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ABSTRACT

In the context of a single linear structural equation under classical
assumptions, we derive the joint conditional density of the LIML endogenous
coefficient estimator, and the usual characteristic root arising from the
LIML procedure, given the OLS estimates of the reduced form coefficients for
the excluded exogenous variables. This provides the joint distributions for
various combinations of the statistics commonly used for inference in this
model, and is hence an important stepping stone in the analysis of these
procedures.

The main result also leads to & new derivation of the density of the
1LIML estimator itself, and provides a result which is directly comparable to
earlier results for IV estimators, including QLS and TSLS. We also consider
briefly the density of the LIML structural variance estimator, and the joint

density of the LIML and TSLS estimators for the endogencus coefficients.



1. JINTRODUCTION

The simple structural equation model--comprising a single linear struc-
tural equation, together with the reduced form equations for the endogenous
variables involved--belongs to & class of models in which the dimension of
the set of minimal sufficient statistics exceeds that of the parameter
space. Classically, the setting is thus precisely that in which there is
greatest doubt over how best to proceed, and this ambiguity can only be
resolved by studying the sampling properties of the various suggested pro-
cedures.

Progress on the distribution theory for this medel has been very slow,
because the problems are so difficult, but has accelerated rapidly in the
last few years (see [5}, [6], [10], {11], [13]), [14]). It is, nevertheless,
fair to say that even the most basic inference problems for this simplest
structural model remain unresolved. This is no doubt due in part to the
complexity of the results that have emerged so far--they are certainly dif-
ficult to interpret, and are unsuitable, at least at present, for numerical
work (see [11] for a discussion of this). But it also, I think, derives
from the fact that attention so far has been focused on the marginal distri-
butions of the various statistics, rather than on joint distributions. For
hypothesis testing problems, in particular, the joint distributlions are
essential, and they can also be useful in estimator comparisons.

In this paper we obtain joint distributional results for a number of
statistics that commonly form the basis for inference in this model. Spe-
cifically, we consider structural coefficient estimators and structural

variance estimators based on limited information maximum likelihood and two-



stage least squares. These results should thus provide a basis for analyz-
ing the relative merits of methods based on these two estimation procedures.
The key result will be found in Section 3, and Section 4 discusses some more
immediate aspects of this result, but the present paper does not attempt a
complete study of the uses to which it may be put.

Instead, we use the results in Section 3 to obtain some distribution
results for limited information maximum likelihood statisties. Phillips, in
[12] and [14], has obtained expressions for the density of the vector of co-
efficients of the endogenous variables in an operator form, and Rhodes [15]
has studied the density of the relevant characteristic root. In Section 5
we obtaln considerably simpler forms of both of these results. In particu-
lar, our result for the coefficient estimator is directly comparable with
the corresponding result for IV estimators (see [5] and [10]). A companion
paper will discuss the interpretation of these results for the coefficient
estimators and show that, properly interpreted, these highly complex form-
ulae can in fact shed light on the comparative properties of the various
estimators.

In Section 6 we outline some of the results that are accessible from
the earlier results, and give some special cases. We begin by describing
the model, the statistics, and the canonical forms in terms of which the

main results will be stated.



2. ODEL AND CANONIC RMS oM STICS

We consider the structural equation

y=Y¥f+Z;y+u L

and associated reduced form

7 0
(y.Y) = (2, Z,) + (v,V) (2)
I
where y is Tx1, Y is Txn, Z is T xK Z is T x K, ,

1 1’ 2 2

etc., and we assume that Z = (Zl. 22) (T XK, K= Kl + K2) is fixed and

of full column rank K . We assume that the rows of (v,V) in (2) are in-

dependent normal vectors with zero means and common covariance matrix

and that K2 > n . As is well-known, the compatability of (1) and (2) en-

tails the relations

o= nlp* ++4, and u=v - Vg* . From the last of these we find
var(u) = o = w.. - 2ol gk + BE'0, % = W2 (1 + B'B) (5
t 11 21 22 !

where w2 - W and

o1
11~ “21922%0



p = 032 -ty ) /0 (6)

and u, is independent of the t-th row of Y in (1) if and only if §
in (6) is =zero.
For any matrix A of full column rank, let FA -I- A(A'A)-IL' , and

define the K2 X (n+l) matrix

5 -1/2,,5 el -1/2
(x,X) = (zzpzlzz) zzpzl[(y Y0y ) /0, ¥, 1 (7)

Note that (x,X) 1s a simple transformation of the least squares estimztor
for (92, HZ) in (2),

A

. P

The rows of (x,X) are independent normal wvectors with covariance matrix

- o g 3120 -1/2
Ty &nd ECLX) = M(p, T) . where M = (2B, 2))7n,0,0" .

The Two-Stage lLeast Squares (TSLS) estimator for S* in (1) is giwen

by

l-_ P .-1'“ ._-
b, = (¥ (le P,)Y) Y (le Py .

