations are allowed. It follows that p(Kr,Ks) = log(s/r).



We remark that the maximum distance between any pair of bodies is
log(p/(p—q)). Moreover, if ¢ > 0 is given, two successive bodies in the
sequence for which

log(by/(p=q)) = Je for § = 0,1,...,| log(p/(p-a))/c |-1
will be within ¢ of eachother, and any particular Kb will certainly be
within ¢ of at least one member of this subset of bodies., This conclusion

exemplifies the main result of the paper.

IV. The Cone of Shapes

A body Kb with b on the boundary of B consists of a single point which
may be taken to be the origin.of R". At least n+l hyperplanes, defined by a
dual feasible set of rows of A, pass through the origin and the remaining
linear inequalities are satisfied by the origin. Aside from the vertex of
the cone, every vector on the boundary of B will therefore correspond to a
system of inequalities some of which are redundant in the sense that they
are implied by the remaining inequalities. Vectors close to the boundary
will give rise to bodies which are full dimensional, but which are also
defined by proper subsets of the rows of A. The distinct bodies Kb, for
which none of the inequalities are redundant, are determined by the vectors
b in the following subcone of B:

4.1 (Definition) B’ is defined to be the set of b ¢ B for which

max {aixlx €K) - b, for i = 0,1,...,n+d.
The set B' is clearly a convex cone, for if b and c are both in B’ then

for A,pz 0, Abi+p.ci = max{ai.xlx € KAb } = Amax {ai.xlx € Kb}

+uc

+ pmax{ai.x|x € Kc] = Abi + pe.. It follows that Mb + pc is also in B'.



An important property of this cone is that for two vectors b and ¢, which
are selections from a pair of equivalence classes in B', Kb C Kc if and only

if b < c.

B!

Figure 4.1
Figure 4.1 is an illustration, with d = 2, of the intersection of the cones
B and B' with a hyperplane whose normal is interior to B*.

A body Kb on the boundary of B’ will be arbitrarily close to bodies for
which some of the inequalities are redundant; it follows that a body on the
boundary of B' will necessarily be described by a dual feasible proper
subset of the inequalities with the remaining inequalities defining support-
ing hyperplanes to the body. The boundary of B’ is therefore the union of
r{(A) subsets, Bi, the ith of which consists of those bodies for which the
ith inequality yields a supporting hyperplane. Except for simple examples
each of these subsets may contain interior vertices and not be a facet of
B’. It should be clear that a segment connecting an arbitrary point in B’
with a point on the ith extreme ray of B will intersect Bi.

Of particular interest are the simplices defined by a subset of n+l

10



dual feasible inequalities with the remaining inequalities representing
hyperplanes which support the simplex at various of its vertices.

4.2 (Theorem) Let § be a dual feasible set of nt+l rows of A, and let
bi' for i € §, be selected so that the simplex KS defined by a;

i € § and bj = MmAax {ajxl aix = bi for i € 8) for £ not in S, is non—empty.

x = b, for
i

These bodies are scaled and translated versions of a single simplex; the

corresponding vectors b form an extreme ray of B’, which we term a

simplicial ray.
Proof: Suppose, to the contrary, that b = Ac + ud with X and g both
positive and c,d € B'. Translate and scale each of the bodies Kc and Kd 50

that bi - ci - di for 1 € §. If Kc is different from KS then there must be

at least one £, not in S8, for which Cy < b£. But this implies that d, > b

2 2

= max {a£x| aix = di for 1 € S) and therefore Kd is net in B'. O

Figure 4.2

4,3 (Theorem) The maximum distance, according to the Banach-Mazur
distance, between any two points in B’ is attained at a pair of simplicial
rays.

Proof: Let c be in B’. Theorem 4.3 will follow immediately if we show

1l



that the maximum distance between ¢ and any vector in B' is attained at a
vector b whose corresponding body Kb is a simplex defined by some dual

feasible set of n+l rows S. For any b in B’, let Al be the smallest X for

2 the smallest A for which Kb C AKC

+ EZ for some §2 so that p(Kb,KC) - 1og(Al.A2). Since both bodies are in

which K_ € XK+ ¢! for some ¢! and A

B*, the inclusion Kc C AKb + fl is equivalent to ¢ < )b + Afl and Al is the
solution to the linear program

min X subject to

c = )b + A&l.
Assume that Kb is scaled and translated so that Al = 1 and fl = 0, Let = be
an optimal basic feasible solution to the dual linear program, i.e.,

7A =0 b =1 x>0, max wc, with =« S being basic variables and

0

™ nonbasic. Then Mdl = o T Mg T 0 and ¢, = ‘bi with equality

T v oan
n+l’ n+d

for {1 = 0,1,...,n.

