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1. Introduction

This note examines the effect of changes in risk aversion on the
optimal portfolio choice in a complete market. It is shown that an agent
who is less risk averse in the Pratt [1964] sense than another will choose a
portfolio whose payoff is distributed as the other’s payoff plus a
nonnegative random variable plus conditional-mean-zero noise. Therefore,
when markets are complete we can avoid using the more complex Ross [1981]
concept of more risk averse. The proof of the result uses simple first
order conditions and basic results from stochastic dominance.

Another result is that if either agent has decreasing absolute risk
aversion, then the non-negative random variable can be chosen to he a
constant. In other words, the less risk averse agent will choose a payoff
that is equal to the more risk averse payoff, plus a constant, plus random
noise, This condition (less risk averse plus decreasing absolute risk
aversion) is the sense of more risk averse that Kihlstrom, Romer, and
Williams [1981] have used as a sufficient condition for one agent to have a
larger risk premium than another when base wealth is random and the noise is
independent. As in that paper, the condition is not very tight, i.e., there

seems to be no natural sense in which it is necessary as well.



2. Framework and Results

We will compare the actions of two agents, A and B, who possess von
Neumann-Morgenstern utility functions uA(-) and uB(-), respectively. We
will take these utility functions to be twice differentiable, with strictly
positive first derivatives and strictly negative second derivatives.
Markets are complete, and each agent faces a maximization problem of the

following form.

Problem 1:
Choose ¢ to
maximize E[u(E)]
s.t. E[Xec] = AR
In Problem 1, ¢ is the random consumption, u(:) is the utility function
uA(-) or uB(-), L is initial wealth (which is the same for both agents),
E[-] is the expectation operator, and the state price density 3> 0 iz the
ratio of the state price to the state proba.bility.1 We will assume that
both agents have optimal random consumptions, called EA and EB’ and that
these optimal consumptions have finite variances (so we can use standard

results from stochastic dominance).

1 . . . . s .
For example, in discrete states, if n,; is the probability that state i
will occur and P; is the price of obtaining 1 in state i, then the state

price density is Ai - pi/ki. Then E{)c] = Yr A.c, = Zﬂi(pi/wi)ci - Xpici,

ivivi
which may be more familiar. The advantage of using X instead of pi’s is
that the pi's make no sense in a continuous state space. (There is also a

slight simplification of the form of first order conditions and some other

expressions.)



The first order conditions for an optimum in Problem 1 specify that the
marginal utility u’(-) is proportional to the state price density X. For
convenience, we will choose representations for the preferences such that
the constant of proportionality is I — we can do so because the wvon
Neumann—Morgenstern utility function is defined only up to an increasing
affine transform. Therefore, the first order conditions for the two agents’

optima are given by
X = ué(cA) - uﬁ(cB). (1)

By negativity of the second derivatives, EA and EB are decreasing functions
of X.

In our first result, we will assume that agent B is more risk averse
than agent A (in the sense of Pratt [1964]). Recall that by definition, B
is more risk averse than A if B's risk premium is never smaller, that is, if

B is always willing to pay at least as much as A to avoid a fair gamble. By

Pratt [1964], the following three conditions are equivalent.

(i) B is more risk averse than A in the sense of Pratt. (That
is, if E[uA(w+e)] = uA(w—HA) and E[uB(w+a)] - uB(w—HB) where w is

not stochastic and E(Z) = (, then HB = HA')
(ii) B's coefficient of risk aversion is never smaller than A's.

(iii) uB(c) - G(uA(c)) where G’(+) > 0 and G"(-) =< 0.

The third condition, that B's utility function is an increasing concave

transform of A’s utility function, is the condition we will use.



Before our main result, we need the following Lemma, which says that if
B is more risk averse than A, then A’'s optimal portfolio has a higher

expected return.

