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0. ABSTRAC

This paper studies the use of spectral regression techniques in the
context of cointegrated systems of multiple time series. Several altern-
atives are considered including efficient and band spectral methods as
well as system and single equation techniques. It is shown that single
equation spectral regressions suffer asymptotic bias and nuisance param-
eter problems that render these regressions impotent for inferential
purposes. By contrast systems methods are shown to be covered by the LAMN
asymptotic theory, bringing the advantages of asymptotic median unbiased-
ness, scale nuisance parameters and the convenience of asymptotic chi-
squared tests. System spectral methods also have advantages over full
system direct maximum likelihood in that they do not require complete
specification of the error processes. Instead they offer a nonparametric
treatment of regression errors which avoids certain methodological prob-
lems of dynamic specification and permits additional generality in the
class of error processes. In addition, systems spectral estimation leads
to simply computed explicit formulae and thereby eliminates the inconven-
jence of the nonlinear estimation that is typically required by maximum
likelihood as, for example, in the case of vector ARMA errors. System
based spectral techniques that restrict information use to a frequency
band around the origin share the same advantages as fully efficient
methods, Interestingly, spectral methods require no special modifications
to deal with the regressor endogeneity that is a characteristic feature of

cointegrated systems.



1. INTRODUCTION

Efficient techniques for estimating the coefficients in a multiple
system of linear equations by spectral methods were introduced by Hannan
(1963). These techniques, which are related to work by Whittle (1951) on
Gaussian likelihood estimation, provide the basis for a regression analy-
sis in the frequency domain. Their principal advantage is that they
permit a nonparametric treatment of regression errors so that it is not
necessary for an investigator to be explicit about the generating mechan-
ism for the errors other than to assume stationarity. In addition, the
techniques make it possible to focus attention in a regression on the most
relevant frequency thereby offering a selective approach that has become
known as band spectrum regression-—see Hannan and Robinson (1973) and
Engle (1974). They have also been extended to nonlinear models under con-
ditions which parallel those of nonlinear regression theory--see Hannan
(1971) and Robinson (1972). All of the above mentioned theory has been
developed for models where the time series are statiomary.

The objective of the present paper is to show how spectral methods
may also be usefully employed in regressions for certain nonstationary
time series. Indeed, their use may even be more appealing in this context
than in regressions for stationary series. The model we have in mind is a
multivariate system of cointegrated time series. Such systems have been
the object of study in many recent papers. (see Engle and Granger (1987),
Phillips and Durlauf (1986), Stock (1987) and the special issues of the
Oxford Bulletin of Economics and Statistics (1986) and the Journal of Eco-

nomic Dynamics and Control (1988)).



Our approach here follows that of some other ongoing research by the
author (Phillips (1988)). This research focuses attention on full infor-
mation estimation of cointegrated systems and gives strong arguments for
the use of full maximum likelihood estimation of the system in error cor-
rection model (ECM) format. It is shown that such estimation brings the
problem of inference within the locally asymptotically mixed normal (LAMN)
family of Jeganathan (1980, 1982). This means that the cointegrating co-
efficient estimates are asymptotically median unbiased and symmetrically
distributed, that an optimal theory of inference applies and that hypothe-
sis tests may be conducted using standard asymptotic chi-squared tests.

The present paper shows that similar advantages are enjoyed by sys-
tems spectral ﬁethods. Moreover, these methods have the additional advan-
tage over classical maximum likelihood that they permit a nonparametric
treatment of the regression errors. In other wo;ds, full system specifi-
cation and estimation (as in maximum likelihood) 1s not required. Indeed,
the system spectral methods given here invelve linear estimating equations
and result in simply computed explicit formulae. These features mean that
the methods avoid what can be awkward methodological problems of dynamic
specification and they focus entirely on what is the central problem of
cointegrating regression theory—the estimation of long run equilibrium
relationships.

