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ABSTRACT

We prove that the Strong Axiom of Revealed Preference tests the existence of
a strictly quasiconcave (in fact, continuous, generically C*, strictly concave, and
strictly monotone) utility function generating finitely many demand observations.

This sharpens earlier results of Afriat, Diewert, and Varian that tested
(*‘nonparametrically’’) the existence of a piecewise linear utility function that could
only weakly generate those demand observations. When observed demand is also
invertible, we show that the rationalizing can be done in a C™ way, thus extending a
result of Chiappori and Rochet from compact sets to all of R".

For finite data sets, one implication of our result is that even some weak types
of rational behavior — maximization of pseudotransitive or semitransitive
preferences — are observationally equivalent to maximization of continuous, strictly
concave, and strictly monotone utility functions.

KEYWORDS: Rational choice, revealed preference, strictly concave utility,
nonparametric tests.
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Rosa L. Matzkin
and
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1. INTRODUCTION

In applied economics, consumers typically maximize continuous, strictly quasi-concave,
and monetone utility functions. Even strict concavity is often assumed. What restrictions do
these special assumptions put on observable data? Can we test demand behavior to see whether it
maximizes such a special function?

For a finite number of observations, we will give a complete answer (Theorem 1);
Houthakker’s Strong Axiom of Revealed Preference is a necessary and sufficient behavioral test
for such “‘special rationality.”” This will imply that the special rationality is observationally
equivalent to the much weaker hypothesis that the demand function maximizes some reflexive,
transitive, and total preference: No finite set of data can distinguish between those assumptions.
In fact, our results imply that finite sets of data cannot distinguish even much weaker types of
rationality from the special rationality (Theorem 3). Qur proof is based on a result that provides a
constructive method for ebtaining continuous, generically C*, strictly concave, strictly monotone
utility-rationalizations (Theorem 2).

In Section 5 we relate our results to work by Afriat, Diewert, and Varian. That line of work
~— sometimes under the name of ‘‘nonparametric demand analysis’’ — tested for the existence of
a piecewise linear utility, which could only rationalize demand in a much weaker sense. We also
relate our work to the recent paper of Chiappori and Rochet on €™ rationalizations.

In Section 6 we give some applications of our results.

*The main part of Theorem 1 of this paper was presented to the Midwest Mathematical Economics Conference,
October 27, 1985.

**The assistance of the National Science Foundation, Grant SES-8510620, is gratefuily acknowledged.



2. RATIONALITY

We study demand data for # commodity types, where each bundle of commeodities can be
represented by a vector in some convex subset X of R®. (Commonly X is assumed to be a subset
of R3, but we do not require that.)

We are interested in competitive consumers, so we denote by B(p,m) the budget set
determined by price vectorp =(p1, .. .,p,)eR” and income meR% :

Bpm)={xeX:pxsm}. (2.1)

Often we write (p,m) for B (p,m). We denote by C the family of all such budget sets. Sometimes
we are interested in a particular subfamily B = C. For example, in this paper, we study choices
from a finite collection B of budgets.

The set of bundles chosen under budget B (p,m) will be denoted by & (p,m). Itis reasonable
to assume that A (p,m) < B(p,m). This defines then a correspondence k, which we call a choice.
Of course, in the classical case of a demand funcrion, h is singleton valued.

Using the notions of Richter (1971), we will call the choice 4 rational (with respect to
(X,B)), if there exists a binary relation > on X such that, for all (p,m)eB,

h(p,m)={xeB(p,m): Vyyp(p,m* >y} (2.2)

In other words, the set of chosen elements under budget B {(p,m} is exactly the set of »=most
preferred elements from B(p,m). We say that > is a rationalization for 4, and that =
rationalizes .

There are many subsidiary types of rationality: one can talk of transitive-rationality (for
rationalization by a transitive relation 3=), or total-rationality (for rationalization by a total
relaton =), etc. A very important type of rationality is regular-rationality, in which there is a
reflexive, transitive, and total rationalization »=. And then, of course, one can consider utility-
rationality, in which there is a rationalization that is representable by a numerical utility function
UonX:

h(psm) = {XEB(p,m):VnyB (p,m) U(x) 2 U(y)}s (2'3)

for all (p,m)eB. Even more demanding, of course, would be to seek a rationalization that has a
continuous, strictly concave, and strictly monotone utility representation. For brevity, we will
call this special-rationality.