Figure 4.3

12



Define Ku to be the simplex given by u; = ocy for i -~ 0,1,...,n and

u, = max {aﬂxlaix = <, for i = 0,),...,n) for £ = ntl,...,n+td. Let us
calculate the distance between Kc and Ku. The linear progranm

min A subject to

c =< Au + Afl.
has a feasible solution with A = 1. Using the same dual variables = as
before we see that the dual linear program

max =wc subject to

e o= 1

mA = 0

n =0
also has a feasible solution with its objective function equal to 1, since
o 0 for i not in S. It follows that the minimizing A in the first linear
program is actually equal to 1. In order to calculate p(KC,Ku) we determine
Az from the linear program

min A subject to

uSAc+A£2.
But since u = b, the minimizing value of AZ is mot less than the value of A

2
used in defining p(KC,Kb). Therefore p(KC,Ku) z p(KC,Kb). This concludes the

proof of Theorem 4.3, a

Theorem 4.3 enables us to estimate the distance between an arbitrary
pair of vectors in B' by considering the distances between pairs of
simplices each obtained by selecting a dual feasible set of ntl rows of A.
Tﬁé'féllowing lemma will be used to give an estimate of the Banach-Mazur
distance between.an arbitrary pair of simplicial vertices in B':

4.4 (Lemma) Let Al and A2 be two dual feasible (ntl)xn submatrices of

13



A. Consider the two simplicies K' = {xA’'x < b"). Define Al to be the
smallest X such that K2 - AKl + xl for some xl and similarly for A2. Then
Aid, = n2C2 with C ~ C(A).

172 7
. s R . . 1 .
Proof: For each row i, maximize the ith linear function in A™x fer x in

K2 and let cl be the vector of maxima as 1 ranges from 0 to n. Then Alx =< c1

is the smallest simplex, obtained by translating the hyperplanes defined by
the rows of Al, which covers K2. Since all such simplices are similiar, this

is also the smallest multiple of Kl, which when translated, covers Kz, and

therefore c1 - Albl + Alxl for some xl

By the duality theorem the ith row of Al is a non-negative linear

: . 2 ; . 1. :
combination of n rows of A® and the ith entry in ¢~ is that same linear

combination of the entries in b2. We may therefore write (Al,cl) = Ul(Az,bz)

with U1 a non-negative (n+l)x(n+l) matrix with the property that each row of

1 - . . .
U~ contains a single entry equal to zero. By Cramer’s rule the entries in

the ith row of U1 (the dual wvariables in the ith linear programming problem)

may be written as the ratio of two determinants; the denominator an nxn

: 2
submatrix of A”, and the numerator an nxn matrix composed of n-1 rows of A2
and one row of Al. The entries in U1 are therefore bounded by C in absolute

value.

In the same way (A2,c2) - U2(Al,b1) with 02 - A2b2 + A2x2 for some x2,

with the same upper bound on the entries of Uz and again with the property

2
that each row of U™ contains a single entry equal to zero. It follows that

if E“(31X2+xl)/(A1A2~l) and b-b2+A26 then

ulp = vl weale)

- Ul¢cteale)

14



1

U2(A1b +A1[xl+£])
A c2+A2(x1+§)

1
2.2 2.1
A2 b7HA (Alx +x7+€)

Alxzb.
2.2

Therefore AlAz bl <=nC 'bl' This demonstrates Lemma 4.4, m]

The following estimate of the distance between an arbitrary pair of
bodies is an immediate consequence of the arguments of this section.

4.5 (Theorem) p(Kb.Kc) < 2log(nC) for any pair of bodies Kb and Kc.

