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MULTIPLE REGRESSION WITH INTEGRATED TIME SERIES
*
Peter C. B, Phillips
ABSTRACT

Recent work on the theory of regression with integrated pro-
cesses is reviewed. This work is particularly relevant in eco-
nomics where many financial series and macroeconomic time series
exhibit nonstationary characteristics and are often well modeled
individually as simple ARIMA processes. The theory makes exten-
sive use of weak convergence methods and allows for integrated -
processes that are driven by quite general weakly dependent and
possibly heterogeneously distributed innovations. The theory also
includes near integrated time series, which have roots near unity,
and cointegrated series, which move together over time but are
individually nonstationary. A general framework for asymptotic
analysis 1s given which involves limiting Gaussian functionals and
extends the LAN and LAMN families of conventional asymptotic
theory. An application to the Gaussian AR(1l) is reported.

1. INTRODUCTION

The subject matter of this paper is regression theory for nonstationary
time series. This subject is of general interest and importance in statis-
ties, but it is particularly relevant in economics where time series are
widely believed to be intrinsically nonstationary. Under this heading come
various financial and commodity market price series, which behave as if they
have no fixed mean, and many macroeconomic aggregates like real output and

consumption expenditure, which display secular growth characteristics. Upon

investigation all of these series are found to be individually well

*
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2
explained by integrated processes in the ARIMA class, usually with a single
unit root. 1Indeed, a large and growing literature in econometrics now uses
integrated processes to model such series in preference to trend stationary
processes (processes which are stationary about deterministic trends}).

Regression theory for integrated processes turns out to be very differ-
ent from the traditional theory of regression for stationary time series.
These differences affect in a fundamental way the interpretation of regres-
sion coefficients, significance tests and residual diagnostics. They need
to be understood if the regressions are to be meaningfully used in applied
work,

The present paper attempts to review some work that I have been doing
recently on this topic in econometrics. The natural starting point in the
analysis is asymptotic theory but I shall alsc include some results on high-
er order properties. The central idea in the development of the asymptotics
is simple and uses the theory of weak convergence on function spaces. We
transport the time series we observe and sample moments of them into
B-valued random elements (random variables that live in Banach spaces). This
enables us to work with rather general integrated processes and to capture
in a simple way one of the distinguishing features of non ergodic time
series: that sample moments of the time series converge weakly to random
variables, which are often simply written as the sample moments of a sto-
chastic process; and that objects like the hessian of the likelihood
converge weakly to random matrices rather than constants, reflecting the
presence of random information in the limit.

Some notational economies are used to simplify the presentation of the

results, Stochastic processes such as the Brownian motion B(r) on [0,1]



3
are simply written as B whenever it is convenient to do so. Similarly, we

. : : 1
write integrals with respect to Lebesgue measure such as IOB(s)ds more

simply as ng . Vector Brownian motion with covariance matrix O is
written "BM(Q)" . We routinely use the following symbols: "=" to signify
weak convergence, "=" to signify equality in distribution, ">" to sig-
nify positive definite when applied to matrices, "L" to signify the back

shift operator, "A" (= 1-L) to signify the first difference operator, and

“l|a]* to signify the Euclidean matrix norm {tr(A'A)}1/2

2, 1INTEGRATION, NEAR-INTEGRATICON AND COINTEGRATION

2.1, Integrated Time Series. We call an n-vector time series {yt} an
integrated process of order k and write Ve ™ I(k) if the time series
{Akyt} is weakly stationary (written Akyt = I(0) ). Most of our attention

will focus on I{l) processes, which are generated by accumulating innova-

tions from an initialization that is taken to occur at t = 0 , Thus,
- +u =3Su, +y. =S+ (1)
Ve T Ve1 T T 2%y T Yo T e T Yo

Here, {St] is a partial sum process and {ut] is a weakly dependent inno-
vation sequence. When u, is 1id (respectively, martingale difference
sequence) Ye is a random walk (martingale). More generally, u will be
assumed to satisfy certain moment and weak dependence conditions to ensure
the validity of a functional central limit theory for standardized partial
sums.

Examples of I(l) processes satisfying (1) are:
(a) ARIMA models: (l—L)A(L)yt - B(L}et, e, 1iid¢(0,%) with u, following

the stationary and invertible ARMA model



A(L)ut - B(L)et

(b) ARIMAX models: -(l—L)A(L)yt - B(L)xt + C(L)et ey 1id(0,Z) with wu

following the stationary ARMAX model
A(L)ut - B(L)xt + C(L)et, X = I1(0)
(¢) Linear processes: (l—L)yt =3 £ 11d4(0,Z) with

j—ife) 0

absolutely summable coefficients
o0
I8 < =

In these examples A(L) , B(L) and C(L) are all matrices of finite
degree polynomials in the lag operator L .

In recent years empirical evidence in support of such representations
with a single unit root have been found by various authors. Box and Jenkins
[1] give examples from several subject areas. In economics there are now
many different studies that lend support to I(l) model specifications.

These include theoretical studies of efficient markets (Shiller [34]) and
models of optimizing behavior by representative agents (Hall [11]) as well
as a wide range of empirical studies (Granger and Newbold [9], Nelson and
Plosser [17], Campbell and Mankiw {2]), Stock and Watson [35], Perron and

Phillips [21] to mention a few).