We say that a choice is exhaustive (on B} if it satisfies the budget equality
px=m (2.4)

for all xeh (p,m) and all (p,m)eB. Of course, if only price vectors p and commedity vectors x
are observed, but not incomes m, then for each such p and x we may define an m = p-x, and then 4
is automatically exhaustive.
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The main resuit of this paper can be viewed in three ways. First, it gives an empirical test
for the existence of a continuous (and generically C*), strictly concave, and strictly monotone
utility-rationalization for any finite set of demand data (Theorem 1). Second, it gives a procedure
for constructing such a rationalization (Theorem 2). Third, it shows that certain low types of
rationality are actually equivalent to the much higher special-rationality type (Theorem 3).

3. REGULAR AND SPECIAL RATIONALITY

First we state some definitions. Following Richter (1971, 1979) we define the binary
relation S on X by: forall x,yeX,

xSy ¢ dBg.pxch(B) & x#yeB. 3.1

Let H be the transitive closure! of S. Then Houthakker’s Strong Axiom of Revealed Preference
can be stated as:

H is asymmetric. (3.2)

It is known from Richter (1966, 1971) that, for demand functions, the Strong Axiom is equivalent
to regular-rationality.

We say that a set A < R" is generic if it includes an open dense set whose complement is
null (of Lebesgue measure zero). Equivalently, the complement of a generic set is small in the
sense that it is a subset of a closed nowhere dense null set. We say that a property holds
generically, if it holds on a generic set.

We will prove that a very high type of rationality follows from just the Strong Axiom.

Theorem 1. Let & be an exhaustive demand function defined on a finite subset B of C.
Then & has a special-rationalization U if and only if 4 satisfies the Strong Axiom of Revealed
Preference. Furthermore, when such a U exists, it can be chosen to be defined on all of R*, and
be generically C*.

REMARK 1. There is no hope, however, of obtaining differentiability of rationalizations. In
the two observations of Figure 1a,? for example, we have x =k (51,5 2,m) = h(p |,p4,m). If there
were a differentiable utility rationalization, then Lagrange s thecrem on constramed
maximization would guarantee the existence of % and A satisfying Dju (x1,x,) = Ap; = lp, for
i=1,2. Both A and A must be zero; otherwise D u(x|,x7)/Du(x,x3)=p1/p2 =p1/p, which

'The transitive closure of a relation R is defined as the smallest transitive relation including R.
The figure is essentially the same as in Chiappori and Rochet (1987). The interpretation is different, since they



contradicts Figure 1a, since the budget lines have different slopes. So D;u(x;,x3)=0fori=1,2.
Since u is concave, x globally maximizes u, contradicting the strict monotonicity of .

Of course, without monotonicity, the differentiable strictly concave utlity
u(x1,x2) =(x; — 1% +(x2 = 1)* does rationalize Figure la. But even without requiring
monotonicity, reasoning similar to the above shows that no differentiable strictly concave utility
can rationalize the four observations of Figure 1b,

m!
o

(a) (b)
Figure 1

Nevertheless, despite Remark 1, we wiil show that a utility-rationalization can be found that
is generically C™.

REMARK 2. Theorem 1 gives an empirical test (the Strong Axiom) for determining whether
a finite set of demand data can be rationalized by a continuous, strictly concave, and strictly
monotone utility function. For it is clear that one can design algorithms to test, on any finite data
set, whether the Strong Axiom holds. The next theorem also makes that clear, since it shows that
satisfaction of the Strong Axiom is equivalent to solvability of a certain system of linear
equalities and inequalities; and algorithms to test such solvability, and obtain solutions, are well
known.® In addition, it should be noted that the proof of Theorem 2 below will provide a
constructive method for obtaining special-rationalizations from the system’s solutions.

A proof of the main part of Theorem 1, for compact domains X, was given in Matzkin
(1986). Here we present a very different proof, based on the fact that Theorem 1 is an immediate
corollary of Theorem 2, which is proved in Section 4.

use a weaker notion of rationality (cf. Section 5 below).

