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We present versions of the two fundamenial welfare theorems of economics for exchange economies
with a countable number of agents and en infinite dimensional commodily space. These resulls are then
specialized to the overlapping generalions model.

1. INTRODUCTION

In exchange economies, having a finite number of agents and a finite number of commodities, there
are two celebrated welfare theorems. The first welfare theorem states that every competitive allocation
is Pareto optimal. This theorem fails to be true in exchange economies with a countable number of
agents, as was first observed by P. Samuelson in his classic paper on the Consumption Loan Model [15].

The second welfare theorem states that every Pareto optimal allocation is a competitive allocation
subject to transfers. This theorem was extended to economies with a finite number of agents and infinite
dimensional commodity spaces, whose positive cone has a non-empty interior, by G. Debreu in a seminal
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work [6]. Recently, A. Mas-Colell [11] generalized Debreu’s results to infinite dimensional commodity
spaces, where the positive cone may have empty interior.

In this paper, we address the relationship between the welfare and market mechanisms in exchange
economies with a countable number of agents and an infinite dimensional space of commodities. We
are interested in what sense competitive equilibria in overlapping generations models on an infinite
dimensional Riesz space are optimal.

For the first welfare theorem, a definitive answer has been given for the notion of Pareto optimality
by Y. Balasko and K. Shell [5], where agents’ consumption sets lie in finite dimensional spaces and
agents’ characteristics are “smooth.” Of course, in our more general setting, we are unable to invoke
arguments depending on the existence of smooth demand functions derived from utility maximization
subject to a budget constraint.

Y. Balasko and K. Shell [5] were able to prove analogues of both welfare theorems using a notion of
optimality which is much weaker than Pareto optimality. They called this notion weak Pareio optimality.
Since weak Pareto optimality has already been defined in general equilibrium analysis, we shall follow
B. Peleg and M. E. Yaari [14] and term this concept Malinvaud optimality after the fundamental work
of E. Malinvaud [8,9].

An allocation is Malinveud optimal if no finite set of agents can make at least one of their group
better off and no one else in the group worse off by using the consumption bundles assigned to them
in the given allocation. Following G. Debreu [6], we define a valuation equilibrium as an allocation for
which there exists a non-zero price such that each individual’s consumption bundle is maximal in the
budget set, where the income is the value of his consumption at the given price.

Given these two notions, the main result of this paper simply asserts that an irreducible allocation
is Malinvaud optimal if and only if it is a valuation equilibrium. This result is first shown for general
exchange economies with a countable number of agents and then specialized to overlapping generations
models. In particular, it is demonstrated how the concept of properness can be used to establish the
price supportability of Malinvaud optimal allocations.

In an economy with a countable number of agents, the main obtacle in establishing these results is
to prove that a Malinvaud optimal allocation can be price supported. In order to accomplish this, we
introduce new ideas and techniques which are of independent interest in their own right and may be
applicable to other economic situations as well.

2. MATHEMATICAL PRELIMINARIES

This paper will utilize the theory of Riesz spaces. For detail accounts of the theory of Riesz spaces
see the books [3, 4, 7, 16, 19]. The material in section 3 of [2] will be used freely. A few basic facts about
Riesz spaces are briefly discussed below.

A Riesz space is a partially ordered (real) vector space which is in addition a lattice, i.e., with the
extra property that finite sets have suprema (least upper bounds) and infima (greatest lower bounds).
The supremum and infimum of two elements z and y will be denoted by zV y and z Ay, respectively.
That is, A

tvy=sup{z,y} and zAy=inf{z,y}.

If 2 is an element in a Riesz space, then the elements
et =zv0, z :=(-z)V0 and |z]:=zV(-2)
are referred to as the positive part, the negative part and the absolute value of z, respectively.
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For the rest of the discussion in this section the letter E will denote a Riesz space. The positive
cone of E will be denoted by Et, i.e.,

Et={z€E: 220}

The Riesz space E is said to be Dedekind complete whenever every non-empty subset of E which is
bounded from above has a supremum.

A vector subspace A of E is said to be an tdeal whenever |z| € |y| and y € A imply z € A. Every
element z belongs to a smallest ideal A, called the principal ideal generated by . We have

A ={y € E: 3> 0 with |y| < Mz|}.