2.2. Near-Integrated Arrays. Many of the studies just mentioned give
strong evidence of the presence of root in the neighborhood of unity. How-
ever, it is very difficult to discriminate between a root at unity and a

root near unity because the power of unit root tests is very low in the



vieinity of the null hypothesis of a unit root. One way of accommodating
the possibility of roots that are near unity is through a near integrated

array. We write in place of (1)
yt,T - ATyt—l,T + u t=1, ..., T (2>

where the coefficient matrix AT - exp(T-IC) ~ I+ (1/T)C gives alterna-

tives that are local to unit roots as the sample size T = « | {{yt T}{]:
is a time series array with roots near unity. In particular, each row of
the array for fixed T 1s an autoregressive series generated by the weakly

dependent sequence u

e and with a coefficient matrix AT whose latent

roots are close to unity for T large. C 1is a matrix of noncentrality

parameters., For example, when C = diag(cl, c ey cn) then the 1i’'th

2!

component of the series is near explosive for ¢, > 0

i , near stationary

when ey < 0 and I(l) when ¢y = 0.
Near integrated arrays generated by (2) have been studied extensively

in Phillips (25, 26] and in the scalar case by Chan and Wei [4] also.

2.3. Cointegrated Time Series. While individual time series may display
nonstationary characteristics, it is often the case that several related
time series tend to move together over time as if there were a common sto-
chastic trend involved in each of the series. Multiple time series with
this characteristic are said to be cointegrated if the individual series are
I(1) processes and yet some linear combination(s) of the series is (are)
I{0). Cointegrated systems of this type have recently attracted a good deal
of attention in econometrics. Some of the ideas go back to Frisch [6], but
the concept was formally introduced by Granger [7] and has been systematic-

ally explored in subsequent work by various authors. My own attention has



concentrated on the statistical issues of testing for cointegration
{(Phillips and Quliaris [32, 33]) and on the development of an asymptotic
distribution theory for estimators and tests in the presence of coilntegra-
tion (Phillips and Durlauf {30]), Phillips [26] and Park and Phillips [19,
20]).

To fix ideas, let {yt} be an n-vector multiple time series and sup-

pose y = I(1l) . If h 1is a constant n-vector for which h'yt = I(0)
then we say Ye is cointegrated with cointegrating wvector h . Note that
h annihilates the stochastic trend in Ye o indicating that the components

of Ve have a common stochastic trend of dimension less than n .

2.4. Economic Applications. Cointegration may be regarded as a statistical

embodiment of ideas from economic theory. The hypothesis of cointegration

is particularly important in terms of well established notions of leng run

equilibrium in economics. We give several examples:

(a) steady state growth theory.
According to this theory many economic aggregates like output, consump-
tion and investment grow together over time along paths that are deter-
mined prinecipally by common factors such as technical progress and
population change. Thus, in the long run aggregate expenditure may be
expected to display only stationary fluctuations about some fraction of
aggregate income. Another example stems from the quantity theory of
money, according to which real income, money and prices may be expected
to be in long run balance with the velocity of circulation displaying

only stationary fluetuations.



(b)

(e)

present value models.
In these models one variable (Yt) represents the discounted present
value of expectations (Et) of future realizations of another variable
(Xt) using today’'s information set. Symboliecally,

i

o
Y, = 0(1-6)%]_ S EX

where Yt, Xt = I(1) . This gives

@ i
Yt - axt - 621_16 EtAXt+i = I(0)

Note that if Xt is a martingale then Et(X and Yt = X

) T % t

in long run balance. Models of this type are used in theories of the
term structure of interest rates, stock prices and dividends and in the
permanent income theory of consumption. Campbell and Shiller [3] pro-
vide a detailed discussion.

purchasing power parity.

According to this theory in international financial economics the
dollar value of goods produced abroad and the dollar value of goods
produced domestically should be in long run balance. Thus, in the long
run we should expect only stationary fluctuations about the equation

P = StPg which relates the level of domestic prices (Pt) to foreign

C

prices (Pt) and the spot exchange rate (St)



3. WEAK CONVERGENCE OF SAMPLE MOMENTS
3.1. Functional Limit Theory and Convergence to Stochastic Integrals. We
transport partial sums of the innovations in (1) into B-valued random ele-

ments using

X (x) = /25 ep(0,1]", 0=r=<1

(Tr]

where D[O,l}n is the product space of n copies of D[0,1} , the space
of right continuous functions with finite left limits endowed with the
Skorohod topology. Under very general conditions the functiomal central

limit theorem
X.(r) = B(r) = BM(Q) (3)
holds {5, 12, 30] and the covariance matrix of the Brownian motion is
0 = lim, T E(S:S.) .
—+co TT
which reduces to

Q= 2nf (0) = E(uguy) + B, (E(uqur) + E(uup))

=32+ A+ A

when {ut} is stationary with spectral density matrix fuu(k) . Note that
(0 may be interpreted as the (scaled) long run variance of the process Ve -
Note also that the estimation of Q is an important and interesting topic
in itself, which has a substantial bearing on empirical work in this field.