Hence, from (7), 1f we define

r, - & x (8)

the canonical form for b2 , we have



1/2 -1
Ty = My (by = Bppugy)/fe - (%)
Thus, T, is a simple transformation of b2 and is related to b2 in

exactly the manner in which g 15 related to g* in (6). Likewise, one
estimator for 02 in (5) based on TSLS uses the quadratic form
. S = 2 . 2.2
qg=- (y - sz) (PZ - Pz)(y - sz) - w (x - sz) (x - Xr2) = w s , (10}
1
wvhere 32 - (X - sz)'(x - sz) - x'fxx . Note that q yields an inconsis-
tent estimator (cf. Phillips [11], pp. 482-484).

Next define

o | -1/2.'= R | -1/2

S = ((y = Y0, 0, ) /0, ¥00" ") By ((y = ¥yow,0) /0, ¥0,,'%) , (1)
so that § {5 a simple transform of the matrix S+* = (y,Y)'?z(y,Y) from
which the usual estimater for O in (2) is constructed.1 The matrix S
has the central Wishart distribution W (m, 1 ), where m=T-K , and

n+l n+l
is independent of the matrix (x,X) in (7). The Limited Information Maxi-
mum Likelihood (LIML) estimator for p* in (1) may be defined in terms of a
characteristic vector ﬁz that satisfies
*- A
[S fl(a

A . - I [} -11
lThe statistics §* , ('2’ Hz) , and («1. Hl) - (xlxl) Xl(y,Y) .

are (jointly) minimal sufficient for 0, 0O, , O, , ¥y and g . As men-
tioned in the Introduction, the dimension of this set exceeds that of the
parameter space by (K2 - n) , the degree of overidentification of the

equation.



wvhere fl is the largest root of the corresponding determinental equation.

Partitioning ﬂz - (ﬁzl. ﬂzé)' , with ﬁKZ nx1l, wedefine

b, = -

1 A2/ﬁzl . Thus, if BA is a characteristic vector satisfying

(s - fl(x.x)'(x,x)]ﬁA -0, (12)

where f1 is the largest root of IS - f(x,X)'(x,X)I = 0 , &and we define

r - —ﬁAz/ﬂAl as the canonical form for the LIML estimator, where BA is
partitioned as ﬂA - (ﬂhl' ﬁAZ)' , with ﬁA2 nx1l, then
1/2 -1
) = B (by - Byupy)/e a3

exactly as before for the TSLS estimator.
It is straightfofward to check that the LIML estimator for 02 in (5
is 2 multiple of
'p 2 N 2 2
q = (v — Ybl) Pz (y - Ybl) -w (1 + fl)(x - Xrl) (x - Xrl) = w'sy
1

say, where

si - (1+f1)(x-Xr (x—Xrl) - (1+f1)[s2 + (rl-rz)'X'X(rl - r2)] . {(14)

1)’

Notice that, from (14), si z 52 , Wwhere 52 is given in (10).

3. CONDITIONAL DISTRIBUTIONS

In this section we derive the conditional jeint density of Ty and f1
given (x,X) or, what is the same thing, given W = (x,X)'(x,X) , and the
corresponding marginal densities pdf(r1|W) and pdf(f1|U) . This result

will provide a good deal of insight into the distribution theory for the



model (1)-(2), and is the key to a mmber of otherwise very difficult dis-
tribution problems involving inference based on Limited Information Maximum
Likelihood.

Let

5 . 0
T-‘

(X'X)l/zr (X'X)1/2

2 )
so that T'T = W = (x,X)'(x,X) (see (8) and (10) above). From (12), T,BA
is a characteristic vector corresponding to the largest root, f1 , of the
matrix R = TL"-IST-1 . From Muirhead [9, Theorem 3.2.5], given W ,

1
R ~ Wn+1(m, (TT') 7) , so that

pdf(R|W) = €, etr{— -:zl—TT'R |r| (F=2)/2 |y |n/2 (15)
where C1 - [2m(“+1)/2rn+1(m/2)]'1 , etr{A} denotes expltr(A)} , and
r(r-1)/4 © 1
' (t) = = OT(t - 5(i-1))
I 2
i-1
denotes the multivariate Gamma function.
We shall first obtain the joint conditional distribution of f1 , the
largest characteristic root of R, and h , say, the corresponding char-
acteristic vector, with h normalized so that h'h =1 . With h parti-

tioned as h' = (hl' hé) , h, mx1, we then define T = -h;lh2 and

2
transform h - ¥ . Since TﬁA = h and - -ﬁ;}BAZ we have

T = s—l(X'x)l/z(r1 -r or

2) o



r, =, + s(XRD (16)

1 2
That is, for fixed W (i.e., fixed s , LI and X'X ) ry is a simple
transformation of ¥ and we may then transform T -~ r, . giving the condi-

tional joint density pdf(rl, f1|W)
Thus, we first make & transformation from R to its characteristic

roots and vectors: R = (F,H) , where F = diag{fl, fz, e fn+1} .