3Cf, the discussion of Fourier elimination in Stoer and Witzgall (1970), Theorem 1.1.9 and Sections 1.2 and 1.3,
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Theorem 2. Let & be an exhaustive demand correspondence on a finite subset
B={(plm"),...,(*m"} of C. Let x'e h(p’,m") for (i=1,...,k). Then the following
statements are equivalent:

a) k satisfies the Strong Axiom of Revealed Preference.
b) There exists a continuous, strictly concave, and strictly monotone function U

rationalizing 4 on B. (Le., A is special-rational.) (Optionally, U can be chosen to be
defined on all of R", and be generically C™.)

¢) There exist real numbers u’, u/ and Af (i, = 1, . . . , k) satisfying:
W+ MNpi) =xV>u/ foralli,j=1,... kwithx' #x/ (3.3a)
AM>0 foralli=1,...,k (3.3b)
w'=ul  forallij=1,... kwithx'=x/. (3.3¢)
(Optionally, the A’ can be chosen so that Alp* % A/p/ for i # j.) (3.3d)

d) A is regular-rational.

REMARK 3. Conditions (c) are a st:rengthening“ of Afriat’s inequalities (1967), p. 73
(Theorem). To prove that (c) implies (b) we follow his method, but modify his proof to obtain a
stronger result. The modifications are necessary because our definition of rationality is stricter
than his, and because we insist on strict concavity of the rationalizing utility. See Section §
below for a more detailed comparison between his work and ours.

4. PROOF OF THEOREM 2

PROOF OF THEOREM 2. That (a) implies (c) is the assertion of Lemma 1 below. That (c)
implies (b) is the assertion of Lemma 2 below. A fortiori, (b) (even without the parenthetical
options} implies (d). That (d) implies (a) is known from Richter (1966).

Before reading Lemma 1 or its proof, the reader should note that Lemma 1 (in the
Appendix) and its proof constitute a much easier introduction. (The statement and proof of
Lemma 1 are complicated by the fact that we can have data with x‘ =x/ even when plepl,

“Afriat used a weak inequality in his analogue of (3.3a).
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whereas the simpler Lemma 17 applies only when the demand function 4 is invertible.)

Lemma 1. Under the hypotheses of Theorem 2, if 4 satisfies the Strong Axiom of
Revealed Preference, then there exist u‘,uj ,l" satisfying (3.3).

PROOF. We seek real numbers ui,uf.lf (i,j=1,...,k)that solve:

w —u = Np'lx' =250 forallij=1,...,kwithx'#x/ (4.12)
M>0 foralli=1,...,k (4.1b)
wi—ul =0 foralli,j=1,....,k with x' = x/, (4.1¢)

with Aipf # Ap/ for i # j. Defining o = p'(x’ — x/], we can rewrite this as:

w—ul—No¥ >0 foralli,j=1,...,k withx®=x/ (4.2a)
A>0 foralli=1,...,k (4.2b)
w—u/=0 foraIIi,j=1,...,kwithxi=xj, (4.2¢)

with Ap’ # A/p/ for i # j. Let K be the number of pairs (i,j) with x* # x/. Then we can rewrite
this as:

Ar>0 (4.3a)
Cr=0, (4.3b)
where r=(u!,...,u*Al, ..., A%), and where A and C are matrices with 2k columns, defined as

follows. (An example of the matrices A and C follows in (4.4). It may be helpful to refer to that
example while reading the definitions of A and C.}

Matrix A has K +k rows. The first K rows commespond to the left hand side of (4.23a), with 0
in all positions, except for a 1 in position £, and a -1 in position j, and - in position k+i; and the
last k& rows correspond to the left hand side of (4.2b), with 0 in all positions, except for a 1 in
position k+i.

Matrix C corresponds to the left hand side of (4.2¢c). (If C is not empty, there are obvious
redundancies we can eliminate without changing the solutions of (4.3). For example, if
u' —uf =0 is one of the lines of (4.2¢), then we can eliminate the row corresponding to u/ — u*.)
Let L be the number of rows in C.