Proof: We simply apply Lemma 4.4 to a pair of simplices which maximize
the distance in B’ A1 is the subset of n+l rows of A corresponding to the

first of these simplices and A2 to the second. O

We conclude this section with another result which describes a measure

of similarity of the bodies Kb. Let a = (al,...,an); we define the width of
the body Kb in the direction "a" to be

w(a,Kb) - max{axlx € Kb} - minlaxlx € Kb}.
The width is invariant under translations of the body and satisfies w(Aa,Kb)

- Aw(a,Kb).

4.6 (Theorem) Let a; and aj be an arbitrary pair of rows of A. Then
w(ai,Kb) < 2C.w(aj.Kb)
Proof: Without loss of generality we demonstrate the theorem for j = O,
We may assume that b ¢ B’ so that bo - maxlaoxlx £ Kb}. The minimum of ay
over Kb is found by solving the linear program
max —a,x subject to
ax=<b, fori=1, ..., ntd,
i i

and from the duality theorem, —a, is a positive linear combination of n of

15



the rows of & for which equality helds in the linear program. Let us take
these rows to be l,i..,n so that 0,1,,..,n forms a dual feasible set,
Moreover, let us translate the body so that this minimum is achieved at the
origin; after this translation we have w(ao,Kb) - b0 > 0 and bi = 0 for i =
l,...,n.

The other widths are not decreased if Kb is replaced by the simplex K
defined by inequalities 0,...,n, with the remaining inequalities relaxed so
as to take on their maximum values in K. We will show that at each vertex v

of K, we have |a£.v| =< Cb for every £, which is sufficient for our

0!
argument. Consider, without loss of generality, the vertex defined by a..x
- bi for i = 0,1,...,n~1., Then for any row £ we have a, = Koy +

R NE L) with By equal to the ratio of two nxn subdeterminants of A and

therefore not larger than €, in absolute value. It follows that

Iaﬁ.vl - lpoao.v + ...+ #n~1an—1'vl - Ipoao.v] = Cbo. (m]

V. The Hilbert Metric

The major conclusion of the previous section is an upper bound for the
diameter of the cone B', using the Banach~Mazur distance between pairs of
rays in this subcone. This same distance function can be used to define
balls of size ¢: the set of rays which are within ¢ of a given ray. Our
primary goal is to describe an upper bound for the number of e~balls
required to cover the cone B'. This is essentially an estimate of the
Hausdorff volume of B’.

It will be useful for us to introduce the classic Hilbert metric, which

16



is a distance function for rays in the larger cone B. (see Kohlberg and

Pratt(1982) for a discussion of the Hilbert metric.)

5.1 (Definition) We define the Hilbert distance between a pair of

interior vectors b and ¢ in B to be

h(b,c) = max log[(wl.b/ﬁl.c).(xz.c/xz.b)]

*
with the maximum taken over all ﬁl,ﬂz € B .

The Hilbert distance clearly satisfies h{ib,pc) = h(b,c) for A,u > 0,
so that it is defined on rays in the cone B. It is a distance function; for
if »° and »° maximize the above expression for b and d then

hi{b,d) -log[(xl.b/wl.d).(ﬁ3.d/x3.b)} -
log[(x".b/xl.c). (x.c/x>.b)} + logl(xt.c/al.d).(n .d/x>.c)]
< h(b,c)+h(c,d}.

The Hilbert distance has an elementary interpretation in terms of the

Figure 5.1

projective cross~ratio. Draw the intersection, with the cone B, of the two

dimensional plane containing b, c and the origin, as in Figure 5.1. Assume

17



that the two points have been scaled so that ab = xc for some m interior to
the dual cone, i.e., so that the line joining them intersects the boundary
of B at the two vectors a and d. Then

h(b,c} = log(((a,cl/[a,b]).({d,b]/{d,c])),
with [x,y] the length of the line connecting x and y.

To see that the logarithm of the cross-ratio is indeed the Hilbert
distance, we first remark that the dual vector x* which maximizes
(x.b/n.c), or equivalently ﬁinimizes (z.¢/m.b), will be the normal to a
supporting hyperplane to B at the intersection of the line segment from b
through ¢ with the boundary of B. For if ﬂ* is the dual vector which
minimizes (wx.c/n.b) it will also minimize n{(1+A)c-Ab]/ab for any A > -1. If
we select A > 0, so that d = [(l+A)c—Ab] is on the boundary of B, we see
that the minimizing vector must satisfy w*d = 0 and therefore be the normal
to a supporting hyperplane to B at d. But then (x*.b/w*.c) = {d,bl/[d,c]
using the similar right triangles.