The following notation is used throughout the paper. The symbol
"3 " gignifies weak convergence, the symbol " = " signifies equality
in distribution and the inequaiity " >0" signifies positive definite
when applied to matrices. Stochastic processes such as the Brownian

motion W(r) onm [0,1] are frequently written as W to achieve notational



economy. Similarly, we write integrals with respect to Lebesgue measure
L, . 1 : . .

such as IO (s)ds more simply as IOW . Vector Brownian motion with co-

variance matrix 0 is written " BM(Q) " . We use [A] to represent

the Euciidean norm t:'ﬂ:(A’A)]'/2

of the matrix A , [x] to denote the
smallest integer =< x and I(l) and I(0) to signify time series that are

integrated of order one and zero, respectively. All limits given in the

paper are taken as the sample size T + =» unless otherwise stated.

2. MODEL AND ESTIMATORS

Our model is the cointegrated system

(1) Ve = B9 t Y
(2) e = Y3e
where

is an integrated n-vector process (n = m+l) and

u_ - u 1= 1(0)

u m

is stationary with continuous spectral density matrix fuu(l) > 0 over
-t < A<=x . As formulated above (1) is a single equation cointegrating

regression with cointegrating vector a' = (1, -8') . Our approach may



easily be extended to multiple equation cointegrating regressions in
which case g 1is a matrix of coefficients.
We shall assume that the partial sum process gt - quj satisfles

the multivariate invariance principle

~1/2
(3) T E[Tr} = B(r) mBM(Q) , O0<r=x 1
where Q = wauu(O) . We decompose the "long run" covariance matrix a2
as follows

R=Z+A+2

where
Z = B(uqup) o A = G qECugu)

and we define

12
t

1™
+

>

In addition te (3) we assume weak convergence of the stochastic process

constructed from the sample covariance between zt and u viz

t ’

~-1.{Tr] . : S
(4) T %, P = j‘ogdg + Th .
Explicit conditions under which (3) and (4) hold are discussed in earlier
work and the reader is referred to Phillips (1987) for references and for
a review. Suffice to say here they are genéral enough to include a wide
class of weakly dependent processes ({u_} ‘under mild moment conditions,

t

It is convenient to partition the Brownian motion B and the



matrices 0, X, A, A conformably with the vecter Ye - For

example, we shall write

B=1B | 8=]2y 9| Z=|2y 29
B, w1 99y 791 Z7

- - ! Q-l
11.2 T 211 T ©21799%91 -

The cointegrated system (1) and (2) has the following ECM representa-

and so on. We also define

tien

(3 ay, =@’y *+ v,

where

{see Phillips (1988)). It is this system that we propose to estimate us-
ing spectral methods.

Note that the error process Ve in (5) is stationary with spectral

matrix £ (A) =Df (A)D' > 0 . We write 0 = 2xf (0} ,
vv uu v

B(r) =~ DB(r) = BM(Q) , Pt - DPt and similarly write Z = DZD‘ ,

A = DAD' , A = DAD' . These matrices and vectors are partitioned con-
formably with Ye just as their counterparts without the sub bar.

Corresponding to (3) and (4) we now have

(6) 171/2p = B(r) ,

(Tr}



(7 T'H“{Trlptvé > [[BdB + T8 .

We make use of the efficient method of estimation introduced by
Hannan (1963) for linear systems and later extended by Hannan (1971) and
Robinson (1972) to non linear regression equations. To this end we intro-

duce the finite Fourier transforms

v, () = (e T2g]_ sy o1
v, = e 2]y, ot
wy(x) -~ “*Tfl/zzz_lyt_lem
v (A) - (2,T)"1/22:_1vteitx

for 2 € [—x, x] , y;t - (ylt' Ayét) and we transform (4) accordingly as

(&) wA(A) - 7a'w&(k) + wv(l) .
We partition wy(x) conformably with Ve using the notation
Wy(l)’ - (Wl(l), W2(A)') .

Following Hannan (1971) and Robinson (1972) a class of nonlinear weighted
least squares estimates of a may be obtained by minimization of the

Hermitlan form

*
(9) ;I trifw,(2) - ‘rﬂ'wy(o\s)][wﬁ(a\s) - Yo Wy(-\s)] LACTRR



with respect to a , where & 1s a given positive definite Hermitian
matrix, As m 2xs/T and s is integral with values in the interval
-[T/2] < s 5 [T/2] . The summation in (9) is over As € B which is a
subset of (—x, x) such that if X € B then -X € B also. The use of
B permits the restriction of the regression to a set of frequency bands
in (-x, x) and is inspired by the idea that the model, when formulated
in the frequency domain as in (8), may be more appropriate for X in cer-
tain bands than in others. In practice, therefore, the regression may be
confined to what seem to be the relevant frequency bands and as such is
known as band spectrum regression. The reader is referred to Hannan
(1963, 1970), Hannan and Robinson (1973) and Robinson (1972, 1976) for
further details and discussion and to Engle (1974) for an econometriec
application of these ideas.