As an example, the matrices A and C for just four observations, with x*, x2, and x” distinct,
and x> = x*, looks look like this:



1-100-a2 0 0 0]
10-10-® 0 0 o
100-1-0* 0 0 0
1100 0 @ 0 o
01-10 0 -« 0 o0
010-1 0 -« 0 o
-1010 0 0 - o
A= 0110 0 0 2 o (4.4a)
1001 0 0 0 -0
0-101 0 0 0 -o®
0000 1 0 0 O
0000 0 1 0 0
0000 0 0 1 0
Looooo 0 0 1
00 1-1 0 0 0
€C=loo0o-110 0 0 o0 (4.4)

To prove that a solution vector r exists for (4.3), suppose not; we obtain a contradiction as
follows. Since no such r exists, then, by a Theorem of the Alternative® there exists a K +k-
dimensional vector v and an L-dimensional vector z such that:®

VA+ZC=(0,...,0) (4.5a)

yz0. (4.5b)

If some row i of C has a corresponding z; < 0, then we can, without changing the solutions
of (4.3), replace that row by its negative, and replace z; in (4.5a) by -z;. So in (4.5) we can
without loss of generality assume that

v20 & z20. (d.5¢)

We will refer to the rows of A according to their o-terms: thus Row?(i,j) is the row
containing the term -a¥, If a Row?(i, J) has a positive v-multiplier in (4.5), then we call
RowA(i,j) a weighted row. We will refer to the i-th column of matrix A or C as Col“(i) or
Col® ().

Define y; terms by

5 Cf. Stoer and Witzgall (1970), p. 10, Theorem (1.1.9),
Byv=20wemeanv 20 & v=0.



Z'C=(‘Yl,...,'Yk,0,,.,,O), (4.6)

Since v =0, we can without loss of generality suppose vy > 0. Then (4.5) implies that we
cannot have -a¥ >0 forall i =1, ...,K (since v'Col4(k+1)=0). So without loss of generality
we can assume that -&' < 0, hence x'Sx2. We will now show that there exists a weighted row
i # 1 with -0% <0, hence

x28x*, @.7

The second component, -1, of the first row of A clearly guarantees (by (4.3)) that either i)
there is some weighted row of A with 1 as its second component, or ii) ¥, > 0. In case (i), say
Row™(2,i) is weighted and its second component is 1. Then (4.5) clearly implies that we cannot
have -a% > O for all j, since W ColA(k+2)=0. So there is some J with -o¥ <0, hence x25x/, so
(4.7 holds in case (i). Incase (ii), we have ¥» > Q. Then we will prove below

There exists some j=1,...,ksuchthaty; < 0 & x =x2. 4.8)

Tt follows then from (4.5) that there is some weighted Row“(j,i) of A with 1 in Col2(j). Again
by (4.5), it cannot be that all such rows Row(j,i) have -o#* > 0. So we can choose an { such that
-o/* <0, hence x/Sx'. Since x/ =x? by (4.8), this proves (4.7).

Continuing in this fashion by finite induction, we obtain x'Sx28x35 - -+ . Since there are
only finitely many columns in the matrix A, this forces a contradiction of the Strong Axiom,
which prevents any ‘‘cycling’’ back to previous x'. And this contradiction completes the proof of
Lemma 1, subject to verification of (4.8).

To prove (4.8), let J be the set of j with x/ =x?. Then if (4.8) were not true, we would have

’Col®(j) 20 forevery jeJ. 4.9)
By our hypothesis (ii),
2’Col€(2)=1, > 0. (4.10)

So (4.9) and (4.10) imply

0< _):}Yf (4.112)
Je
= %Z’CO[CU) (411b)
Je
L C
=3 > z{Col™(j)) (4.11¢)
jeJ i=1
L C
=32 2, (Col™(j Iy (4.11d)

i=1 jef



=0. (4.11e)

The justification for (4.11e) is that, for each i, ¥ (Col C(j))‘- =0, because in each row i of C there
jeJ

are only two columns jeJ with nonzero entries: one 1 and one -1. The contradiction (4.11)

proves (4.8).

Finally, because the inequalities (4.2a,b) are strict, the A’s can clearly be chosen so that
Mpl#Mplfori=j M

REMARK 4. Imstead of basing our proof of Lemma 1 on a Theorem of the Alternative, a
proof could be obtained through an algorithm very much in the spirit of Varian’s algorithm
(1982).

Lemma 2. Under the hypotheses of Theorem 2, if there exist u‘,u’,A! satisfying (3.3),
including the optional part, then % has a special rationalization U, defined on all of R”®, and
generically C*.

