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0. ABSTRACT

Under peneral conditions the sample covariance matrix of a vector
martingale and its differences converges weakly to the matrix stechastic
integral féBdB' , Wwhere B 1is vector Brownian motion. For strictly
stationary and ergodic sequences, rather than martingale differences, a
similar result obtains. 1In this case, the limit is féBdB' + A and in-
volves a constant matrix, A , of bias terms whose magnitude depends on the
serial correlation properties of the sequence. This note gives a simple

proof of the result using martingale approximations.
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1. NTRODUCTION

There has recently been a good deal of interest in time series regres-
sions that involve integrated processes. The theory makes extensive use of
weak convergence methods in general, and multivariate invariance principles
in particular. Some recent papers dealing with this topic are [1, 3-16].
Much of the theory involves weak convergence of sample covariance matrices
to matrix stochastic integrals of the form féBdB' + A, where B is
vector Brownian motion and A is a constant matrix of bias terms. This
result is so important that it almost rivals the invariance principle in
terms of its significance for applications.

To fix ideas, let {xt]; be an n-vector time series generated by

X = X + u, t=1, 2, ... (1)

where X is any random vector (including a constant) and {ut}fm is a

zero mean, strictly stationary and ergodic sequence with continuous spectral
: . -1/2_1T .
density £ (A) . Define X (r) =T / z:{ r]uj . Then, as shown in {8,

12], under quite general conditions as T - = we have:
X (r) = B(r) = BM(D) (2)
with

0=2xf (0) =Z + A+ A
uu

= E(uoué) , A= 2k=1E(u0u&) :

and



-1.T . 1 ,
T "Zix,_qul = [(BAB' + A . (3)
Here, we use the symbol " =» " to signify weak convergence as T » ® , " = *

to signify equality in distribution and " BM(Q1) " to denote Brownian
motion with covariance matrix ¢ .

The proof of (3) that is given in [8] is lengthy and uses the concept
of a near-integrated process [9, 10]. A more direct proof of the result
seems desirable. When (ut} forms a square integrable martingale differ-
ence sequence with respect to the natural filtration of o-fields

F_ = g{u

c e ut—l’ ...) , then A =0 and (3) has been proved recently by

direct methods in [1}. 1In particular we have:

LEMMA (Chan and Wei)

If {ut, Ft} is a martingale difference sequence, if

E(ututlFt_l) <c a.s. (4)
for some constant ¢ > 0 , and if (2) holds then

-1.T , 1 ,

T "Z;x,_qul = [,BdB

The purpose of the present note is to show how (3) may be obtained
quite simply when A » 0 by using this Lemma and a martingale approximation
to the process u, . The approach we follow is inspired by the use of
martingale approximations in central limit theory for stationary processes.
The reader is referred to [2, Ch. 5] for an excellent exposition of the

approach.



2. IN RESUL D _PROOF

It will be convenient to let u in (1) be generated by the linear

process

(] (<]
- 5
u, zj BjetFj , zﬁ_muaj" <w (5)
where the sequence of random vectors {etlfm is 11d(0,A) with A > 0 and

where "Bj" - maxklzzlbjk£|} with Bj - This includes all sta-

(bjkﬂ)
tionary and invertible ARMA processes, for instance, and is therefore of

wide applicability. The process u, defined by (5) is strictly stationary

and ergodic and has continuous spectral density given by

PN

i
e

£, () = (1/2%) (2B,

j“
A Z.B-e

In addition to the absolute summability of (B,] in (5), we will use the

3
following condition (based on (5.37) of Hall and Heyde [2])

o 580+ 1531 <o ®)

which is again satisfied by all stationary and invertible ARMA models.

Our main result is as follows:

THEOREM. If {xt} is generated by (1) and {ut) satisfies (5) and (6)

then (3) holds.

PROOF. %Under the stated conditions, we note first that the multivariate

invariance principle (2) applies. When n = 1 this follows directly from

Theorem 5.5 of Hall and Heyde [2, p. 141 and p. 146}. For mn > 1 , the



result may again be deduced from this theorem by applying the argument of
Theorem 2.1 of [7].