In the present context, since the cointegrating vector o defines a
long run relationship between the components of the time series one possi-
bility would be to confine the regression to a band around the origin so
that low frequency elements in the series are emphasized., In his applica-
tion to a U.S. aggregate expenditure relationship Engle (1974} in one case
eliminated high frequency elements from the regression, using the argument
that these are associated with transitory components of the two variables-
expenditure and income in the regression.

In conventional spectral regression choice of the weight function
®(+) that appears in (9) involves only efficiency considerations. In-
deed, the criterion (9) would be propertional to the exponent in the
Gaussian likelihood of (8) if the wv(xs) were Independent (complex)

' . -1
normal random vectors with covariance matrix é(ls) . In the Hannan
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efficient procedure ®(+) 1s selected in such a way that this is achieved
asymptotically. This approach, which originates in the work of Whictle
(1951), relies on the fact that under rather gemeral conditions on {vt]

and for As in a band around « (so that As +w ag T+ =) we find
c
{10} wv(As) = N (0, fvv(w)) , WwHO0, =«

{for example, Brillinger (1974), Theorem 4.4.1) where " N© = signifies
the complex normal distribution. In designing an efficient procedure we
may then sele;t ¢(As) - %vv(w)_l for As in a band centered on 9 and
for some suitable choice of consistent spectral estimate Evv . Details
of the construction are given by Hannan (1963).

We envisage a stralightforward application of these ideas in the pres-
ent context. However, unlike the conventional spectral regression model
the regressors Yeo1 in (3) (and hence wy(A) in (4)) are in general
coherent with the errors vt (wv(l)) . The regressors are also I(l) not
I(0) processes, These features of the present model make the choice of
weight function @ critical. As we shall show, a nonefficient choice of
® 1induces a (second order) bias effect in estimation as well as a loss of
efficiency. As a result, fully efflcient procedures have much more to
recommend them in the present application.

A simple way to estimate fvv(l) is to use the residuals from an

initial least squares regression on (1). Writing %t - Ayt - 1&’yt_1 we

may now compute the smoothed periodogram estimate

A

ﬂ Ay - gt *
’(11) fw(wj) - T § [w,(A) - ra wy(As)] [WA(AS) TG wy(a\s)l
A
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where the summation is over

A €B = (w
s J

I /24 < ) = w, + x/2M¥)

]

that is, a frequency band of width =«/M centered on

w, = i J = M1,

y T o M

for M {integer, Setting m = [T/M] we are now In effect averaging m
neighboring periocdogram ordinates around the frequency w. to obtain
%vv(wj) . As usual, we require M -+ = in such a way that M/T -~ 0 (so
that m - @ ). In fact, it is convenient for the proofs to require that
M = o(Tlfz) , as in Hannan (1970, p. 489). Since a is conmsistent
{Phillips and Durlauf (1986), Stock (1987)) we find that when wj -+ w we

L.

have fvv(wj) 3 fvv(w) as T+ = |
A further consideration is that, since +vy' = (-1, 0) 1is known by

virtue of the construction of (%), nonlinear methods are not required.