We have the folleowing relation between the Hilbert metric h(b,c) and
the Banach-Mazur distance:

5.2 (Theorem) If b and ¢ are both in B’, h(b,c) = p(Kb,Kc)

Proof: Define Al to be the smallest A such that KC c AKb + xl for some
x', and similarly for X, so that p(b,c) = log AX,. If all of the
constraints are binding for both Ky and K, then a necessary and sufficient
condi;ion that Kc c AKb + xl is that ¢ 5 b + Axl. But then =xc =< Arnb for
all = in B*. It follows that A, = x2c/w2b for any ﬂz in B*. A similiar

1

inequality for Az tells us that p(Kb,Kc) = log A > h(b,c).

12

To obtain the converse inequality, let

18




h(b,c) = log[(n-.b/xk.c). (x2.c/n2.b)],

. 1 2 : . ; .
with = and n° selected so as to maximize the cross-ratio. Define t1 -

«zc/xzb and t, = xlb/zlc, so that h(b,c} = log t By definition, t, =

152 1
*
xc/nb, or w(tlb - c¢) 2 0, for all » in B . Using the duality thecrem we see

2

that there is an xl such that nAxl =< tlb — ¢ and therefore Al =< tl. In the

same fashion A2 < t2. This demonstrates Theorem 5.2. ]

VI. Approximation of the Bodies Kb

We are now prepared to demonstrate the major conclusion of the paper.

6.1 (Theorem) Let & > 0 be given. Then there is a subset of the bodies
Kb of cardinality not larger than

£(A) | 210g(nc) /e |
such that every body with a non empty interior has a Banach-Mazur distance
less than or equal to £ from at least one member of this subset.

Proof: Let ¢ be an vector in B’ which is not a vertex of B' and which
will be kept fixed during the argument. Let b be an arbitrary vector in
B'and consider the programming problem:

min A such that ¢ < Ab + Axl
As in the proof of Theorem 4.3, we assume that Kb has been scaled and
translated so that xl = 0 and A = 1. We shall cover the cone B' by £(A)
regions, each consisting of those vectors b for which a given (n+l)-tuple of

the rows of A is an optimal dual basis for the above linear program, i.e.,

7A = O, 7b = 1. x> 0, max mc has an optimum solution vanishing outside

these rows. For each such region, we shall construct a "dense" set
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separately.

Consider, for example, the region corresponding to the {(n+l)-tuple
0,1,...,n. We then have e =< bi with equality for i = 0,1,...,n. (see Figure
4.3.) We shall now select a specific translate of Kc which depends on the
the particular region and not on any other property of the vector b. For

each i = 0,1,...,n+d, let u, = max{aixlaix =< for 2 - 0,1,...,n}. Then

e

u, = ¢y with equality for i = 0,1,...,n and with strict inequality for at

i
least one of the other coordinates, since ¢ is not a vertex of B'. Let
%
A" > 1 be the largest value of A such that the body (%|Ax =< u~-A(u-c)) is non
empty. This limiting body will consist of a single point, which we translate
to the origin, so that the origin is contained in each of the bodies
*
Ku—A(uwc)' for 0 = A = A . From this point on, the coordinates of b,c and u
refer to this translation.
We have b, = ¢, for 1 = 0,1,...,nand 0 < ¢, < b, < u, for
i i i i i
i =n+l,...,n+d. This provides us with a d dimensional coordinate system for
those bodies in B’ for which the programming problem selects this particular
*
set of dual feasible rows. Since u-x (u-c) =z 0, it follows that ui/ci =
* %
A/ -1,
The vector (ui—ci) is different from zero and is on the boundary of B;

it is in that face determined by the particular dual feasible rows

(0,1,...,n). It is therefore easy to see from the following figure
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Figure 6.1