Lemma 1: Let B be more risk averse than A. Whether or not A and B have

equal initial wealths, ¢, and ¢, are monotonely related, and there is some

A B
* - - -
critical consumption level ¢ (perhaps #w) such that ¢, = cg whenever Cu or
~ * - - -~ - *
cg =z ¢ , and such that €, =< cg whenever ¢, Or cp < ¢ . Furthermore, if A

and B do Have equal initial wealths, then E[EA] = E{EB].
Proof: VUsing the concave transform characterization of more risk averse,

the first order conditions (1) become
T = Ve - ' = Py
A =ugle,) = 6'(u,(cg)) uA(CB)‘ (2)

As noted before, EA and ZB are both decreasing in X. Because G"(-) = 0,
G’(-) is nonincreasing in its argument. Because uA(') is increasing, G’ is
nonincreasing in Eé (and therefore in EA), and nondecreasing in X. Our
assumptions on uA(-) imply that uA(-) is invertible, and therefore we can

rewrite the second equality in (2) as
c, = u 6" u,(ep))u’ (3
A~ U uylegl)-u’eg)|. Y

Therefore, EA - EB when &’ = I, and because marginal utility is decreasing,
EA z EB as 6’ $ 1. Choose ¢ so that G’(uA(c*)) = 1 if possible, or pick
¢ = w if 6’ < 1 everywhere or c* = - if 6' > 1 everywhere. This choice is
the critical consumption level c* needed for the first part of the theorem.

Now suppose that the initial wealths are equal. Then the budget

constraints for the agents are that



E[Xe

RIER:CCA IERY (4)

Because A is inversely related to both ¢, and ¢,, the expectation in the

A B’

first equality of (4) weights consumption most highly in states (with EA and
~ * ~ -
¢y = ¢ ) in which ¢, may be less than g Weighting states by the
probability measure alone increases the relative influence of states (with
- - * - -
€, and cg = ¢ 3 in which ¢, may be more than Cg- Therefore,

E[c,] = E[Z,), (5)
as was to be shown. =

Lemma 1 gives us a sense in which decreasing the agent's risk aversion
takes us further from the riskless asset. In fact, we can obtain a more
explicit description of how decreasing the agent’s risk aversion changes the
optimal portfolio choice. The description and proof are both related to
second order stochastic dominance. A random variable X second-order
stochastically dominates another random variable y if x is weakly preferred
to y by all. agents with strictly increasing and concave von Neumann—
Morgenstern preferences. The following are equivalent (see Hadar and

Russell [1969]). (The F(-)'s are the distribution functions.)

(i) X second-order stochastically dominates ;. (That is, E[u(§)] >

E[u(})] for all strictly increasing and concave u(-).)
(ii) ; has the same distribution as X—z+¢ where z = 0 and E{E|x—z] = 0.

(iii) For all e, f:__m[Fy(q)—Fx(q)]dq > 0.



The distributional condition (ii) says that y has the same distribution
function as X less something, plus noise. Our characterization of the

relation between EA and ZB will say that EA is distributed as EB plus

something, plus noise, which is the same as saying that -EB second-order

The integral condition (iii) is the condition

stochastically dominates —C4

we will use In our proof.
Our first main result says that if B is more risk averse than A in the

sense of Pratt, then A's optimal consumption 1is distributed as B's optimal

consumption plus something, plus noise.

Theorem 1: If B is more risk averse than A in the sense of Pratt, then EA

is distributed as cB+E+E, where z = 0 and E[Ech+z] = . Furthermore, if

EA = cp, then neither z nor ¢ is identically zero.

Proof: The first step of the proof is to show that —EB second-order

stochastically dominates -—EA. By Lemma 1, ¢, and ¢, are monotonely related

A B

*
and there is a critical wvalue ¢ above which Cy is weakly larger and below

which gy is weakly larger. In other words, the set of states {—EA z q} is

weakly larger (and therefore weakly more probable} than the set of states

g <4 implies cp

*
the converse is true when g = —¢ . By the definition of the distribution

- #* - :
[-CB > g} when g 2 —c¢ (because c¢ < =g when —-q < c*), and

functions for —EA and —EB, this means precisely that

*

F__ (g =F_, (q) for qg=-c (6)

A B

and



F__ () <F__(q9) forgz-—c. (6)

A B

Now, consider the expression in the integral condition (ii) for stochastic

dominance of CB over CA' Define
c
o= |, @ -, @] )

Then, (6) and (7) imply that the integrand in (8) is nonnegative for q =< -—c*
*
and nonpositive for g = —¢ . Therefore, I(c) starts at zero (at —«), weakly

*
increases until the critical value ¢ = =c , and then weakly decreases.