Indeed, minimization of (9) with the following choice of weight function

. -1
¢(AS) - fvv(w ) for all As € B

3 3
leads directly to the estimator
- _lz}i A_l A _l .LZM A
(12) ﬂ--[m J-__M+l’7'fw(wj)7f22(wj)] [—23 SRR I CY )f L, )"1]

-1
A z”‘ 1'\_1 p 1
- [21{ J—+1° fw(“’j)Efzz(“’j)] [ZM %1 2*(‘" Iy oy )e]
where

-~

1 *
(13) f22(wj) - § Wy (A dw, (3D
N
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L] l e
(14) Ea(ey) = 5 3 V0 0%, 09)
3

and e' = —y’ = (1, 0, ..., 0) 1is the first unit n-vector.
Since our focus of interest is the (long run) cointegrating vector
a’' = (1, -8') alternative estimators might be considered that are based

on low frequency averages. One such possibility is

A A

(15) Brgy = ~Egp(0) £ (O£, (O1/7 £, (001 = £,)(0) 5, (O)E L (0)e/e £ L (Oe

which relies only on spectral estimates at the origin. The information
that is neglected in the formation of 3(0) (in relation to B ) turns
out to be unimportant at least asymptotically as we shall show in Section
3.

In formulae (12) and (15) above, B and E(O) have been constructed
from the smoothed periodogram spectral estimates (11), (13) and (l4). We
observe that other conventional choices of spectral estimate may be em-
ployed in these formulae without affecting the asymprotic theory obtained

below.

3. OTIC THEOR

Our main result is the following:
THEOREM 3.1
3 -1, ¢l
(@) TEB) = SgBBy  SBy8,. )

) TE,, -8 = (BB SEB a8, )
1§1)) 0272 072 12

where
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and

- - w! 0_1w
“11.2 T 911 T “21M22%1

The common limit distribution in (a) and (b) is given explicitly in mixed

normal form by the integral

-1
(16) I N0, guy,,,0,,)d8(g)
g>0
where
-1 )
a7 &~ "'i[fé"’z“z] e

ey is the first unit m-vector and Wz - BH(Im) .

REMARK (a). We see from the above result that B and E(O) are asymp-
totically equivalent, Information in the component spectral estimates at
the origin is all that is relevant in the limit distribution and this is
all that is used in the constrﬁction of ﬁ(O) . In empirical work, of
course, £ and E(O) will differ, However, sincé much of the spectral
power is concentrated in an immediate neighborhcod of the origin for mest
aggregate economic time series it seems likely that this difference be-

tween the estimates will not be great in many practical applications.



14

REMARK (b). The representation (16) shows that the limit distribution is
a continuous mixture of normals. The mixing variate is the scalar (17).

If we partition the m-vector standard Brownian motion W2 as

1 m1
Wy = [Wyy W3]

then we can also write (17) in the form

-1
-1
8 = {f 3“31 -f :;”21"52[f #”22“&2] I 3"22"21} :

REMARK (c}. The limit distribution (16) is the same as that of the full
maximum likelihood estimator of B in (5) when an explicit parametric
model is assumed for the data generating mechanism of the Innovation vec-
tor v _ . When v, is generated by an ARMA process this estimator is
obtained by constructing the full (Gaussian) likelihood by a method such
as the innovations algorithm (see, for example, Brockwell and Davis
(1986)). The properties of this maximum likelihood estimator of g are
explored in Phillips (1988). The above result shows that spectral regres-
sion offers a simple altermative to maximum likelihood that has several
advantages: |
{1} The method le;ds to explicit easily calculated formulae;
(ii) 1t offers the additional generality of stationmary (rather than
ARMA) errors in (5);
(ii1i) it avoids the methodological problems that are invelved in the
specification of short-run dynamics through what is, in effect,

a nonparametric treatment of the errors.




15

REMARK (d). As remarked earlier in Section 2, the choice of an efficient
estimator is critical to the above result. Suppose, for example, a gener-
al weight function &(+) were employed in (9). This would lead to the

following estimator in place of B :

-~ -1 A
5 -] . 1
By - -[ 2 el ¢(wj)1f22(wj)] [w zg‘__mfz*cwj)@(uj)v]
The asymptotics for this estimator are given by:

THEOREM 3.2

-1
~ 1 @
(18) T(ﬁ@ - = [jéazaé] (f032d3'¢(0)e + zg Az(g+1)Fge)/e'¢(O)e

where &{()) has the following Fourier series representation:

(19) 2N = (120, Fe'®

and where
AL (g) . EQu, .v' )
2(5 3= 20 j+g

The 1limit distribution (18) is no longer mixed normal. The distribution
is, in fact, miscentered by a second order bias that arises from two
sources: the term 2gA2(5+1)Fge : and the fact that the Brownian motion
Bz(r) is in general correlated with the Brownian motion B'(r)$(0)e .
Second and perhaps more importantly, the limit distribution (18) involves
nuisance parameters which inhibit statistical inference. These nuisance
parameters invoive both the blas effects and the covariance matrix of the

Brownian motion B(r) . They cannot be easily eliminated and their



1s

presence in the limit distribution renders (18) effectively impotent for

inferential purposes.