The remainder of the theorem is based on a martingale approximation of
u_ . The construction is achieved in Theorems 5.4 and 5.5 of Hall and Heyde

[2]. We let Mk - a(ej, j £ k) and define

Y, = 2, [EQu,iM) - E(u |M_)] = (=, _B,e,

o -1
Zo = TemoE M) = Bl ol - By [# )

Setting Y, = UkYO and Z, = UkZ , where U 1is the temporal displacement

k k 0

operator, we observe that [Yk, Mk] is a martingale difference sequence

whose differences Y, are strictly stationary, ergodic and square inte-

k
grable with covariance matrix O = (Zij)A(ZﬁBj) - 2wfuu(0) . The process
{Zk} is also strictly stationary, ergodic and square integrable. With this

construction we have uo - YO + ZO - Z1 and thus

ut - Yt + Zt - zt+l .

Note that X, = Etu. + % - E§Yj we obtain

1% 0 and writing P

K
1T, _ .-LT _ } ,
T e =T B g + 2 T B ¥ X (e Y By = Beyy)

-1.T ~1.T

- TR LY+ TR (2 - 2)Y
+ T Te (2 -z, )+ TIEN(Z, - 202, - 2, ) + o (1) . (D)
1P%-1'% ~ Al 142, = 2042 — 4 ptt -

Now by ergodicity we have:



and

Moreover,

-1_T ,
T ElzlYk = 0 a.s.

-1.T , ,
T lekYk - E(ZOYO) a.s.

-1.7 f oo _ .
T 21(21 - Zk)(Zk - Zk+1 ) E(ZO(ZO 21) ) a.s.

-1.T -1.T -1.T -1_T

T 2 P B = 2y =T B2 - T "5 Ry - T I 20
.Y -1 ~1.T, .,
=T P2y =T PpZp g, + T ENZL,
+ E(Yg2!) a.s.

by the lemma

-1.T . IR
T "EP,_ Yy = [,BdB

where B(r) = BM({l1) . We deduce that

where

Now

and

T—IETX u’ = Ié

1 %1l BdB* + K

K= E(YoZi) - E(ZO(ZO - 21)') - E(ZOYé)

- E(YOZi) - E(Zoué)

m -1
Z) = T By (M) = J (o =BG (M)



\y gl , -
E(YoZ]) = ~F  E(quiy) + B JB(YGECy , [#g))
= B 0B Yoka1)

since YO is Mo-measurable. Next

E(Zyug) = -z;l_mE(ukué) + Z,_ _E(E(u |4_)up)

= -Z:_lE(uoui) + 2:-—@E(E(uklﬂ~1)u6}

Hence,
K= A+ 3 E(Yow o) - 5 _E(EQ |4 )
= A+ T GE(Y_jup) - e E(EC(u [M_)ug) . (8)
Now
Y- zz__w{z(u2|u_j) - E(u£|H_j_1)}
and

@

2y EO_yu) = 21__Q{2j_1[E{E(u2|M_j)ué} - E{uLM_j_l)ué}]}

ad

- %, ELE(u,|M_)ug) (9)

since E(uiiﬁ_w) - (0 a.,s. We deduce from (8) and (9) that K = A and (3)

follows immediately.



3. OM XS ON A CATIONS

Limit theorems invelving stochastic integrals such as (3) seem to be of
widespread importance. They have many applications in econometrics and
arise frequently in time series regressions with integrated processes and
autoregressions with unit roots. Many examples are provided in the papers
[3-6, 12-15]). 1In addition, as indicated in other recent work [1l], it seems
likely that a general asymptotic theory for optimization estimators can be
developed that uses limit theorems such as (3). With some extensions, this
theory can accommodate limits to stochastic integrals that are taken with
respect to more general continuéus parameter martingales. Some of the in-
teresting possibilities for such extensions are explored in Section 4 of

{11].
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