f1 > £2 > ... > fn+1 , and H 1is an orthogonal matrix such that
R = HFH' , so that the columns of H are orthonormal characteristic vec-
tors of R . The transformation R = (F,H) 1is made one-to-one by imposing

the requirement that the elements in the first row, say, of H are posi-

tive, and the volume element transforms as

n+l
(R) = I (f, ~ £,) I df, (H'dH) ,
g ¥ Vit

where we follow the notational conventions in Muirhead [2] (see, in partic-
ular, [9 pp. 103-105]). The expression (H'dH) here denote the unnormal-
ized invariant measure on the orthogonal group O(n+l)

Now partitien H = (h, Hl) , Where Hl is an element of the Stiefel

manifold Vn+ orthogonal to h . Following Constantine and Muirhead (2,

1,n
Lemma 1 ] (see alsc the argument in James [8, pp. 59-60]), we may generate
the Stiefel manifold orthogonal to h by setting Hl = GK , where G is a
fixed matrix such that G'G = In and GG' = I - hh* , and K ranges over

the orthogonal group O(n) . The invariant differential form (H'dH)

decomposes as

(H'dH) = (h'dh)({(K'dK) ,



where (h'dh) denotes the (unnormalized) invariant measure on the surface
of the unit sphere 5 41 ¢ and (K'dK) that on the orthogonal group
O(n)

Transforming R -+ (F, h, Hl) in (15), setting Hl = GK , and inte-
grating over O0O(n) wusing James [8, Equation (23)) we obtain

paf(F, h|W) = ¢! exp{— 26 heTrenf|F| B2/ 2y w2

F(“)[- loirree, r2] m (f a7)

- £)
070 2 g 17

where we have partitioned F into

£ 0
F = 1 _ .
0 f2
and 0Fén)(-) denotes the two-matrix-argument generalized hypergeometric
n2/2
series (see Muirhead [9, p. 259]). The constant Ci =[x Cl/rn(n/Z)]

because, in integrating over O(n) the result has been divided by 2% to
take account of the initial sign restriction on the elements of H .
Although we have retained the abbreviation pdf(+) on the left in (17) it

should be noted that (17) denotes & probability measure on F X S

n+l
where F denotes the set {fl’ ve e fn+1: f1 > f2 > ... > fn+1 > 0} and
S denotes the surface of the unit sphere in n+l dimensions, evaluated

n+l

with respect to ordinary Lebesgue measure on F and the Invariant measure

on Sn+1 .

Next we integrate out Fz . Define ?2 by F2 - f1§2 (Jacobian
n - -
fl ), so that 1 > f2 > ... > fn+1 > 0 , and note that



10

1
m(g; - £) = f?(“+1)/2 moa-F) 0o -E) .
i<j i-2 2=i<j

Using Phillips [1l4, Equation (27)] we obtain, on integrating over the set

1> f2 > ... fn+1 >0,

pdf(fl' hIW) - C2 exp{- %flhur-rrh}f?(n+l)/2-1lem/2

JFy ((@-1)/2, (min+2)/2; - %flc'TT'G)

1 1)/2-1 2
- 02 etr{- fflw}fT(n+ Y IWIm/

1Fl((n+3)/2, {m+n+2) /2, %fIG’TT'G) (18)

m(n+l) /2
vhere 02 - [Pn((n+3)/2)rn((m—1)/2)/2 Fn((m+n+2)/2)rn+1(m/2)] , and
the second line of (18) follows from the first on using the Kummer relation
for the confluent hypergeometric function (James [8, Equation (51)]).

The marginal conditional density of fl glven W 1is easily obtained

from (18) by integrating out h (remembering that h1 > 0 by construc-

tion). This gives

1 1)/2-1,,m/2
paf (£, W) = c etr{— Eflw}ff(“+ 22l

2
- ((m43)/2), (0/2), .
o c. |ie.u] .
2o £!((n+1)/2)A((m+n+2)/2)AbA[2 1 ] (19)
n+l
Here A= (B, 2y, ..., £.,) . L 22,2 ...28 20, S50lp -2,

denotes an ordered partition of £ into n+l or less parts, but the nota-

tion E; indicates that the sum is to be taken over only those partitions

A with ¥
n+

;" 0, i.e., of n or less parts. Also,



11
¢y = (=™ % srmy/2))

Now, partition h' = (hl’ hé) , with h, nx1l , and define

2
r - -hIlh2 (n x 1) . The transformation of the invariant measure (h'dh)
on Sn+1 is given in the following:
Lemma: Let (h'dh} denote the invariant measure on the Sn+l th'h =1,
and define r = —h11h2 , with h' = (hl, hé) and h2 nx1l . Then
n
(hrdny = 21 + )™/ 4 ar (20)
i=1
Proof: Let
r' _
7 - (1 + ey V2, (21)
In

h = ¢ 1+ 2, -z, (22)

because h'h = 1 implies h1 - (1 + ;,;)-1/2 (up to sign). Note that

¥'h = 0 . Differentiating (22),

-7
ah - e(1+ DY o dr ,
rr’ - (1 + r'r)In

so that
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Viah = (1 + D" V21 + 71725 |

By definition (cf. James [7]), (h’'dh) is the exterior product of the n
terms on the left, and this yields the right side of (20) on allowing for
€=+ and ¢ = -1 .