([18] and [30] provide some discussion of the problem and available

methods),



In addition to (3) we frequently need a theory of weak convergence to
stochastic integrals. Under quite general conditions we do indeed have the
following result:

ig(Trlg

1 Se1¥e ” JoBdB’ + xA . (&)

The limit process here is a matrix stochastic integral with bias given by
rA . (4) is proved in [27, 28] for the finite dimensional case r =1
When u, is a martingale difference sequence a proof of (4) is given in
[37]. The proof in [28] relies on martingale approximation methods and

applies for fairly general stationmary sequences.

3.2. Limit Processes for Sample Moments. We deal first with integrated
time series generated by (1). In this case sample moments have the follow-

ing asymptotic behavior:

=-3/2_[Tr] r —-2.[Tr] ro.,

T AR A fOB , T B Uy yL e fOBB (5)
=1_(Tr} , r . -

T 5 'y fOBdB + 1A, A=ZI +A. (6)

Note that the limit processes in these formulae are simple linear and quad-
ratic functionals of Brownian motion. In effect, the limits of the sample
moments of the time series are stochastic processes which are themselves
just the sample moments of a vector Brownian motion. Proofs of these re-
sults follow simply from (3) and (4), in most cases by direct appeal to the
continuous mapping theorem. 8See [23] and [30] for details.

For near-integrated arrays generated by (2) we have in place of (3) the

limic:
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-1/2

T y[Tr],T = KC(r) - fgexp{(r-s)C}dB(s) . 7

Here, KC is a vector diffusion process which satisfies the stochastic dif-

ferential equation system

ch(r) - CKC(r)dr + dB(r) , KC(O) =0 .

Again, sample moments of the array converge to corresponding sample moments

of KC . We find

=3/2.[Tr] r -2.[Tr] . r .
TS e r 2 Joke 0 TRy v p = JoReKe

-1_.[Tr] . r .
T E) Y U JoKdB’ + ra

(see [25, 26] for proofs and applications).

3.3. Filtered Processes and Projections. 1In many cases time series such as
(1) and (2) are filtered prior to their use in regression. In other cases
the time series are effectively filtered by the inclusion of additional var-
iables such as time trends in a regression. The effects of such filtering
can often be simply determined by looking at the filtered series as regres-
sion residuals. For example, in the case of a series such as (1) that is
detrended by a polynomial trend we construct the regression residual process

Y from the least squares regression:

~ ~ A

- P
Ye ﬂo + ﬂlt + ...+ ﬂpt + Y -

Then sample moments of Y. have the following limits
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~3/2.7 1 2T
T %y = fB . ToEy e S

-1.T N
T "Iy up = [,RAB’ + A

where

B-QB

= projection of B in L2[0,l]n on the orthogonal complement

of the space spamnned by {0(r), 1(x), ..., p(r); j(r) = )

Thus, B(r) 1is simply detrended Brownian motion or the residuals from the

continuous time regression

- A A A _P
B(r) &y + ar + ...+ apr + B{(r)
where the &i minimize the least squares criterion in L2 norm
1 P 2
IOIB(r) —ay mer - ... - apr dr .

Explicit formulae are easy to obtain. We give the following examples:
1
p=20 B = B(x) - IOB = demeaned BM

-1 B = B{r) - &0 - &lr = detrended BM

-1

&, 1 fis Ips:

with - 1 12 1
1 fos fos IOSB

R>

Similar results apply in the case of near-integrated time series.

Using the same notation, we get:
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-3/2.T 1 ~2.T 1,
TSy o Sk o TR Yoo = JoEKG
-1.T sl

T Elzt’Tu = IOECdB + 4 .

3.4, Applications to Vector Autoregressions (VAR’s). The above results
have many applications. In particular, a regression theory for time series
generated by (1) or (2) is straightforward. Thus if Ye is a near-
integrated time series (corresponding to the t’'th row of the array in (2),
but we drop the second subscript for convenience) then a least squares re-
gression yields:

Ve = ;yt-l + Gt . % - T-12§

4 4!
tt

" T T -1
%“EA-(%%%AM%%J%J) . We find

. -1
T(A - Ay) = (fédBKé + A')[féKcKé] (8)

a matrix quotient of quadratiec functionals in the diffusion KC . 0Of
course, A - 0 d {
ourse AAT ; and since AT + I we obtain A 3 I as T+ = ,

Since A 1is consistent the residuals ﬁt are consistent estimates of
the errors u, in (2) and the asymptotic distribution theory for the vari-

A

ance estimator I 1is given by:

1/2

T/ “vec(=-%) = N(O,V)

with

Vo= RS (¥ - (vec Z)(vec 2P,
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where
@k _ E(uOué 2 uoué) , k=20
E{(uoui ® uoui) + (ukué ® ukué)} , k=1, 2,
-1 n2
and PD = D(D'D) D' is the projection onto the natural support in R of
the covariance matrix % i.e. the range space of D , the matrix which

duplicates the nonredundant elements ¢ of X through the mapping
vec T = Do .
When the innovations {ut} are 1id N{0,Z) the covariance matrix re-

duces to the simpler

V o= 2PD(X ® Z)PD - 2PD(Z ® )

The reader is referred to {26, 30] for more details of these results,

3.5. Power Functions for Unit Root Tests. Another application of the
theory is to obtain power functions for unit root tests. Here we use the
near-integrated array (2) and the matrix C provides the noncentralities in

the asymptotic distribution theory under local alternatives. We demonstrate
2 2

by taking the scalar case. Set n=1, A=a, =0 , T =0 ,
A=X, C=¢ and
Ko(r) = [5e " 9CaB(s) = wffe ™™ au(s)
- ch(r) , Ssay
where B = oW and W = BM(l) , standard Brownian motion.