* *
that log A /(A -1) = h{c,u) =< 2log(nC), so that ui/ci =< n2c2_

Consider the family of bodies with right hand sides fi -cy for i =
0,1,...n and log fi/ci - jic with ji = 0,...,|-210g(nC)/z—‘—1, for i =

n+l,...n+d. Given the vector b, let K, be the particular member of the

f
family for which
log(fi/ci) - ji: =< log(bi/ci) < (ji+l)c for i = n+l,...n+d.
For this f we have fi = bi < fi2£ for all 1. If we then calculate the
Hilbert distance between b and f, we see that
1 < ab/xf < 2°
*
for any 7 in the duzl cone B . It follows that the Hilbert distance between
b and f is = ¢. Since £ is in B’, the Hilbert distance is equal to the
Banach—Mazur distance and therefore at least one body in the family is
within & of Kb' using the Banach-Mazur metric.
The number of bodies in the family is
: - —d
£(a)] 2log(nC)/e |".

This demonstrates Theorem 6.1. a
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VII. Lattice Free Bodies

In this section we shall apply our result on the approximation of
convex bodies Kb to those bodies which are free of lattice points. For our
purposes it is sufficient to restrict ocur attention to the ordinary lattice
of integers Zn; a general lattice in R" can be dealt with by an appropriate
linear transformation. If a convex body contains no pon—zero lattice points
and is also symmetric about the origin, Minkowski’s Theorem asserts that its
volume is not larger than 2", There is, however, mno corresponding bound on
the volume of a convex body if it contains no lattice points but is not
symmetric about the origin; it can have arbitrarily high volume and yet be
flat in some direction so as to aveid all lattice points,

The lattice width of the body Kb is defined to be the minimum of

w(v,K ) = max{vx|x € Kb - min{vx}x € K,

as v varies over all non-zero integral vectors in z". Khinchine (1948)
demonstrated the existence of a universal function f(n) so that the lattice
width of a lattice—-point—free convex body in R" is bounded by £(n). This
idea was exploited by H. W. Lenstra, Jr.(1983) in his polynomial algorithm
for integer programming with a fixed numbey of variables. In order to
determine whether a convex body Kb contains a lattice point, Lenstra
constructs a non-zero integral vector v, and a particular function f(n),
with the property that if w(v,Kb) > f{n} the body contains a lattice point
which can easily be determined. If, on the other hand, the width with
respect to v is less than or equal to f(n), the problem can be reduced to at
most f(n)+l similar problems involving n-1 variables, each obtained by
intersecting Kb with the hyperplanes v.x = Voo vhere Vo takes on}ail

integral values between the maximum and the minimum of v.x in Ky . The
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process continues, reducing the number of variables at each step, until a
lattice point is obtained or the lattice free character of Kb is verified.

Lenstra’s original construction of the integral vector v was based on
an algorithm which is polynomial in the data of the problem if the number
of variables was fixed; his estimate of f(n) was on the order of cn2
Grotschel, Lovdsz and Schrijver (1983) showed that the same order of
magnitude could be obtained by an algorithm which was polynomial in n as
well, and Babai (1985) improved the estimate of f(n) to a linear
exponential, again achievable in time polynomial in n.

A considerable sharpening is available if the requirement of

polynomiality in n is relaxed. Based on the work of Lagarias, Lenstra and

Schnorr (1987), Hastad (1986) demonstrated the existence of an integral

vector v such that the width of a lattice free convex body, in the direction

5/2 2
On .In

both of these latter arguments, a lattice point in Kb can be found in

v, is less than n ; Kannan and Lovdsz (1987) improved this to ¢
polynomial time if the width is greater than the corresponding value of
f(n), but finding v can be done in polynomial time only if the number of
variables n is fixed.

Lenstra’'s algorithm, and its variants, can be cast in the form of a
decision tree. The data defining the body Kb are entered at the upper node
of the tree and a calculation is performed which is relayed along each of
the f(n) branches connecting the upper node to the second level of nodes.
Each of these nodes is connected to f(n-1) branches leading to a third

level; the tree continues for n levels. The construction of the tree
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u

Figure 7.1

requires an amount of work which is exponential in n, but the number of
branches emanating from each node is polynomial in n and once the tree has
been constructed, the computation at each node — the solution of a pair of
linear programs, and the determination of a lattice point in a body of large
width — is polynomial in n as well.