Using the Lemma we may transform h - r in (18), but note that the ex-
pression on the right in (20) must in our case be halved because hl >0 by
construction. Also, note that the argument matrix G'TT'G may be replaced
by T'GG'T = T'(1 — hh')T , because these matrices have the same character-

istic roots, and that
I-nhh' = (r, I.)}'(I + §§')'1(E 1)
] n * n -
Hence we have

pf(r, £ |W) - ¢C, etr{— %flw}f?(“+1)/2-1|w|m/2(1 + ()72

Fl((n+3)/2, (m+n+2)/2; (r,I)TT'(¥,I)'(1 + Tr’ ) . (23)

! 2 1

Finally we transform from r to r
n/2 1/2

1 using (16), the Jacobian being

(s |%'X] Combining the Jacobian and the term (1 + ;,;)-(n+1)/2

in (23) we have

-n/2

S T et e [ A P R B (e s
- W% - Xr)'(x - Xrl)]-(n+1)/2
- Iull/z 1+ rlrl)V'Wv]_(n+1)/2 (24)
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vhere we have put

1
v - 1+ zirl)‘lfz €5 .4 - (25)
-r
1
Also, note that, using (16),
5 O
- - ' 1/2
(r, I)T = (r,I) - (X'X) (r,, 1) ,
n ol xrxl/? 1' 'n

2 *
and

(X’X)1/2(I1 -1, - rz)'(x'X)l/2

2
5

I4+7rr' =1+

Hence, the argument of the confluent hypergecmetric function in (23) may be

replaced by

2

~1

(r, = 1,)(x, - 1,)'

1 2’1 2 ] (1 + rlri)1/2
8

(1 + rlri)l/z[(X'X)—l +

-1
- (I + rlri)lfz[(rl, I)U_l(rl. I)'] (I + :;:l::i)lf2

-1
- [v'w'lv] (26)
where
r'
v - 11 (1 + rlri)“m . (27)
n

so that (v,V) € O(n+l) (see (25) sbove). Since
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() W)L = W e,

we may also write

1.7t -1
[V’W V] - VWV = VW (v'Wv) "v'Wv

{(x - Xrl)(x - Xr
(x - Xrl)'(x - Xrl

)l
1 2 1/2
)]X(I + rlrl) . (28)

1/2 _
= {I + I, 1) [I

Using (24) and (26), (23) becomes, on transforming from T - r1 .

paf(r,, £ = ¢, etr{— 1 w}fm(“+1)/2 L /2y 4 gyp = (D72

(V'Wv)-(n+1)/21

Fy((n+3)/2, (m4n+2)/2; awww™y Lo
The marginal conditional density of ry itself may be obtained from (29) by

a simple integration over f1 >0 .

4. DISCUSSION OF THE CONDITIONAL RESULT

It is instructive at this point to temporarily recast the distributien
theory in terms of the "raw" LIML estimator b1 using equation (13). At
the same time we shall replace the conditioning matrix W by the "raw"

moment matrix
- (12, 112)'ZéP2 22(”2' nz) . (30)

vhere W is related to W by
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5
1
E

1 -1/2 -1 -1/2
022 - a |, 022

{(see (7) above), with a = 022w21 .

Transforming r; = b, in (29), the Jacobian is aF“|022|1/2 and we
find
paf(b., £ | = C, etr{- 1£ o li} o] /2R (M1)/2-1 5 (m+1)/2

1 1 2 271 1

' v (1) /2
[(1 + Bb))viiv,]
R PR o -1
x 1F1[(n+3)/2, (mn+2)/2; 3£,V:0 1vlcvlw 1vl) ] (31)

‘- s y1/2 T
wvhere vi (1 + blbl) {1, bl) and

b'
1 =172
A (1 + byb1) .

I
n

The matrix W here has the non-central Wishart distribution with K2 de-

grees of freedom, covariance matrix 0 , and matrix of non-centrality

2

Several aspects of the result in equation (31) deserve comment. First,

parameters n’lcﬁ*, )Mz, 2,0, (p*, Dol .
2'2,°2°2

it is apparent from (31) that, given W , the LIML quantities (bl’ fl)

contain no direct information about the structural coefficient vector g+ ;
this information is transmitted entirely through ¥ . However, since infor-
mation about I is clearly pertinent to the estimation of pg* , and (31)

does depend on Q , the LIML quantities (b,, f,) can be expected to

1' 71



16

contribute relevant information even after W 1is known.2 Indeed, (31)

implies that (bl' fl)

B* , unlike ¥V itself (and hence q and b2 which are functions of ¥ ).

contain information on 02 that is independent of

So, at this heuristic level, (31) suggests that b1 (in particular) may

well contain valusble information not available from knowledge of W alome.
The fact that the conditional density (31) does not depend on S* also

says something about hypothesis tests concerning pg* . For, in the joint

density

pdf(by, £,, W) = paf(b,, £, |Wpdf (@) , (32)