However, I(+=} is just E[cA gB] (by a simple integration by parts), and

therefore I(c) is never negative. This shows that -EB second—order

stochastically dominates -EA.

that ~¢, is distributed as —EB—E+Z, where z = 0 and E[E|—CB—z] = (0, But

By the distributional condition, this says

A

this is exactly the same as saying that €, is distributed as cB+E—E, where z

=z 0 and E[—E|CB+Z] = (. Relabel -z as ¢, and we have proven the first
sentence of the statement of the theorem.

To prove the second sentence, note that because EA and EB are

monotonely related, EA is distributed the same as EB only if EA = EB'

Therefore, if c, = one or the other of z or ¢ is not identically zero.

a” °p

Now, 1if z is identically zero, then £ must not be identically zero, and EA

is distributed as c,+¢, contradicting optimality of ¢, for A (by Jensen'’s

B A
inequality). Similarly, if £ is identically zero, then z must not be, and
EA strictly first—order stochastically dominates EB’ contradicting
optimality of EB for B, since uB(-) is strictly increasing. L



Theorem 1 shows that if B is more risk averse than A in the sense of
Pratt, EA is distributed as EB plus a risk premium plus random noise.
Except that the risk premium has mean equal to the difference of the mean
consumptions, the distributions of the risk premium and the noise term are
typically not uniquely determined. This is as in the theory of second order
stochastic dominance. For example, let X be uniform on [1,2] and let ¥ be
uniform on [0,1]. Then x second-order stochastically dominates ¥, because ¥
is distributed as x-1. But 3; is also distributed as x—(x—3})+¢, where
x-172 > 0 and ¢ is uniform on [-4,4] and is chosen indepéndent of x.

Our second main result says that when agent A has nonincreasing

relative risk aversion, we can choose z to be nonstochastic.

Theorem 2; If B is more risk averse than 4 in the sense of Pratt and one of

the two agents has nonincreasing absolute risk aversion, then ¢, is

distributed as cB+z+e, where z = E[cA«--cB

Proof: The proof is essentially the same as the proof of Theorem 1, except

> 0 and E[EICB] = .

that we will show that the single-crossing property of the integrand still

holds when we add the difference in the means to EB (as we will shortly).

Once we have shown that, we will have that _(EB+E[EA-EE]) second—order

-~

stochastically dominates “;A' This is to say that =C, is distributed as

—(EB+E[EA-EB])+E+E, where z > 0 and E[E|~(CB+E[CA—CB])+Z] = (. But equating

the means implies that z = 0, and therefore we must have that —EA is

distributed as —(EB+E[EA—EB])+E, where E[Z|—cB] = 0, or equivalently that

—

c, is distributed as CB+E[CA-CB

A l+¢, where E[E|cB] = 0 (where we have taken

T=—e).
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To complete the proof, consider first the case when A has nonincreasing
absolute risk aversion. Define the utility function u:(w) = uA(w+E[EA—EB]).
A hypothetical agent A* with this utility function will optimally hold
given initial wealth for which this satisfies the budget

cA—E[cA—cB]

constraint, because the first order conditions are the same as for

optimality of C, for A. Also, A* is less risk averse than B because A is
less risk averse than B and nonincreasing risk aversion of A implies that A*
is weakly less risk averse than A. Therefore, Lemma 1 (with u:(-) in place
of uA(-)) again implies the sign pattern for the integral condition
corresponding to (8) but using the demeaned variables. The only difference
is that the integral now asymptotes to zero because we have subtracted the
means.

In the case that B has nonincreasing absolute risk aversion, the proof
is similar except that we define a utility function u;(w) - uB(w-E[EA—EB])

that holds ¢_+E{c

B A cB]. This agent is weakly more risk averse than B and is

therefore more risk averse than A. The rest of the argument is similar. =