REMARK (e}, The limit results given in Theorem 3.1 belong to the LAMN
theory of Jeganathan (1980, 1982), LeCam (1986) and Davies (1986). As
pointed out earlier, the criterion function (9) is asymptotically propor-
tional to the exponent of the Gaussian likelihood of the model (5). This
Gaussian likelihood belongs to the LAMN family of Jeganathan (1980) (see
Phillips (1988) for details). The estimators B and 3(0) may therefore
be regarded as spectral versions of maximum likelihood. As such they have
all of the advantages of the latter, viz

(i) they are asymptotically median unbiased and symmetrically dis-

tributed;

(ii1) the nuisance parameters that appear in the limit distribution
(16) involve only scale effects and are readily eliminated to
facilitate inference;

(1ii) an optimal theory of inference applies (from LeCam (1986));
{iv) hypothesis testing may be conducted using conventionél asymptot-

ic chi-squared criteria,

REMARK (£f). To pursue point (iv) above suppose we wish to test the fol-

lowing hypotheses about the cointegration space

Ho;h(ﬂ)-O, Hy : h(p) =0

where h( ) is a twice continuocusly differentiable gq-vecter function of
restrictions on A . We assume that H = 3h(B)/d8' has rank q < m .

To test HO against Hl ve may employ the Wald statistic in its
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usual form. Thus for the estimator § we set up
M, = h(B) (V' ] h(B)

where H = H(E) and

A A "1
l J. t -l
Vg = T[ZNX;I-—HH" fw(“’j)”fzz(“’j)] :

Here VT is the conventional estimate of the asymptotic variance matrix
of A from spectral regression theory (see Hannan (1970) page 442).
Similarly for 3(0) we construct

1ol By

M, = h(8,)" [HyV
where ﬁo - H(EO) and

l ’A A -1
Voo = Tl £,,(007E,,(0)] ~ .

We have
THECREM 3.3
2
Ml, MZ = xq .

Thus, statistical tests of H, may be conducted in the usual fashion of

0
asymptotic chi-squared tests. Interestingly no modification to the con-

ventional formulae from spectral regression theory are required. This is
because the variance matrix estimates VT and VTO .

upon appropriate standardization in the limit, still provide the right

although random
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metric for measuring departures of h(B) and h(ﬁo) from the null hy-

pothesis.

REMARK (g). Single equation spectral regression methods do not have the
same advantages as the systems estimators A and 30 . To see this it is
helpful to consider the following estimate which is the analogue of 3

for the first equation of (5)

. -1
-1 1
p* = [2:4 E?-—un v, (“’j>fzz(“’ ’] [m ;:3‘ M+l 21(“3)jE “"_1 ]

where fZI(A) ig an estimate of the cross spectrum between Yor-1 and
Yie The estimator p* is the Hannan (1963) efficient estimator of 8
in the equation

(20) Yie = A Vo1 ¥ V1e

After minor modifications to adjust for the lag in (20) this is just the
standard spectral regression estimator of S in the cointegrating regres-

sion equation (1). The asymptotic theory for g* is given by

EQOREM 3.4
1
(20) T(f* - B) = [Io 5 2] (fqBydB; + 6)
where
5 = (z 851 (8+1)d, )/(z 4y

and
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891(8) = By oBlugqvy gy

The limit distribution (20) involves second bias effects and quisance
parameters arising frow the presence of § in the second factor of (20)
and the correlation between the Brownlan motiouns Bl and B2 . As in the
case of (18) these problems severely inhibit the usefulness of the esti-

mator f* for inferential purposes.