Suppose we wish to test for the presence of a unit root in the array

{2). We test HO : a=1 against the sequence of local alternatives
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Hl Pagp - ec/T ~ 1+ ¢/T . From (8) the asymptotic theory for the simple
regression coefficient & 1is given by:

-1

T(a-1) = ¢ + [féJZ] (_f(l)chw + A/wz) . (9)

To test Ho we may use the statistic

—lA
A -2.T 2
Za = T(a-1l) - [T zlyt—l] A
suggested in (23], where ) is a consistent estimator of A .. From (9) we
now have

1

1.2 .1
Z =c+ [foJc] J‘ochW under H (10)

0

- [ fév2] - S g under H

Power functions given by (10) may now be calculated using numerical inver-
sion of the joint characteristic function of (féchW, féJz) , which 1is
given in [253]. These ideas are easily extended to models with fitted drift

and trend [34] and to multivariate models and tests [19, 20, 26].

3.6. Limits of the Near-Integrated Theory. Again we take the scalar case
of the near integrated array generated by (2) with noncentrality parameter
¢ . When c = 0 we have the conventional unit root theory. When c¢ = 0
but is fixed we have asymptotics which are local to the unit root theory.
We may also consider the limits of the near integrated theory as c - o ,
the natural limits of its domain of definition. Heuristically, we can

c/T

associate c¢ + +w with explosive alternatives since when a_ = e

T >1 1is
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fixed we have ¢ = T UIn dr, + =@ ona diagonal sequence for the pair (¢,T)

- ec/T <1 we have ¢ =T fn a,, ~ ~ on a diagonal

Similarly, when a. T

sequence for (c,T)
It is particularly interesting to study the asymptotic bhehavior as

¢ » o of the regression coefficient & and the associated t-ratio
172

t_ = (d-a)/s - =-1.T.2, ,.T 2 . =1 s
a a where Sa {((T Zlut)(zlyt_l) } is the traditional
regression standard error of & . Taking the t-ratio first, we have:

féchw + 202

7

as T -+ =

w
t = =
a o

N(0,1) if A =0
= as ¢ - iwm (11}
diverges if A = 0

and for the regression coefficient itself (with X = O , wz =1 ):

g(e) /21(aa) = g(e)2rs_aw/fis?

N(0,1) as ¢ =+ —
» . {12)
Cauchy as c <+ +w

Here

1.2
g(e) = E(fgi2) = =(1/2) (1 + (1/2)(1 - &°%))
is the limiting information under local alternatives. In conventional

asymptotics for fixed ap = a in (2) we have instead:
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1

—L s <1
T(l - a™)

-2.T 2
g = E(T %y, ;) - .

2

2—————— |a|>0
T"(a™ = 1)

Using g&r to restandardize T(&-a) in place of g(c) we can interpret
(12) in terms of results for the stationary and explosive cases, giving:

1/2
Tlfz(ﬁ—a)/(l - a2) = N(0,1) stationary AR(1l)

T(ﬁ-a)/(a2 = 1) = Cauchy explosive Gaussian AR(1)

These results were obtained originally by White [39]! The idea of exploring
the limits of the near-integrated theory was developed in Phillips [25] and,

for the t-ratio case, independently also by Chan and Wei [4].

4. SPURIOUS AND COINTEGRATING REGRESSION ASYMPTOTIGS

4.1. Spurious Regressions. Studies in spurious regressions go back to
early work by Yule [40, 41] in the 1920's. The topic has attracted atten-
tion in econometrics because many economic time series have strong trend
components and the potential for spurious regressions is thought to be

high. A general asymptotic theory for regressions of this type has recently
been given by the author in [22].

To fix ideas, let

Ve = = I(1) , n=mtl (13)

be an n-vector I{l) process whose partial sums in (1) satisfy the invariance
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principle (3). We partition the limit Brownian motion conformably as:

Bl(r)
B(r) = = BM(Q) (14)
Bz(r)
with
w W)
a - 11 21 > 0
Y

Next consider the least squares regression

ie = 'V * V¢ (15)
which is spurious because the variables Yie and Yor have stochastic
trends but may not otherwise be related if w,, = 0 . Even if w,, # 0

21 21 '
however, the relationship between the series is not in general strong enough
to permit consistent estimation of a regression coefficient by 4 . Only
when  1is singular will this occur.

In general, we have (from [22])

U TR R
B = [foBzBé] (JoBoBy) (16)

a matrix quotient of quadratie functionals of B . Note that we can write
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B 2102232 + 2 W

where

2 -1
fpmw = 917 T 918999

11 11.2

and W = BM(l) 1Is independent of B As shown recently in [29] the dis-

9 -

tribution of (15) in the limit is a simple mixture of normals. Specifically,

-1
[fo 2 2] (JgBsBy) = J N(fppey, o)) ,V(B,))aR(V) an
V>0
with
101 NS
V(BZ) - [IOB B'] (fofoBz(rAs)Bz){foBzB2] (18)

(17) can be further reduced to the scalar mixture:

J N(“zz 21" “11.2 22V)dP(V)
>0

Interestingly, as shown in [29], this distribution does not lie in the
conventional LAMN family.