Theorem 6.1 permits us to assert that a single decision tree with these
properties can be constructed for gll of the bodies Kb arising from the
same matrix A as long as d+l, the difference between the number of rows and
columns of A, is fixed. This is an immediate consequence of the following
theorem:

7.1 (Theorem) There exists a set V of non-zerc integral vectors, of
cardinality not larger than f(A)l—Zlog(nC)_|d, such that for every lattice
free body Kb ,

w(v,Kb) - max[vxlx € Kb} - min(vx]x c Kb} = 2c0n2
for at least one v € V,
Proof: Suppose that Kb and Kc are bodies with p(Kb,KC) =< 1 and let v

and u be the non—zero integral vectors which minimize the lattice widcth for
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Kb and Kc ?espectively. Then there are Al and Az with A1A2 = 2, Kc < Ale +
fl for some €1 and Kb C AZKC + £2 for some 62. It follows that

w(v,Kc) =< Alw(v,Kb) = Alw(u,Kb) = Alkzw(u,Kc) =< 2w(u,Kc)
so that v ylelds a lattice width for Kc which is not more than twice the
minimal lattice width,

Now let us consider a set of bodies T of cardinality not larger than
f(A)|"21og(nC)—|d such that every K, has a distance less than or equal to
unity from at least one member of the set, and let V be the set of non-zero
integral vectors which minimize the lattice width for the bodies in T. It
follows that for every Kb there is a v in V such that w(v,Kb) is not more
than twice the minimal lattice width of Kb. In particular, if Kb is free of
lattice points, then w(v,Kb) =< 2c0n2. This demonstrates Theorem 7.1. 0

In the construction of the single decision tree for all of the bodies
Kb we assoclate with the top node 2c0n2 branches for each v ¢ V, for a total
of 2c°n2.f(A)|"210g(nC)_ld branches; and similarly for the nodes at lower
levels. If the matrix A consists of integers, log(C) is polynomial in the
bit size of A. The number of branches emanating from each node as well as
the computational work at each node is therefore polynomial in the data,

including n, as long as d is fixed. Of course, the tree is difficult to

construct.

VIII. Neighborhood Systems and Successive Minima
In order to study the the family of integer programming problems
min Za_ . h, subject to
03 ’
Za,.h, =b, for i =1,...,n+d

hj integral,
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Scarf (1981,1981,1986) introduced the concept of a pejghborhood system
{N(h)). Each lattice point h =~ (hl,...,hn) has associated with it a set of
neighbors N(h) which is arbitrary aside from the two conditions

1. N(h) = N(O) + h, and

2. if k € N(h) then h € N(k).

Given a particular neighborhood system, a lattice point h is defined to

be a local minimum for the integer program if it is feasible and if all of
its neighbors are either infeasible or yield a strictly larger value of the
objective function. The following construction provides a neighborhood
system depending on the matrix A alone, and which has the property that a
local minimum is a global minimum for all b.

Let h be a lattice point and define K* = (x|Sa = max(O,Eaijhj) for

ijxj =
i=0,...,ntd}). K* is the smallest body Kb which contains both h and the
origin. h is then defined to be a neighbor of the origin if K* contains no
lattice points in its interior. If the matrix is in general position - in
the sense that for each row a; of A the only lattice point satisfying aih -
0 is the origin — this system is the unique, minimal neighborhood system
with the property that a local minimum is a global minimum for all values of
the right hand side b. If this condition is not satisfied some of the
neighbors defined in this fashion may be superfluous. (Scarf,1986)

Two special cases have been examined by Scarf (1981,1985). If A is a
4x2 matrix of integers, the neighbors of the origin N(0) are contained in
the union of a polynomial number of lattice lines; and if A is a 4x3 matrix
the neighbors of the origin lie in the union of three adjacent lattice
planes, one of which passes through the origin. We have the following

generalization:
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8.1 (Theorem) The neighbors of the origin N(0) are contained in a set
of n-1 dimensional lattice hyperplanes of cardinality not larger than

2c0n2.f(A)|—210g(nC)_|d

The proof is an immediate application of Theorem 7.1, since the
smallest body Kb containing O and h contains no lattice points in its
interior. Again it should be remarked that if A is a matrix of integers the
number of lattice hyperplanes is polynomial in the data, including the
number of wvariables n, for fixed d.