PROOF. Part A: Definition of U. Let &’ and A’ (i = 1,...,k) satisfy the inequalities (3.3). Since
there are only finitely many inequalities, clearly there exists an €; > 0 such that:

u +Npilxl —x'1—eg > u/  foralli,j=1,... k withx'#x/ (4.12a)
AM>0  foralli=1,...,k (4.12b)
w=ul foralli,j=1,... kwithx' =/, (4.12c)

Nowlet T > 0, and define g: R" —» R! by:7

gL, . X)) =T 4 o +XE 4T —T%, (4.13)
Then

gx)>0 & x#0 (4.14a)

g(x)=0 @ x=0 (4.14b)

{gff—(x)} <1 forallxandi=1,..,n (4.14¢c)

g is strictly convex (4.14d)

"Here the superscripts are exponents, not indices.
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g is differentiable. (4.14e)

Then by (4.12) we can pick € > 0 so small that

u' +Npix =2l —eg(xf =x) > u/ foralli,j=1,.  kwithx'#x/ (4.153)

AM>0 foralli=1,...,k (4.15b)
uw=wulforalli,j=1,...,kwithx’ =x/. (4.15¢)
Now, foreach i = 1,...,k, define ¢;: R" - R! by
0;() = u' + Alpilx —x'] - eg (x — x%). (4.16)
Since g is strictly convex, each ¢; is strictly concave. And cleatly
o (xy=u' (i=1,..k). (4.17)
Now define U: R* > R! by
U(x) = min{¢;(x): i = 1,..,k} (4.18)

for all xeX. As the minimum of finitely many strictly concave functions, U is strictly concave,

Part B: Monotonicity of U. We will choose € to guarantee strict monotonicity. Since (4.18)
defines U/ as the minimum of finitely many ¢; functions, it clearly suffices to show that each ¢;
has everywhere a strictly positive partial derivative. From (4.16), the partial derivatives are given
by

Dj¢;(x)=Api—eD;g(x—x) forallj=1,...,n (4.19a)
>Api—el  (by (4.14c)). (4.19b)

Since there are only finitely many indexes i =1, ... ,k, we can pick € so small that this is positive
foralli=1,...,kandallj=1,...,n

Part C: U rationalizes. As a first step in proving that U rationalizes #, we will show that
Ulyzu! forallj=1,...,k (4.20)

If (4.20) were not true, then we would have

wl > Uxh (4.21a)
=¢;(x’) forsomei=1,...k (by (4.18) (4.21b)
=ul +Mplx/ —x']—eg(x/ —x) (by (4.16)) (421¢0)

which contradicts inequality (4.15a) if x* # x/, and contradicts (4.15¢) if x* =x/. So (4.20) holds.
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(Although it is not needed in our proof, we note here that, in fact, equality bolds in (4.20).

For
Fiio . UE)=0:x) by (4.18)) (4.22a)
<;x") (by (4.18)) (4.220)
=u/ (by 417 (4.22¢)

The equality then follows from (4.20) and (4.22))

Next we show that U7 utility-rationalizes A, Tt is clearly sufficient to show that, for each
i=1,...k

VY iy emi ¥ 2xi = Ulx'y > Uy} (4.23)

Now forsuch v,

U)y=min{¢;(y): j = L,...k} (by (4.18)) (4.243)
=min{u/ + Mp/ly ~x/] ~eg(y —x/): j=1,.,k} (by(4.16))  (4.24b)
su'+Aply —x']~gg(y —x') (4.24c)
<u' sincey#x' (by (4.15b), the budget equality, and (4.14a)) (4.24d)

sUEY  (by (4.200) (4.24e)

So (4.23) holds, and U utility-rationalizes #A.