The asymptotic behavior of tests and regression diagnostics from (14)
is also easy to obgain. Write the sample second moment matrix of the

Brownian motion B in partitioned form as
g1 81 | _ | JoBl JgB:3,
g1 %2 [oB31  JoB;p;

Then, since Gt is a (random) linear combinatiocn of I(l) variates the stan-
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dard error of regression diverges. We have

2 -1

s" = T "Z;%

i t (diverges)

T
1
and

-1 2

T "s 1

— ’ — -
= 811 T 821922821 ~ 81142

the conditional sample variance of the sample path of Bl given 82

Similarly, we find that the standard error of estimated regression coef-
A
ficient ﬁi converges to zero, giving a spurious impression of precision in

~

the estimate ﬂi . That is
-1
2 2| [T , .
Sa =8 [Ely2ty2t] 1130
Ay

Finally, using (15) and (17) we deduce that

A
t, = B./s, diverges

B, ~ Fi’%s, &

as T -+ = , corroborating the experimental evidence in [8] that we observe
high rejection rates in significance tests in spurious regressions like

(14). The reader is referred to [22, 26] for a detailed discussion of this

phenomenon and further analytic results along these lines.

4.2. Cointegrating Regressions. These regressions may be regarded as the
natural limit of a spurious regression like (15) in which the residuals form
a near integrated triangular array whose limit along a certain diagonal se-
quence is I(0). Let Ye be an n-vector time series partitioned as in (13)

and generated by the system
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Yie = BV ¥ We 0 Yo T Yoer tYpe (19
where
u 1
u = le = 1(0) . (20)

We assume that the partial sums of the innovations u satisfy the invar-
iance principle {3) and we partition the limit Brownian motion B(r) = BM{{)
conformably with (20), as in (l4) above.

Note that Yie and Yo, are cointegrated in (12) since the linear
combination Yie ~ ﬁ'y2t = I(0) . Moreover, the signal from the regressor
Yor ™ I(1) in (19) is stronger by an order of magnitude in the sample size
than the contemporaneous (and serial) correlations between th and u

lc -~

It follows that linear least squares regression in (19) yields a consistent
A

estimator g , 1in contrast to the spurious regression {(15). In fact, the

regression asymptotics (from [29, 30]) are

A -1
-2 -1

1
» [IOBZB ] (IOB dB, + 6,)

-1 -1
= J‘N(m22 21+ @ 8,9, wy,,8 )dP(V,0) (21)

where
v = [fo By 2] ([gB,dB3)

e = fOBzBé
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{21) shows that the limit distribution is a mean and covariance matrix mix-

ture of normals.

4,3, Testing for Cointegration. To distinguish spurious regressions empir-
ically from cointegrating regressions it seems natural to test the residuals
Gt in (15) for nonstationarity. 1In effect, we may test the null hypothesis
of a spurious regression (or absence cf cointegration) by testing whether

Gt has a unit root against the alternative hypothesis that Gt = I1(0) . To
do this, we can use any unit root test. A simple test recommended recently

in [33] is based on the Za statistic considered earlier in Section 3.5,

Here we define

z, = T(4~1) - [T' i

where 4 1is the regression coefficient in

and

3 - (1/2)(2«%k<o) - T‘lziﬂi)

A

where fk(O) is any consistent spectral estimate for fk( ) at the origin
w=20

The asymptotic theory for this statistic iIs derived in [33]). We have

1
z, = [ RdR (22)

where
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1/2
R() = o/ {137

-1
1 1
Q) = Wy (x) - (fowlwé)[fowzwé] Wy

In the above, Q(r) is the projection in L2[0,1] of Wl on the orthogon-
al complement of the subspace spanned by the elements of W2 . Further, R
lies on the unit sphere in L2[0,1] and is therefore a random element in a
Hilbert manifold. Also, we note that Q , and hence R , depends only on
the dimension of the system. It is otherwise free of nuisance parameters.

Tabulations of the initial values of the limit distribution (22) are given

in [33].

Finally, we observe that when the dimension of the system n =1 we

have m =0, Q= Wl and the limit distribution reduces to
1 1 1.2
JoRR = [ow aw, /fouy

that is, the conventional limit distribution of the autoregressive coeffi-

cient in a random walk [23, 39]). Thus (22) includes this traditional unit

root theory as a special case.
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5. REGRESSION WITH COINTEGRATED REGRESSCRS
5.1. Examples. Two commonly occurring examples in which the regressors are
themselves cointegrated are;

(a) VAR's with unit roots and several lags, such as:

Yo = B¥ey * BpYp g tug s Byt B =1

= (By By *By(Yeg m Yeg) tu -

Here Ye1 and (yt_2 - yt-l) are trivially cointegrated since
(b) VAR's with common stochastic trends: Suppose Ye = Yeo1 + u = I{L)

but that for some n X n1 matrix Jl with orthonormal columns

J.lyt -V - I(0) . Define the orthogonal matrix J = [Jl, J2] and
write
Yo = 'y q I
= Jo¥ae 1V
Here
®og " I¥em1 Y IV T IV
represents the common stochastic trend in Ve - In effect, Ye is an I(1)

process with fewer than n stochastic trends.