1'

only the second factor depends on p* ., Therefore, for fixed values of the

nuisance parameters i and H2 , the likelihcod ratio for hypotheses con-

cerning A* will not involve the LIML quantities (b fl) . Hence, by the

1!
Neyman-Pearson Lemma, the best tests about p*%* based on functions of b1 ,

£ and W never involve the LIML quantities (b., £ Since the TSLS

1 ! 1| 1)
estimator b2 , g in (10) (the quadratic form used to construct the incon-

sistent TSLS-based variance estimator), and sz - H222P2122H2 are one-to-

one functions of ¥ , this says that, among tests based on

(b, £,, b,, q, ﬁzz) , the best tests depend only upon the TSLS gquantities

= 3
(by, a, F,,)

This, at first, seems & striking result: it seems to say that the LIML

2The situation parallels that in which a pair of statistics is jointly
sufficient for a pair of parameters, but neither is individually sufficient.

3 ~
Note that W22 is the matrix that is used to construct a consistent

estimate of the asymptotic covariance matrix of both b, and b2 .

1
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quantities (bl' fl) can be ignored in testing p* . However, the limita-
tion on the class of tests considered 1s critical: all functions of the
reduced form error moment matrix S* = (y,Y)'?z(y,Y) other than (bl. fl)
are excluded., Thus, although the result does cover some t-type tests based
on the asymptotic distribution of bl and b2 , tests such as the (limited
information) likelihood ratic tests, and those that use the consistent
TSLS-based variance estimator (a multiple of (1, —bz)S*(l, -bz)' ) are ex-
cluded.

Thus, while our result does have something to say about testing, the

support 1t offers TSLS-based procedures can only be regarded as very tenta-

tive at best,

5. UNCONDITIONAL DENSITIES

In this section we derive the unconditional densities pdf(fl) and
pdf(rl) from the conditional results (19) and (29). A version of the
former result is essentially given in Rhodes [15], but Rhodes's [15] result
invelves some unknown constants; the result given here does not.

The density of the matrix W is given by

(K,~-n-2)/2
pAL(¥) - C, etr{— %w}lwl 2
" o
(n+1)K, /2
vhere €, = [etr{- FHOH(T + ,eﬁ')}/rml(xz/z)z ]

Multiplying (19) by (33) and integrating over W > 0 gives the uncondi-

tional result
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—(n+1) (m+K,) /2
POE(E,) = CafT(n+1)/2-1(1 s 1) 2

- (n/2), ((m+3)/2),,(n/2)_ 1), ¢ D)
130 oy TETCED72), (@) /2), (Ry/2) (/35 1+ 1)

e '
c(a,A)Ca[EM M(I + BB )] (34)

where

((m + K,)/2) ((n+1)/2)
(n/2)

OUSRNC MY N RRRTEL

a , A are now partitions with =n or less parts, and

(n+1)(m+K2)/2
34 - Irn+1((m + Kz)/2)2 C263]
Note that, in the leading case characterized by M = 0 (i.e.,
H2 = 0), (34) reduces to
={n+l) (m+K,.) /2
_ (n+l)/2-1 2
paf (£,) CAfT 1+ £))
5
2F1 (n+3)/2, (m + RZ)/Z, (mn+2) /2, 1 + fl In . (36)

Turning now to the joint density, equation (29), we have,
pdf(r,, £,) = [ pdf(r,, £ |W)pdf(W)(aW) ,
1"l 1" "1
w>0
with pdf(W) given by (33) above. In this integral we first transform to

W= (v,V)'W(v,V) , with v and V given in equations (25) and (27)

respectively. Partitioning W as
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w v, 1
T - _11 _21 '
Y1 Yy M
- —]e - - -
we then transform to B = 922 - w11w21w21 v Z =V, and a = Y11 (the
Jacobian is unity), giving
pdf(rl, fl' a, z, B) = C (1 +r rl) (n+1)/2 1m(n+1)/2-1
(K —2n-2)/2
etr{- =(1+f )B}exp{— (1+f Y(a + & z z)}
(m+K2-n-1)/2
|B] [(n+3)/2, (m+n+2) /2, 5 1 ]
— a’ z' —
of1 2/2 M(ﬁ,l)(V.V) _ (v, V)'(B,1)'M"| (37)
z, B+azz'
where M is any n x n matrix such that M'M = %H'H . We need to inte-

grate (37) over a >0, B>0, and z € R"
To facilitate the integration we write the last term in (37) as an in-

verse Laplace transform (cf. Herz [4], Constantine [1]):

“K,/2
aT (Ky/2) [ etr(2)|Z| etr{Eszﬂ}

Re(Z)>0
ex EI‘-(a + 2z’ + a—lz'Q z)}(dZ) (38)
Pz 921 22
where e - [zn(n—l)/2/(2 n(n+1)/2] and we have put

- (v,9)' (8, 1)K 2B, D (v, V) .