In their previously cited paper, Kannan and Lovdsz demonstrate a
sharper version of the theorem that a lattice free convex body Kb has a
lattice width not larger than conz. They show that such a body either has a
lattice width less than 2, or there exist two linearly independant lattice
hyperplanes with normals ML) such that for j = 1,2,

w(vj,Kb) < 200(n+1)3 logz(n+1).
If the first of these alternatives is applicable to the smallest body
containing 0 and a neighbor of the origin h, the lattice hyperplane which
minimizes the lattice width of Kb will yield v.h = 0 or 1. In the second
case, these inequalities imply that Kb is contained in the union of no more
than [2c0(n+1)3 logz(n+1)]2 lattice hyperplanes of dimension n-2, each of
them of the form {x: vy =1, VyX - 1). Each of these hyperplanes can be
extended to an n-1 dimensional hyperplane which passes through the origin.
With some attention to detail this permits us to argue that the neighbors of
the origin lie in the union of a polynomial number of lattice hyperplanes of
the form v.h = 0 or 1. It is an interesting conjecture that the set of

neighbors of the origin consists of those lattice points contained in the

union of a polynomial number of polyhedra.
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As a final application of our arguments, we turn our attention to
Minkowski’s concept of the successive minima of the lattice of integers with
respect to a syﬁmetric convex body. For each b in B' the convex body
(Kb - Kb) is symmetric about the origin, and we may associate with it a
distance function

Fb(x) - max (A}x/x € K, - Kb)}.
which is symmetric, convex and homogeneous of degree one. The guccessive
minima, Al(b),...,ln(b), with respect to this distance function, are defined
as follows: Ai(b) is the smallest A such that the body (x: Fb(x) = A}
contains i linearly independant lattice peints. Alternatively, let hl(b)
minimize Fb(h) over all non-zero lattice points, hz(b) minimize Fb(h) over
all lattice points which are linearly independant of hl(b) and generally let
hi(b) minimize Fb(h) over all lattice points which are linearly independant
of h'(b),...,h" T(b). Then A (b) = F (h'(b)). The successive minima depend
on the particular vector b defining the distance function; the vectors hi(b)
which realize the successive minima are not necessarily uniquely defined for
a specific b, since there may be several different vectors h, independent of
nl(by,...,h" L(b), which minimize F, (h). We have the following result which
relates the vectors realizing the successive minima to neighbors of the
origin for the matrix A.

8.2 (Thecrem) For all b in B', the lattice points hi(b) which realize
the successive minima are neighbors of the origin.

Proof; Let h = hi(b) and let K¥* = {xlEaijxj = max(O,Eaijh } for

]
i=20,...,nd}. In order to demonstrate that h is a neighbor of the origin

we need to argue that K* contains no lattice points in its interior. By

definition h will lie on the boundary of the symmetric body
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5 - Ai(b)(Kb - Kb) and any lattice point contained in the interior of § will
necessarily be linearly dependent on hl(b),...,hi_l(b).

Let us first argue that K¥ — K¥ C S. Since h ¢ § it follows that X and
x+h both lie in Ai(b)Kb for some %x. If we translate Kb so that x = 0, the
set S is unchanged. But then max(O,Eazjhj) =< Ai(b)'bl for £ = 0,...,n+d, so
that K* C Ai(b)Kb and therefore K* — K* C Ai(b)(Kb - Kb) = 3.

If h is not a neighbor of the origin there is a lattice point k
interior to K*. Since S contains (K¥ — K*) it follows that both k and h-k
are interior to S; both of them must be linearly dependant on
hl(b),...,hldl(b) and as a consequence so is h. This contradicts the
definition of h = hi(b) and demonstrates the theorem. 0

It is an immediate consequence of Theorem 8.1 that all of the vectors
hi(b) 1ie in the union of a set of n-1 dimensional lattice hyperplanes, the
set having a cardinality not larger than 2con2.f(A)|-210g(nC)—|d. Again, if
A is a matrix of integers, the vectors representing the successive minima
lie in the union of a set of lattice hyperplanes, whose cardinality is
polynomial in the bit size of A, for fixed d. It is an intriguing conjecture
that the set of hi(b) for 1 < j lie in the union of a polynomial number of

j=1 dimensional hyperplanes.
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