5.2. General Formulation and Asymptotic Results. Suppose the n-vector time
series Ye and the m-vector time series X, are cointegrated and satisfy

the equation

yt - Axt + u1t (23)
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where Uy, = I(0) . Next let H= [Hl, H

which rotates the coordinates of the regressor space so that

2] be an orthogonal m X m matrix

x1t - Hixt = T(0) and xzt - Héxt = I{1) . We write
Ye = AHH'xt + Uy
= ApXpp tApe t U (24)
and set
Xlp T Vo 0 BXpp T Uy

e = (U0 Uy Ugy)

We assume that partial sums of the innovation sequence u, satisfy the in-
variance principle (3) with 0 > 0 and we partition the limit Brownian
motion and associated matrices G, £, A and A conformably with u

Thus,

B, ()
B(r) = Bz(r) = BM(0Q2) ,

B3(r)
(Oﬁ) -(ZU)-+(AU)-+(A59 ,

3

Partitioned least squares regression on (24) yields in conventional re-

gression notation the following estimates of the submatrices Al and A,

A ' 4 -1 A [} ' -1
A = Y'QX (X1QX ) T Ay = YIQK, (RQ X))
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As shown in [20] these estimates have quite different asymptotic behavior

which we may characterize as:

" - -1 -1 -1
JT(A) = A)) = §19%50 = E1,8500 9550 (23}
- ¢ = N(O,M)
and
A 1 1 -1

T(A, = A,) = (fodBOBﬁ + Aéo)[foB3B3] (26)
with

B, =58 -X T ip Al = Al = 5. .S Ear

0 1 122272 * “30 31 12922°32"
In (25)

- -1
Ap = Ay + Z58

A

and the estimator A1 is consistent to Al iff 212 = 0 , that is iff

E(ultuét) = 0 when u, is covariance stationary. The limiting distribu-

cion of JT(AI - Kl) is matrix normal and both the numerator sample

moments and the denominator sample moments in A1 contribute to the limit

distribution {(through §12 and §22 , respectively) when 212 » 0 . Thus,

the estimated coefficients of the stationary components x in (24) are

1t
asymptotically normal.

On the other hand, the estimated coefficients of the I(l) components
X,, are always consistent and have a limit distribution of the general form

(21). However, as seen in (26), the Brownian motion BO involves contribu-

-1
3 i 3 ’ ] ’
tions from the error . (giving B1 ) and the component ulxl(xlxl) X1X2
-1

(giving 21222232 ). In other wards, the presence of the I(0) regressor
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A

X, in (24) does influence the asymptotic distribution of A2
These results for A1 and A2 can be used to obtain the asymptotic
behavior of A = Y'X(X"X)-1 , the matrix of least squares regression

coefficients in (23). We have

JTa-a) ~ JT(Al ~ A H] = CH; = N(O, (I @ H)M(I ® H;))

where

- - ) -1,
A= [A, A)JH' = [A), A JH' + = 5 -H!

_l'
=45+ 212222H1 .

A

Thus, A is consistent to A and is asymptotically normal but has a singu-
lar covariance matrix, corresponding to the fact that JT(R—K)HZ 3 0

We also observe singularities in the limits of the sample moment matrix
of the regressors and its inverse. Interestingly both efist and are singu-

lar. We have:

_2- 1 + '
T “X'X = Hz(foBsBB)Hz

since not all components of x are I(1l):; and

t

1 1

- H.E__H!

TX'X) = 3 HyZ)oH]

since not all components of X, are 1(0).

5.3. Regressors with Deterministic and Stochastic Trends. One might expect
similar results for regressors that involve deterministic as well as sto-

chastic trends. However, some important differences do arise. These are
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well illustrated by using the general formulation (23) as before but allow-

ing the regressors to include a non-zero drift. Thus, we write

0
X = ®+x _,+tu, =7wt+x , say
where xo = I(1l) and Ax_ = u Then
t t 2t
~-3;T ' l '
T letxt B 3
which is singular for m > 1 . It is the singularity of this sample moment

matrix in the limit that makes the application of traditional theory diffi-
cult and that causes a degeneracy in the limit distribution. We handle

this degeneracy by simply rotating coordinates in the regressor space to
isolate components of X, with signals of different orders of magnitude in
T . Start by defining hl - n/(w'w)l/z and construct the orthogonal matrix

H = [hl’ H2} . Next, rotate the regressor space using H to give:

= AHH' +
Te X T Yt

- 4.X + A X

1¥1e T fp%pe t U

2t (27)

where

' r oy 172 r 0
X, - h1 e ™ (n'x) t + hlxt

0
- ! -
X H.x H .

2t 2*¢ X

2

Define the new (effective) error vector
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Y1t

Yy Hauyy

and assume that partial sums of u. satisfy the invariance principle (3)

with limit Brownian motion

B, (1)
B(r) = = BM(Q)
B, ()
where
S I SRR O I I S R P i
B 8y Haflgr  HafipoHy
Least squares regression on (27) yields &, and A, . These fitted

1 2

coefficients have the following asymptotics behavior, both involving ratios

of functionals of Brownian motion:

¢y -l
1/2(4; - a) = (J3aBg + &) fégz] (28)

-

A -1
1 , N S S
T(Ay = 85) = (fdByn® + 85)) |fgm ] (29)

where

-1
c(r) = (nm) 2{: - oty (132,8,) gz}

-1
705) = By(o) = Ugap» [15s7]
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& Al fl B! - fls
= 851 [JoBaBy] UpBo®)

8y1 = Hybdyy -

Both 51 and A2 are consistent. The asymptotic distribution of & in-

1
volves the process ¢ which is the projection in L2[0,1] of the scaled
time trend (w‘w)l/zr on the orthogonal complement of the space spanned by
the elements of gz . In effect, ¢ 1is the L2 function space equivalent
of the Euclidean space projection. szl that occurs in the partitioned re-
gression formula for 31 , Vviz. 51 - (Y’szl)(xinxl)_l . Similarly, the
process 1n is the projection of §2 on the orthogonal complement in
Lz[f.),l]m—1 of the space spanned by the simple time trend r .