20
Using (38) in (37) it is straightforward to integrate over B > 0 ,

vhich yields

n(mk,) /2 ~(mK,) /2
2 T_((m+ Ky))/2)[(1 + £)1 - Q,,

X 2Fl[(m + Kz)/2, (n+3)/2, (mn+2)/2; fl[(l + fl)I - Q22]-1] , (39)

and to integrate out 2z by completing the square, which yields

n/2&n/2

(2%) 1(1 + £)1 - Q22| 1/2exp{—aq21[<1 + £)1 - Q,,1" q21} . (40)

Now, combining the exponential term in (40) with those involving a in (37)

and (38) we have, in the exponent,

1 , -1
- Ea{(l *E) mayy T ey (A £ - Q] q21}

1
-- §ﬂ{|(1 +£01 ., ~Ql/lQ + £)1 - szl} :
Hence, integrating over a > 0 yields the terms

(m+K2—n)/2 —(m+K2—n)/2 (m+K2—n)/2

2 P((m+K,~n)/2) [ (1+£)T_,; - Q] | (1+£)1 = Q|

Collecting these results we have an expression for pdf(rl, fl) as an

inverse Laplace transform:
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-(m+K2)(n+1)/2

_ (n+1)/2-1 o —(n+l) /2
paf(r,, £,) csz (1 + £) (1 + rjr))

1

—K2/2 -(m+K2—n)/2

a T _(K,/2) J  etr(2)|z] |1n - ﬁ(1+ﬁﬁ')ﬁ'z“1/(1+fl)|

Re(Z)>0

_ ~(n+1)/2
11, = Qpp/(A+£)]

21~*1[(m+1<2)/2. (n+3)/2, (m+n42)/2; £, 1(1+E)(T - Q22/c1+f1>>1"1](dz> (1)

where

.(n+1)(m+K2)/2

—-(n+l) /2
C5 - [2 Fn+1((m+K2)/2)C203] -

I‘((n+1)/2)C4 (42)
(see equations (35) and (36) above).

In the leading case characterized by M « 0 the joint density may be
obtained at once from (41). For, in that case, Q22 =0 and M =0, so

that the integral in (41) reduces to simply

£
R S
,Fp|(m + Ky)/2, (n+3)/2, (w+n+2)/2; 773 £ I
and we have
pdf(rl, fl) - pdf(rl)pdf(fl) , (43)

with pdf(fl) given by equation (36) above, and (from (42)),

—(n+1) /2

pdf(rl) = D{(n+l)/2)[n{1 + rirl)] (44)

{cf. Phillips [12]. That is, in this leading case r., and f1 are inde-

1

pendent, f1 has the density (36), and r., has the Cauchy distribution.

1
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In the general case we first use Davis [3, Equations (6.19) and (2.2)]
to reduce the last two terms in the integral in (41) te the form
© ((m + K2)/2)A((n+3)/2)A P

j.?-o Q?A T2 ((mne2)72), ((a+1)/2), 11

A+ )79 aia, e (q,,) @)

wvhere

2
a,A
afa,1) = pei-x((n+l)/2)P(sP ) C,(L)/C (1) . (46)

Recall that, from the definition of Q22 below equation (38), Ca(QZZ) may

be written as Ca(ﬁ(ﬁ,I)VV'(ﬁ,I)'ﬁ'Zhl) , &and so, on expanding the term
_ _ -(m+K2-n)/2
In - M(I+88')M'2 ) in (41) and completing the inverse laplace

transform, we have

-(m+K2)(n+1)/2

- (n+l)/2-1 . —-{n+1)/2
pdf(r), £,) csz (1+£)) 1+ rir

1)

- ((m +K,)/2),((n+3)/2),((m + K, = n)/2)
b) X z
1.k, 20 a,x,) Pearn j!k!!!((m+n+2)/2)x((n+1)/2)A(K2/2)¢

alo,A)

ff(1+f1>"3+k+*)e;'”c;'”[ﬁ(ﬁ.I)vv'(ﬂ,I)'H'. ﬁ(1+ﬁﬂ')ﬁ'] 7)

Note that, in general, r, and fl are not independent. Equation

{34), the marginal density of f1 , may be obtained from (47) by integrat-
ing out T, but we omit the somewhat tedious detalls of this calculation.
Integrating over fl >0 1in (47) we obtain the marginal density of r

1
in the form
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{((m + K2 - n)/2)
gla,x)
j!k!(K2/2)¢

rl)—(n+1)/2 T

pdf(rl) - c6(1 + 1]
a,x.J

o;'”c;"[ﬁ(I + BTN + rlri)-l(I + rlﬁ')ﬁ', M1 + pﬁ')ﬁ-] (48)
where

Fpm)/2) 2 (4R /2) ((n43)/2) , (m(mH1) /2) yaler, X)

8(2:%) = (eky) (mt1)/2); 4=0 2 11 ((@n+2)/2), ((m+1)/2), (E+ (meKy) (w13 /23,
49)

(£ = j+k)

and C6 - [T(m(n+1)/2)F(K2(n+1)/2)C5/T((m + Kz)(n+1)/2)]

Equation (48) is an explicit version of the result given in Phillips
[l4]. It is directly comparable with the results for IV estimators given in

[5] and [10] (in [10] H {is @, , while in (5] H is (TA)Y? ; cthe

22
cther notation is the same).