Part D: Genericity of infinite differentiability. Define

E={xcR": Uisnot C™arx}. (4.25)
Clearly

EcuU{fyiij=1,....k & i #j}, (4.26a)
where

Ey={xeR™ $i(x) = ¢,(x)}. (4.26b)
Define

fii=4i—9;, (4.27)
S0

E;; == f;,10). (4.28)
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Now it is easily checked that for all smatl enough € > 0 (cf. (4.15,16)) we have, for all xeR” and
P#j,

Dfii(x)#(0,...,0). (4.29)
So it follows from the Implicit Function Theorem?® that
ﬁj'l (0) is an (n—1)-dimensional C*™ submanifold of R"®, (4.30)

hence E;; is the complement of an open dense subset of R". Then E, as a subset of a finite union
of such sets, is the complement of a generic set. W

5. COMPARISON WITH OTHER RESULTS

To put our results in context, we first mention two other notions of rationality. If we
replace the “‘="" in (2.3) by “*c’’ or >’ we obtain two definitions of semirationality which we
call subsemirationality and suprasemirationality, respectively. They are clearly much weaker
concepts than the rationality notion of (2.3). Note, for example, that every constant function is a
subsemirationalization of any demand correspondence.

We can use these definitions to clarify two main lines of research. Although the
terminclogy may have been different, the revealed preference work of Samuelson (1938a,
1938b), Houthakker (1950), Uzawa (1971), and Richter (1966) has worked primarily with the
stricter notion of rationality. On the other hand, a line of work by Afriat (1967, 1973), Diewert
(1973), and Varian (1982) has used the weaker notion of subsemirationality.

Afriat (1967) stated several conditions on finite sets of demand data from which he proved
subsemirationality (‘“‘utility consistency’’ or ‘‘utility hypothesis’’ in his terminology). Afriat
showed that his consistency conditions were also equivalent to ‘‘mormal utility consistency,’’
which in our terminology would mean concave-utility-subsemirationality. Since only weak

concavity was required, any constant function would again be such a subsemirationalization.’

Afriat was interested in not just proving existence of a utility subsemirationalization, but
also in providing a-method for actually calculating such a function. The particular method he
used was further developed by Diewert, who obtained such a function by solving a linear
programming problem. Varian restated Afriat’s result and construction in terms of a Generalized
Axiom of Revealed Preference, which was weaker than the Strong Axiom; and he gave an
algorithm to find a solution for the u#‘, A’ that, when the Generalized Axiom holds, satisfies
Afriat’s inequalities .

8 Cf. Guillemin and Pollack (1974), p. 21, Preimage Theorem; Kahn (1980), p. 69, Proposition 3.1.

9And would be a counterexample to the claim (Afriat (1967}, pp. 69, 74 (Corollary)) that cyclical consistency is a
necessary consequence of utility consistency.
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Our conclusions are much sharper than these subsemirationality resuits. First, they provide
rationality in the full sense of (2.3). Second, they also guarantee strict concavity and strict
monotonicity of the utility-rationalization. (The earlier constructions were never strictly
concave.) Like those earlier results, they are algorithmically testable, and our proof also shows
how to actually construct a utility-rationalization.

Recently Chiappori and Rochet (1987) have swengthened the Strong Axiom hypothesis by
adding what amounts to invertibility of the observed demand function. Then they showed that
one can obtain, on any compact subset of RJ, a C*, monotone, subsemi-utility-rationalization.
Although their formal definition of rationalit} is only subsemi-rationality, their strict concavity
conclusion actually yields what we have called rationality.

After their results were published, we realized that the methods of our Theorem 2 could be
used to strengthen their conclusion. As we show in Theorems 1™ and 2, one can obtain a C™
utility-rationalization on all of R".

Given a demand function h: B — X, we say that # is (homogeneously) invertible if, for all
(p,m),(p’,m)eB: if (p,m) is not a positive scalar multiple of (p,m’) then h (p,m) # h (p’,m").

Theorem 1%, Let & be an exhaustive demand function defined on a finite subset B of C.

Then 4 has a C*™ special rationalization defined on all of R™ if and only if A satisfies the-StrOI;g
Axiom of Revealed Preference and is invertible.

Theorem 1% is an immediate corollary of

Theorem 2%. Let h be an exhaustive demand correspondence on a finite subset
B={(p'.mh,. .. ,(p*,m")} of C. Let x' e h(p’,m') for (i=1,...,k). Then the following
statements are equivalent:

a) k satisfies the Strong Axiom of Revealed Preference and is invertible.

b) There exists a C™, strictly concave, and strictly monotone function U rationalizing 4 on
B. (l.e, his special-rational.} And U can be defined on all of R".

c) There exist real numbers &', u/ and A’ (i,j =1, . . . , k) satisfying:
u'+Mpixl = x>0/ foralli,j=1,...,k withx' #x/ (5.1a)
A >0 foralli=1,...,k (5.1b)

d) £ is regular-rational and invertible.