Note that by decomposing B, as follows

-1 1/2

Bl(r) - wél“ZZBZ(r) + wll.zwl(r)
where Wl(r) is standard Brownian umotion, i.e. BM(1l) , and Wl is in-
dependent of 32 we deduce an alternative representation of (20) in the
form
(21) *8,B: —lcfls B tw. . + 6) + w2 1.8 _lfln aw
07272 0°2°2"22%21 “11.210%2%2) Jo®2%"1 -

The first term of (21) involves the "unit root" distribution

—

[féBzBé]ﬁl(féBdeZ) and the "bias effects” from the factor Q,,v,, and
§ . The second term of (21) is mixed normal with the same distribution as
(16).

The decomposition (21) highlights the differences between single
equation and systems spectral regressions in the model (5). Single equa-
tion methods neglect the prior information of the m wunit roots in (5)
and ignore the joint dependence of Y1e and Yop - As a result these

methods implicitly invelve the estimation of unit roots and this 1s re-

sponsible for the presence of the unit root distribution in the first
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term of {21). In addition we see that neglect of the rest of the system
in (5) imports a second order bias effect through the term é§ . The mag-
nitude of this term depends on the extent of the contemporaneous and
serial correlation between u,, and v, .
Finally, we observe that Theorem 3.4 gives the correct asymptotic
theory for the (full band) spectral estimator used by Engle (1974) in his
application of spectral regression to the aggregate consumption function
with quarterly U.S. data on money income and consumption. Our results
suggest that the estimates of the propensity to consume obtained by Engle
in this study are likely to be biased and that conventional tests are in-
validated by the asymptotic theory. It would be worthwhile to reanalyze

this data set using the systems estimator B (and E(O) ) and associated

test statistics such as M {(and M

1 2 )

4. CONCLUSION

This paper provides a frequency domain extension of the results in
Phillips (1988) on the maximum likelihood estimation of cointegrated sys-
tems. Indeed full system spectral regression in an ECM is asymptotically
equivalent to maximum likelihood and shares with it the advantages of be-
longing to the LAMN family. But spectral regression techniques seem to
have more appeal in the context of cointegrated time series. This is be-
cause:

1. they involve only linear estimating equations and thereby avoid
the nonlinear optimization methods that are typically called for
in the application of maximum likelihood (for instance, when

there are ARMA error processes);
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2. the nonparametric treatment of regression errors that is inher-
ently involved in spectral methods avoids the methodological
difficulties that are encountered with the need to completely
speﬁify the data generating mechanism of the errors before maxi-
mum likelihood is applied;

3. the nonparametric approach brings with it additional generality
concerning the error processes at what seems to be little or no
extra cost;

4. even simpler methods are available like the systems band spec-
tral regression estimator given by (15) and such estimators
continue to enjoy the same asymptotic properties as the full
system estimator (12);

5. standard systems spectral regressions may be used with no modi-
fications being necessary to deal with the regressor endogeneity
that is characteristic of cointegrated systems.

We emphasize that it is the systems spectral estimators given by (12)
and (15) that have these advantages. Single equation or subsystem spec-
tral regressions have quite different asymptotic properties as shown in
Theorem 3.4. 1In particular, they suffer from bias and nuisance parameter
dependencies that seriously inhibit their use for inference. Thus systems
estimation brings with it considerably more than the usual efficiency
gains we have come to expect from traditional asymptotic theory. In view
of these apparent advantages of systems spectral estimators over direct
maximum likelihood and single equation spectral methods it would seem
worthwhile to investigate their performance in sampling experiments and in

empirical work.
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APPENDIX

Proof of Theorem 3.1. (a) From (12) we find that

A A "'1 A A
(A1) TG ~ ) -[ﬁ zg‘_._mle'fvi(uj)efu(mj)} [j Zgl__M_I_lfzv(mj)f;}r(wj)e] .

Our approach follows Hannan (1963) in general outline with the main dif-
ferences arising from the treatment of the nonstationary elements,
It is convenient to work with spectral estimates in (Al) of the same

general form, say

A

-1 n ~ind
fab(“ T 2 %——Mk[ﬂ]cab(n)e

where
¢, {n) -T—lﬂ.iab l1<tin=T
ab t tén * =

and where the lag window k( )} 1s a bounded even function defined on
{-1,1] with k(0) =1 . For example, when k(n/M) = 1 ~ |[n|/M , ;:ab(x)
is the Bartlett estimator (e.g. Hanman (1970), p. 278). We may also re-
place k(n/M) by k(n/M)(1L - |n[/T) in the above formula without affect-
ing the arguments that follow. Other spectral estimates may alsoc be

employed but the above formula helps to simplify derivations and avoid

repetition.