When n = 1 equations (47) and (48) simplify greatly, because in that
case the invariant polynemials C;"(',-) are simply powers of the two
scalar arguments. Moreover, from (46) we have &(j,f) = (1)j+1 , and from
(49) (wvhen ne=1)

(K, (L)
27,773

B0 - G JF3(2, @, 341, (m4K,)/2, 1, $+keme,, (m#3)/2; 1) . (50)

2

Hence, from (47), when n =1
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-1
1
pdf(rl, fl) - 05f1 (1 + fl) (1 + rl)

((@4K,)/2) 5 (2) ) ((@4Ky=1)/2), (D)

T
5.k, 2=0 Jk121((m+3)/2) p(1)  (Ry/2) 4 4y

R} k
[W2/avep]3**[eyra + o] [a s npta« ] as e o

where we have put pz - MM = %H'H (a scalar), and, when n =1,
C5 - [T((m+K2)/2)F((m+K2-1)/2)/T(l/Z)F(K2/2)F((Kz—l)/Z)F(m/Z)F((m+3)/2)]-

Likewise, when n =1 , (48) reduces to

_i (m""K "1)/2) (l)j 14k j+k k

2 2
paf(ry) = C (1 + 1}) E-o T (Ry2)  (wiK, ) (") 1+ 8)
1 j4k 2 gk

b
[(1+r1ﬂ)2/(1+r§)] QFB[Z' m, j+1, (m+K2)/2, 1, j+k+m+K2, (mt+2)/2; 1] (52)

6. SOME FURTHER RESULTS

A number of statistics of interest are functions of (rl, fl’ W)

both joint and marginal distributions for these are readily obtainable from

, and

(29) and (33). In this section we give two specilal cases that will indicate
the possibilities. The second of these--the joint density of Ty and r,

--will be used in the companion paper mentioned in the Introduction.
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e va nce estimator the leadi case =0

The conditional density (29) may be thought of as conditional upon

(x,X) , rather than W , end written in the form {on using (24) and (28)):

- - l ’ ’ (n+1)/2—1
pdf(r,, £ |x, X) = C, etr{ 5£, (1 + 1,71)X X}fT

- !‘. o — ’ ey (mn) /2,5 (xt+l)/2
exp{ 5t (z'z - 2z Xrl)}(z z) Ix szl

.1 B
1Fl[(n+3)/2, (m+n+2)/2; ifl(l + rlrl)x sz] . (53
where we have put z = x - Xrl . Also, when M = 0 ,
*(n+1)K2/2 1
pdf(x ,X) = (2n) etr{- E(x,X)'(x,X)} . (54)

Hence, multiplying (53) and (54) together, and transforming

(rl, x, X) =~ (rl, 2z, X) , we have

paf(r;, £;, z, X) = C, etr{- %(1 +£)(1 + rlri)X'X)}fT(n+1)/2'1
exp{- S+ £z - 2z'Xr1)}(z'z)(“'“)/2|x'§ x| (®1)/2
z
- 1 ¥ '—
1F1[(n+3)/2. (m+m+2)/2; 5, (T + £,x)X sz] (55)

-(n+1)K2/2
where C7 = [(2x) 02] . Note that, from (14), the LIML variance

estimator is based on si - (1 + fl)z'z . Now put z = vc ,

K K, /2-1
M2 2 oze, mldz -3 P (echHwiew) , and lec

1 be such that (v, Hl) € 0(K2) . Then define x and xl by

ve=o2z/(z'z

H
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x'

1] - (v, H)'X .
X

1

Msking these transformations in (55) we have

2 1 1 2 +1)/2-1
paf(ry, £5, v, e X, X)) = 3G e‘“’{' 71+ £ye }f'f(n o

(m+K2—n)2—1

) lXinl(m+1)/2etr{— %(1 + £)(1+ rlri)xixl}

(

1 v ' '
exp{— 5(1 + fl)(xl(I + rlrl)x1 + 2cx1r1)}

Fy #3372, (@eme2)/2; %fl(l + rlri)xixl] . (56)

Note that this does not depend on v . It is straightforward to integrate

out Vv , X and X in (56), leaving

1° 1

paf(r,, £, ) - ¢, exp{- %(1 + fl)cz/(l + rirl)}fT(n+1)/2-1

—n(m+K,+1)/2

(m+K2—n)/2—1 —(m+K2+1)/2
{1+ fl) 4

2 .
c) (1 + rlrl)

ZFI[(m+K2)/2, (n+3)/2, (wn+2)/2; £11 /(1 + fl)] (57)

n(m+K2+1)/2 (n+l)K2/2
where C8 - {2 Fn((m+K2)/2)Cz/P(K2/2)Fn((Kz—l)/Z)2 ]