The proof of Theorem 2% is given in the Appendix. It is basically a combination of a
greatly simplified version of our proof of Theorem 2, and Chiappori and Rochet’s convolution.
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6. APPLICATIONS

Our result has many applications. We mention several.

i) As already noted, Theorems 1 and 2 give necessary and sufficient conditions in
empirically testable forms, for the existence of special utility-rationalizations cn finite data sets.
And Theorem 2 shows one way to construct such utilities.

Similar statements apply to C™ special utility-rationalizations and Theorems 1™ and 2°,

ii) Given a finite number of budget-demand observations, can we pass through them a
continuous demand function that comes from a utility-rational consumer? Theorem 1 shows that
this is possible if and only if the observations satisfy the Strong Axiom. In particular, the Strong
Axiom is well known to be necessary for regular-rationality. And if the Strong Axiom holds,
then Theorem 1 shows that the demand can be utility-rationalized by a continuous (strictly
monotone, strictly concave) function, which by standard results must generate a continuous
demand function. (This is a continuous analogue of the ™ version for compact sets, given in the
Corollary of Chiappori and Rochet (1987).)

iii) Theorem 1 also allows us to sharpen Mas-Colell’s approximation result for continuous
demand functions. He showed that income Lipschitzian demands satisfying a certain boundary
condition can be rationalized by a unique continuous preference; and furthermore, this preference
can be approximated by monotone, concave, subsemirationalizations on finite subsets of demand
data (Mas-Colell (1978), remarks preceding Theorem 4). Now we can replace his application of
Afriat’s result by an application of our Theorem 1; this strengthens his result so that the
approximating preferences are full rationalizations, and they have utility functions that are strictly
concave and strictly monotone.

iv) If we combine Theorem 1 with Kim’s recent result (1987), that the Strong Axiom is
equivalent to semitransitive-rationality (and to pseudotransitive-rationality), then we immediately
obtain

Theerem 3. Let & be an exhaustive demand function defined on a finite subset B of C.
Then h is special-rational if and only if k& is semitransitive-rational (equivaiently,
pseudotransitive-rational).

For finite sets of data, then, empirical tests cannot distinguish between certain weak types of
nontransitive rationality and the much stronger special-rationality.
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7. APPENDIX

PROOF OF THEOREM 27, That (a) implies (c) is the assertion of Lemma 1™ below. That (c)
implies (b) is the assertion of Lemma 2™ below. By Remark 1, (b) implies (d). That (d) implies
{(a) is known from Richter (1966). W

Lemma 17. Under the hypotheses of Theorem 2™ (Section 5), if & satisfies the Strong
Axiom of Revealed Preference and is invertible, then there exist u*,u’/,A’ satisfying (5.1).

PROOF. Without loss of generality, we can suppose that the (p’,x’) are distinct. Since # is
invertible, we can further assume that the x’ are distinct. Then we seek real numbers «*,u/,A!
(j=1,...,k)that solve:

u'—u/ —Npilx' —x/1>0 forall distinct i,j=1,...,k (7.1a)
AM>0 foralli=1,...,k (7.1b)

Defining o = p*[x’ - x/], we can rewrite this as:

u'—ul— Ao >0 forall distincti,j=1,...,k (7.2a)
A>0  foralli=1,...,k (7.2b)
or:
Ar >0, (7.3)
where r = (u!,...,uf,Al, ..., AF), and where A is a &? by 2k matrix, defined as follows. (An

example of the matrix A follows in (7.4).)

The first k (k~1) rows of A correspond to the left hand side of (7.2a), with O in all positions,
except for a 1 in position £, a -1 in position j, and -a in position k+i; and the last £ rows
correspond to the left hand side of (7.2b), with 0 in all positions, except for a 1 in position k+i.