As in Hannan (1963) we have

max, £ () - £, ] 30
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as T + =« and then the limit behavior of (Al) 1s equivalent to that of

the same expression but with fvv(w

]

on the right hand side. We take each of these in turn.

} replacing fvv(w ) 1in both factors

3

Using the Fourier series

£y - =2 5° p l8
vv 2x Tg—og

we have

1 R | .
2MT z;(-mle £ rvleg)etyy @)

1 ape kM lemiMi

= 2xT Tgme® Pg® M Tjmu+1® 22 (*3/M)

(A2) [2—}] 2-% Ez_oe'Dgeczz( E)k[ﬁ]

where
g+t2M=g, -Mtl<g=<HN
for some integer £ and where

~1_T
Cop{m =T "Z1¥9 Yoe4n * 1 =

The next step is to determine the asymptotic behavior of (A2). We

start by defining the random elements
1 tt+l

Xp(r) = T_l/zl’[.rr] ¢ 7 1z[Telp o

In view of (6) and (7) we have the weak convergence

XT(r) = xm(r) = B(r}
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2 (%) = 2 (x) = [(BdB + ra(1)
where

A(L) = E(v,v

j-o 0 j+i

Using the Skorochod conmstruction we now employ a new probability space with

random elements [(X%, Z%i)} , (X:, Z:i) for which
—— * oy TR

(A3) T a.s. X: ! ZTL a.s. zmi

and where

Xp =X I =%y

(with " = " as usual representing equivalence in distributiom). It will
be convenient to use a superscript "2" on these random elements to signify
subelements of matrices and vectors that correspoud to the component u,

t

of Ve - Thus we write

(2) (2) ,
X =By, 200 - j‘sdn + T8, (1)

zﬁz) J‘oa dB) + r8,,(1)

and so on. With this notation we have for 0 < n <M and up to a term of

-1
0
P(T )
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-2.T
e 02 =T "Z1¥9Yo¢4n

5O L r @@y s 2Py
) J‘]x_r(z) *(2)" . T [Z (22)(1) .+ Z*éiz)(l)} (:= T-1c=2“2(n). say)

le*B*'

a.s. Y0722

In view of (A3) the final convergence takes place almost surely and uni-
formly in |n| <M as T + @ , The same result also applies when
-M=<ns=s0.

Since k(g/M) - 1 for all fixed g as T (and hence M ) = = we

deduce that

2 2
A1 o ' L s e 1 '
[2:] T zg——me Dgec52(5)k[ﬁ] a.s. [2:] (Eg-—we Dge)f03535

This, of course, implies that

2 2
Al o= DY s ' 1 '
[2*] T Spma®’ Dgeczz(s)k[ ] > [2"] (Z,_ 2 Dge)foBEBi
However,
c22(5) - CEZ(E) for all g
and

Bz(r) = Bg(r)

so that by a simple modification of the Skorohod, Dudley, Wichura theorem

(e.g. Shorack and Wellner (1987), p. 47) we deduce that
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2 2
51 by A o () e
(A4) [2«] T Zgma® Dgeczz(ﬁ)k[ﬁ] [2«] (s

g ‘D e)jon BS

Next observe that
(1/20)5°  e'D e = e’ £ 1 (0)e
s——-@ g htats
so that the right hand side of (&4) is simply
(A5) e'a ebezB' (Lo, z)foB B .

It remains to consider the second factor in the right hand element of

(Al). Replacing fvv by fvv for the reason given earlier we have

JZH £ (w)f (u)e

2M T je— M+1 2v i

igw
-l [ J
T 2x zg——m[ZM zI_;I---—M+1 2*..'("’j)e ]Dge

2
Y
- [21] 25 2v(E)D ek(g/M) .
Now

py(®) = T ~1gT

1Y92e-1V¢4n ° l<tin=T

(2}
=2, (M)
= Z*(z)(l) (= ex (), say)

Tn

— 2¥(2) 4

1
- *dB*’
7 Zep D foszds + A, (ntl) .