Results (28) and (29) combine to give us

A

T(A-A) = T[4, - 2), A, — A,JH' ~ T(a, - A)H}

-

1’
1 1 37t
> (JodByn + Qél)[fo""'] Hy

a distribution whose support is a subspace of dimension nm-n ‘. When m =1
this distribution is degenerate and we are left with the vector of coeffi-

cients of x giving in this case (m = 1

1t » 8y =0

_21 H
§(r) = nxr)

-1 -1

2ma) = (Lo (1) - [ oy [r253) ]
2
= N(O, Bwll/x )]

The reader is referred to [19, 20] for further analysis of regressions with
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deterministic and stochastic trends.

5.4. Special Results with Exogenous Regressors. Stronger results can be
obtained for regressions with strictly exogenous regressors. To illustrate,

we take the multiple regression model
Ve = ﬁ'xt tu X =X g obu, (30)

where the time series (u and [uzt} and independent. If

1c]

ué - (ult’ uét) has partial sums which obey (3) with limit Brownian motion

Bl(r) 1
B(r) = = BM(()
Bz(r) m
then
w 0
Q= 11
0 022

and B1 and B2 are independent.

If B 1is the least squares regression coefficient in (30) then

A 1 -1 1
T(4-p) = [IOBZBQ] (J4B,dB,)

= [ N(O, w

V(B,))dB(V)
>0

11
with V = (féBzBé)-l . This limit distribution is a simple covariance

matrix mixture of normals.

A

In addition to (31) it is easily shown that random normalization of B

glves
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~1/2

Y

= N(O, wlll)
As shown in {31], this theory allows us to examine and modify tradi-

tional regression significance tests, TFor example, the usual Wald

statistic for testing the linear hypothesis

HO TR =1 R(gxm) of rank q

is
. R I 2 2 _  A1T.2
W= (RS -~ r)[R(X'X) R'] (RE - 1r)/s”" , s =T 21“1t
, 2
= Tplp/s
where
-1 ~-1/2 .
T - [R(X X) R ] (R - r) = N(O, wlllq)
under H, . Hence
W= (o) /0, 0%
117711 %q
leading to tests with the wrong asymptotic size when wip * 94 (i.e. when
U displays serial correlation). To accommodate the general case we

. 2 . A . .
simply need to replace s in W by o any consistent estimator of

11 °

Wyq - giving



A A '-1 A
W= (RE - r)[R(x'X)”lR'] (RS =~ ) /by,
L2
Xq

under HO .
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Questions of asymptotic efficiency can also be examined in the context

of models like (30). Writing (30) in the linear model format (with vectors

and matrices embodying T observations) we have:

y =X8 + u var(ul) =V (TxT)

Write 8 = (X'X)-IX'y for ordinary least squares (OLS) and

B = (X'V—IX)—l(X'V_ly) for generalized least squares (GLS).

al covariance matrices of these estimators are just:
P -1, -1
var(8|X) = (X'X)” X'VK(X'X)
- -7 -1
var(B|X) = {x'v x]
and appropriately scaled these have limits

-1
. 2 ' -1 ' ryy—1 1 '
OLS: T (X'X) X'VX(X'X) = = wll[IOBZB2]

-1

=1
. 2 ] -1 1 '
GLS: T [x \ x] > “11[f05232]

, say.

The condition-

which are the same. The unconditional asymptotic covariance matrix is

1 -1
“11E[f03232] .
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This shows that OLS and GLS are asymptotically equivalent when the re-
gressors in (30) are I(l) and strictly exogenous and the errors in (30) are
stationary with continuous spectrum at the origin giving wyq = anul(O)
This result has recently been shown by Phillips and Park [31] for the case

of autoregressive errors u It extends the theory of Grenander and

1t -
Rosenblatt [10] on the efficiency of least squares in time series regres-

sions with deterministic regressors.

6. ASYMPTOTIC EXPANSIONS

The above theory deals with first order asymptotics. Higher order
asymptotics may also be developed. Since this involves an extension of
functional limit theory such as (3) to accommodate correction terms the
mathematical theory is difficult and different from the conventional theory
of Edgeworth expansions in Euclidean space asymptotics. Ihf order to find
the first correction term, however, the theory is not difficult in many
cases and has been discussed and applied recently in [24].