As an example, the matrix A for just four distinct observations looks look like this:



0 o0

1 0-10 - o 0 0
100-10* 0 o0 o
-11 00 0 .o 0 0
0110 0 «® 0o o
0 10-10 -o™ 0 o
-10 10 ¢ 0 -3 o

A= g'ol PO 0 0 0 (7.4)

1-1 0 0 o™ o
-1001 0 0 o g
0-101 0 0 o .o
00-11 ¢ 0 0 -o¥
0000 1 o0 o o
0000 0 1 o0 o
0000 0 o 1 0
0000 0 o o 1

To prove that a solution vector r exists for (7.3), suppose not; we obtain a contradiction as
follows. Since no such r exists, then, by a Theorem of the Alternative'® there exists a k2-
dimensional vector v such that!!

vA=(0,...,0) (7.5a)
v 20, (7.5b)

We will refer to the rows of A according to their a-terms: thus Row“(i,[) is the row
containing the term -&. If a Row?(i,j) has a positive v-multiplier in (7.5), then we call
Row?(i, /) a weighted row. We will refer to the i-th column of matrix A as Col*(i).

Since v 20, we can without loss of generality suppose vy > 0. Then (7.5) implies that we
cannot have -o¥ > 0 forall i =1, ...,k (since v'Col%(k+1)=0). So without loss of generality
we can assume that -a'? <0, hence x!Sx?. We will now show that there exists a weighted row
i # 1 with -0 <0, hence

x28xt. (7.6)

The second component, -1, of the first row of A clearly guarantees (by (7.5)) that there is
some weighted row of A with 1 as its second component. Say Row?(2,i) is weighted and its
second component is 1. Then (7.5) clearly implies that we cannot have -a® > 0 for all j, since

0 ¢, Stoer and Witzgall (1970), p.10, Theorem (1.1.9); Gale (1960), p. 48, Theorem 2.9.
"Byvz0wemeanvz20 & v=0,
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v'Col(k+2)=0. So there is some j with -0/ 5 0, hence x25x/, so (7.6) holds.

Continuing in this fashion by finite induction, we obtain x!Sx2Sx3S - - - . Since there are
only finitely many columns in the matrix A, this forces a contradiction of the Strong Axiom,
which prevents any *‘cycling’’ back to previous x*. And this contradiction completes the proof of
Lemma 1. B

Lemma 2~. Under the hypotheses of Theorem 2% (Section 5), if there exist u’,u/ X
satisfying (5.1), then A has a C ™-special-rationalization U7 defined on all of R".

PROCF. First we follow Parts A and B of the proof of Lemma 2 (Section 4), defining ul, A, 2
and £ just as in that earlier proof, and obtaining the continuous, monotone, strictly concave
function U, defined on R", as before.

Next, we apply the methods of Chiappori and Rochet (1987), pp. 690-691, to our U as
follows. Because A is invertible and and the ¢; are continuous, each x; has a neighborhood
N (x;,d;) of radius &; > 0 such that:

VXN (x,8) U (%) = §:i(x). (7.7
Letting d=min{d;: i=1,...,k}, wedefine V:R" = R by:

V(x)s [Ux-E)ps(E)dE, (7.8)
2

where pg is the nonnegative, symmetric, C™ function, defined in Chiappori and Rochet (1987),
that vanishes outside the ball N (0,8). In particular, define

1 1
e - — dx, if <1,
exp[ el -1] Rj-e"p[ el = 1] IR
plx) =+ (7.9a)

0, otherwise,

and

1 X
Ps = —S’P[ ‘g] : : (7.9b)

Then, as a convolution, V is C*, and it is easily verified that V is strictly concave and monotone
on R", since U had those properties.

Finally, we show that V rationalizes 4. First note that, foreachi=1,...,%

DV (x;) =Ap'. (7.10)

For
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DV(x)= | Doixi—Eps(&)at (7.11a)
N(0,5)
= [ (Vp'-eDg(-£)ps(E)dE (7.11b)
NO.
=Mp' | ps®dE~e [ Dg(EpsE)d (7.11¢)
N0, N(0,5)
=p'-0. (7.11d)

Now suppose xeX &p'x <m' & x#x'. We must show that V(x) < V(x%). Since V is
strictly concave and differentiable, we have:

V(x) < V{x') + DV (x')(x — x%) (7.12a)
=V )+ Mpix —x') by (7.10) (7.12b)
=V (x)+ M(pix -m") (7.12¢)
<V(x') by hypothesis. (7.12d)

So Vrationalizes . W
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