We deduce that
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2 2 2
N P D B Y
[2«]25 3 (g)D ek[ ] = (2x fongds* (zg Dge) + \7n zg A (g+1)Dge
Using the Skorohod-Dudley-Wichura theorem as before we obtain

Azu -4 _]szw
(A6) [2!]2 civ(g)Dgek[H] = [ 1'] fon dB’ ( De) + [2‘] BBy (E*1)D 2

Note that

(A7) e’ (1/20) 1z D )B(x) - e’ 'B(x) 1= B_(r) = BM(1/0y; )
Next we define
v

X
-7 ! De
-] g~ g+j+l g

from which we deduce

(A8) pX A (g+1)D e =3,

- 0E(u - 0

0¥y

since

19
BCuygvy) = [T ] £,,(0dr = 0 forall § .

The latter follows in view of the fact that

= ifga
fzz(k) - [0 I]fvv(k)(zg__nge Je

- 2x[0  IJE_(AE . Liaye

-0

for all X € {(-x,x]
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From {(A6)-(A8) we obtain
2_w 1
(A9) (1/2x) zg mczv(g)Dgek(g/M) > IOBZdB

Combining (A9) with (A4), (A5) and (Al) we deduce that

-1
(B - B) = [(1/«»11,2).&,3 Bé] [fgB,98,]
Since

B (r) = By ,(r) = BM(w

“11.28¢ 11.2)

the stated result (a) follows immediately.
The proof of part (b) follows similar lines. For the reasons advanc-
ed earlier fvv(o) may be replaced by fvv(o) in the formul; for ﬂ(O)

giving

-l

(Al0) T(E(O) {m £,,(0) 2 (O)E (O)e}/e'f (De .

Using the Skorohod comstruction given in the proof of part (a) we have

i R A ]l
mr £22¢9) = Zam 2:-uk[u]r ¢y ()

I S
a.s., 2n J.032]35
as T =« from which we deduce that

(Al1) ﬁ £,,(0) = 5> [iB.Bs .

Similarly we find



- D
w2y ke 0 - ke T k(E]es, o
1 rl '
a.s. 2n IOBidB* * A2

where

A2 -3 __QE(u

] 20%3) -

To see this note that for fixed n we have

1
— ' 1
civ(n) a.s. J‘OnidB* * Az (n+ )

where

A2(“) - = E!—nE(uz

Z1=0E (420" +n’ o'y

Since 8,(n) =0 as n~+e and AZ(n) >4, as nv-o we find that

Cesaro sum

1 + @
M 4:——1'('32(11) t8y . H

glving (Al2). Hence

(ALld) i £,,(0) = 5% féBde' + 8, -

Next we observe that

(Al4) f;i(O)e - 270 e

and
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a0 te = [0, Im](ffn E(vV

vyl
2 o ))Q Te

03
- [0, I Joa "
(A15) [0 IJe=o.

It then follows from (AlQ), (All), (Al3)-(AlS) that
- TR Tt T S |
T(Bgy = B = JoBBy| SoB,dB'S “e/e’'D e
-1
1, o.) "¢l
- [fonz’*z] JoBy981.,

as required.

Proof of Theorem 3.2. This follows in the same way as the proof of part

(a) of Theorem 3.1. We simply use (19) in place of the Fourier series for

fw(k)
Proof of Theorem 3,3. This is the same as the proof of Theorem 4.1 of

Phillips (1988).

Proof of Theorem 3.4. This follows the same lines as the proof of part

(a) of Theorem 3.1 above. We use the Fourler series

1
1

- L igi
fv v1()\) (1/21)28__adge

and then



it

L EH (A)f 2(w )

2MT j-—M+1 vlvl j
)2
> [Zx] e g)fon B, = (1/w 1)foB B

since

1/m% d - 120£L (0) = 1w

£g v,V 11
Next
E?——H+1 2v (”j)f v, 5

2 2
A7l )
= [2’] foBdel(Egdg) + [2«] 2gA21(g+l)dg
- (1/w11)f03 dB, +§, .

The result stated now follows with § = w116l .
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