Now put si =- {1 + fl)c2 (Jacobian (1 + i:'l)_1 } and notice that the

terms in fl are exactly those in pdf(fl) in (36) apart from the constant

C4 . Hence, since (36) integrates to unity we have, upon integrating out

f1 .
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pdf(rl, 1) - C expi- -sl/(1+r1r1 (58)

)}( 2 (m+K2—n)/2- )-(m+K2+1)/2
[} (l+r’r
171

2 (m+K -n)/2

(n+13/24 I((m + By = 2)/2)]

with Cq = [T({((n+1l)/2)/x
Note that (58) has the form
paf(s2, r,) = pdf(sZ|r.)pdf(r,)

1' M1 11T /PEEy 7

with si/(l + rirl) conditionally x2(m + K2 - n) and 1, Cauchy. Inte-

grating out r, 1in (58) leaves

1
(m+K,-n) /2-1
pdf(sl) - ¢} exp[ ; i](si) 2 1[(n/2, (m+E,+1)/2, %sf] (59)
with
1/2 (m+K2—n)/2
€y = [T((m+1) /)T ((miRymn+1) /2) /n /2L ((maR1#1) /20T ((moKy=0) /22 1

It is straightforward to confirm that (59) integrates to unity, and
that none of the moments of si exist., This last result carries over, of
course, to the general case which can be dealt with in exactly the manner

used above but is considerably more complicated.

oint dens of 1, and r, : n= 1

Using the first line of (24), &nd the first line of (26), (29) may be
expressed in terms of 52 - x'?xx , r2 - (X'X)-1X'x , and t2 - X'X , &ll
of which are scalars in the case n =1, and we may think of the condi-
tional density (29) as conditional upon 52 , I &nd t2 . Also, iIn the

2 L}
2

distribution of W (equation (33)) we may transform W - (s°, tz) (the

r2,
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Jacobian is t2 ) and hence, on multiplying the two together, obtain

1 2 2
pdf(rl, T, 52, tz, fl) - 0203 exp{- 5(1 + fl)[s + t2(1 + rz)}}

(m+K2)/2—1

) ) (k)72 5 9 2 -1

gl 2 ) (s + t7(x; - 1,07

2
1 ¢ t

1F1[2. (m+3)/2; %f1t252(1 + ri)/[sz + :2(;-1 - r2)2]]

2, 2,2

opl[Kz/z; %u [s°8° + t2(1 + r25)2]] , (60)

where we have put p2 - %M'M , also & scalar vhen n =1 . To obtain
pdf(rl, rz) we merely have to integrate over 52 >0, t2 >0, f1,> 0,
an this is quite straightforward. Setting a2 - 52 + t2(1 + rg) and
b= t2(1 + r%)/(s2 + 21+ rg)) (Jacobian &2/(1 + rg) ) and integrating

over f1 >0, a2 > 0 we obtain

m+K2 2 *(m+K2+2)/2 9 -1
pdf(rl, Ty, b) = 2 P(m)P(K2)0203(1 + rz) (1 + rl)
(m+K2+2)/2—1 (m+K2)/2~1 -1
b (1-b) (1 - b81 - (1—b)62)

2Fl[m, 2, (@+3)}/2; b(1-b)/(1 + rg)(l —b81 - (l-b)62)]

1Fa (R Rpr2i s+ ghimay ¢ SESTR) (61)

where
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-

o
{ |

{1 + r1r2)2/(1 + ri)(l + rg)

2

5. = ri/(l +13)

! (62)

23
]

L= A+ p¥a s Ha e rd

P
]

, = B+ 85

Expanding the term {bAl + (1—b)A2] in the confluent hypergeometric func-
tion binomially, and the term (1 - b51 - (1—b)62)-(1+1) that occurs in the

series expansion of the 2F1 function in (61) binomially (twice), we obtain

9 -1 2 ~(m+K, +2) /2

2
1) (1 + r2)

pdf(rl, r2) - Clo(l +r

i} (K,)  (m),(2),(1)_ ,((mK,42)/2)  ((m+K,)/2)
5 2 j+k £ e 2 j+i+s 2 k+2

j.k,2,8=0 J'kI21s!(K,/2) ((m+3)/2)£(1)1(m+K2+1) 1+
34k J+k+s+22

2.4
2)

2 K I,
2

[p2(1+ﬁ )] A{A 2Fl[s+!+1, k+£+(n+K2)/2. j+k+s+2£+m+K2+1; 62] (62)

m+K
with C10 - [2 2P(m)r(K2)F((m+K2)/2)P((m+K2+2)/2)02C3/F(m+xz+1)]

In this form the joint density does not seem specially helpful but, as
we shall see in the companion paper mentioned earlier, the result (63) can
be re-interpreted in & way that is quite illuminating. Of course, various
other joint densities can be derived from expressions like (60}, but these

we defer to further work.
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