To fix ideas we take a scalar model with a unit root
Ye = &Y 1 tu ; a-= 1, Yo = 0 (32)

. . 2 .
and [ut} stationary with zero mean, variance ¢~ , zero third cumulants

and spectra:
(L :
£'77()) = spectral density of tu,)

f(z)(l) = spectral density of ui - E(ui)

= szﬂf(l)(k—a)f(l)(a)da if (u.) is Gaussian.
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In this case it is shown in [24] that the expansion of the distribution of
T(a-1) , where & 1is the least squares regression coefficient in (32), can

be written in the form:

1
JoBdB + A 1 ¢
féﬂz 2/T féBz

T(4~1) = + Op(T_l) (33)

where

£ = N(O, 2xf(2)(0)) and independent of B

B = BMD) , w? = 22680y

2

r= 2t B0y -0y, - E(ui)

To give an example, we consider the first order moving average

- +
v =g, v e

where {at] is iid N(0,1) . Then

=8, 28D 0) = (146)2

2252 0y = 2(1 + 462 + oY

We write B = wW , W = BM(1l) and we have:

L 9 1/2
X fOWdW + 0/(1+4) 1 [1 + 402 4 94] Z -1
T(s-1) = 12 RS 2 1o %) B
e (1+6) Jovo  F

where Z = N(0,1) and is independent of W .
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The correction terms in (33) and (34) may be used to examine the ade-
quacy of the first order asymptotics for different regions of the parameter
space. Note in (34) that as # -+ -1 the correction terms grow large very
quickly. At 4§ = -1 the asymptotics fail since there is a common factor in

(32) and the data generating mechanism reduces to
yt - ct = T(0)

The reader is referred to [24] for a more detailed analysis and extensions

to vector autoregressions.

7. LIMITING GAUSSIAN FUNCTIONAL FAMILIES OF DISTRIBUTIONS

All of the limit distributions considered in earlier sections of this
paper may be written in a simple form involving a matrix ratio of quadratic
functionals of certain stochastic processes. This formulation suggests that
the criterion function that underlies the estimator may itself admit a re-
lated asymptotic approximation that involves the same stochastic processes,
This approach and some of its connections with the LAN and LAMN families of
LeCam [16] and Jeganathan [13, 14] have been studied recently in Phillips
{29].

Let AT(h) denote a sample objective criterion suitably centered and
scaled so that its argument h measures scaled deviations from some fixed

parameter value, say #4. . Optimization of A then leads to an optimiza-

0 T
A -’1A
tion estimator, say ¢ , and the associated deviation h = 6T (4 - 50) for
some  sequence of scale factors 5T . In a case of consistent estimation

ST -+ 0 but for estimators that converge with probability zero we can set

ST = 1 for all T .
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In [29] we defined a limiting Gaussian functional (LGF) family as fol-

lows. We say that AT(h) satisfies the LGF condition if:

AT(h) - {h WT - (1/2)h STh} E 0 (35)
for some n-vector WT and n X n matrix ST ; and
(V. S2) = (fiMan + A, [l (36)
T T 0 ' Y0
where the elements of M are square integrable and lie in D[O,l]n . N(rj
is a Gaussian random function with sample paths in C[0,1] , the space of

continuous funetions on [0,1]. XA is a constant vector.

A simple example is the Gaussian AR(1l):
e = aoyt-l + Ye

with u, iid N(0,1) and Yo ™ 0 . Writing 4§ = 80 + 6Th we have

Ap(h) = In{pdf(y;8)/paf(y; 4}

-~/ G, - oy + /DBy, - 0y, )

2,.2T

- h(angyt_lut) - (1/Dh i_l)

Here

T1/2 eyl <1
2 T
S =1 (6 - 1)/8, , |ao| > 1
-1
T , g =1

and



AT(h) = A(h)

with
(1) AR = BY()Z - (/B8 N% . [6g] <1
with Z = N(0,1) , ¥(4,) = (1 - ag)‘l/z ,
(11) A(h) = BYZ = (I/DBY, [6,] > 1

with Z = N(0,l1) and independent of Y = N(0,1)
(i11) A(h) = hfgWaW - (1/2)R°fg0 , 65 =1
with W(r) = BM(1) .

To include these three cases in (36) we write:

(1) [o,] <1 M@

l(r)Y(ﬂo) with 1(r) =1, 0O

tA
H
1A
et

N()

W(r) = BM(1)

D ol > 1 W) = LY 5 N

N(r)

W{r) = BM(1)

(iii) f#, =1 : M(r)

N(r) = W(r) = BM(1l)

and
A(h) = hfghaN — (1/2)°fpu? .

Note that when 60 =1 and when ¢ =1 + h/T the quadratic term in (35)

satisfies

-2.T 2 1.2
Sp(8) = T “Zy_; = [5d;, = S8, 1)

where

I - fge(r_s)de(s)

37
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is the diffusion process introduced in Section 3.2 above. 1Indeed, when

§ =1+ h/T the process Ye {strictly, since 4 depends on T )

Te,T

forms a triangular array of near integrated time series. Since
1.2
5(8,, h) % S(65) = [oW

for all h = 0 , we see that the quadratic approximation to AT(h) varies
over arrays with different h . This leads in the limit to what we call in
[29] wariable random information in the limit. 1In effect, the curvature of
A(h) 1in this case depends on féJi and this random information wvaries for
different h .

By contrast in case (i) the Fisher information is constant and in case
(ii) it is random but independent of h . In both these cases,.the LAMN
theory applies. However, the LAMN theory does not apply in case (iii) and
the limit distribution is not mixed normal. This case has recently been

discussed by Jeganathan [15] and Phillips [29].
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