More generally, every non-empty subset S of E is contained in a smallest ideal, called the ideal generated
by §. For a countable subset {z;,z3,...} of E, the ideal generated by {z;,z3,...} will be denoted by
A. If A, denotes the ideal generated by z,:=3_7_, #;, then A, C A,y holds for each n and

A= G An.
n=1

The ideal A enjoys some remarkable algebraic and topological properties that will be employed in our
study. For details regarding the properties of the ideal A we refer the reader to section 3 of {2].
The sets of the form
. y]={z€E: 2<2<y},

where £ < y, are called the order intervals of E. A linear functional f: F — R is said to be order
bounded whenever f carries order intervals onto bounded subsets R. The vector space of all order
bounded linear functionals on E is called the order dual of E and is denoted by E~. Under the ordering
f > ¢ whenever f(z) > g(z) for each z € E*, the order dual E™ is a Dedekind complete Riesz space.
Its lattice operations are given by

fvg(z)y=sup{f(y)+9(z): y,z€Et and y+z=1z),
fAg(x)=if{f(y)+9(z): yz€EY and y+:z=1z),

for each z € Et.

The symbol z, T means that the net {z, } satisfies 2o > 25 whenever a > 5. The notation z, 1 z
means z, | and z = sup{z, } both hold. The meanings of z, | and z, | z are similar. If {z,}is a
sequence of E+ such that the sequence of partial sums { 3_/_,z;: n=1,2,...} has a supremum z in E
(i.e., 2.7=1%i Tn &) then the element z will be denoted by Y ;- ,z;. That is, we shall write

[=+] n
Z.’c.- = sup{zz,-: n=12,...]
i=]

i=1

A net {z,} is order convergent to z (in symbols, z, — z) whenever there exists another net
{yo } with the same indexed set satisfying y, | 0 and |2, — z| < y, for each &. A linear functional
f:E — R is said to be order continuous whenever z, — 0 implies f(2,) —> 0 in R. The set of all
order continuous linear functionals on E is denoted by FE, and is referred to as the order continuous
dual of E. The order continuous dual E; of E is always an ideal of the order dual E".

A Riesz space E is said to be a normal Riesz space whenever

a) E is Dedekind complete, and
b) Ey separates the points of E, i.e., for each r # 0 there exists some f € E,; satisfying f{z) # 0.
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An order continuous function u: E¥ ~— R (ie., 2o — z in E* implies u(za) — u(z) in R) is
called a myopic utility function. Myopic utility functions were introduced for the first time in [2).

Regarding normal Riesz spaces and myopic utility functions we have the following result which will
be used in our study. For a proof see [2, Theorem 4.8].

Theorem 2.1. Assume that E is a normal Riesz space, { z, } is a sequence of some order interval [0,2],
and r is a2 ¢(E, E)-accumulation point of {2, }. Then for every monotone, quasi-concave and myopic
utility function u: E¥ — R we have

u(z) > li"riit;%f u(Zp).

The commodity-price duality in our economic model will be described by a Riesz dual system. A
Riesz dual system (E,E’) is a Riesz space E together with an ideal E of E™ that separates the points
of E such that the duality is the natural one, ie., (z,2') = 2'(2) holds for sll x € F and all 2’ € E'.
Riesz dual systems were introduced in Economics for the first time by C. D. Aliprantis and D. J. Brown
in [1].

3. THE ECONOMIC MODEL

The following five properties will characierize the economic model of cur study.

1. The commodity-price duality is described by a Riesz dual system (£, E'); E is the commodity space
and E' is the price space. In accordance with the economic tradition, the value of the bundle z € F
at prices p € E' will be denoted by p-z,ie., p-z = {z,p).

2. There is a countable number of consumers indexed by i; the set of consumers will be assumed to be
the set of natural numbers A" ={1,2,...}.

3. Each consumer has Et as his consumption set.
4. Each consumer 7 has an initial endowment w; > 0. The total endowment w is defined by
==} 1)
W = Zu.- = sup{Zw;: n=12,...}
i=1 i=1
where the supremum is assumed to exist in F.

5. The preference >; of each consumer i is represenied by a quasi-concave, monotone and myopic
utility function u;.

Definition 3.1. A pure exchange economy (or simply an economy) £ is a triplet
E=((EE){wi: ie N} {ri: ieN}),
where the components of £ satisfy properties (1} through (5) above.

From now on we shall assume that £ is a fixed economy. An ellocation for the economy £ (or
simply an allocation) is a sequence (z1,z3,...) such that z; > 0 for each i and

= =) n
Zz,- :=sup{zz,-: n=12..}=w.
i=1

i=1



Definition 3.2. An allocation (z1,z3,...) is said to be:

1) Pareto optimal, whenever there is no other allocation (y1,y2,...) satisfying y; > z; for all i and
yi >i «; for at least one i; and
2) Malinvaud optimal, whenever there is no other allocation (y1,¥z,.. .} satisfying
a) y; = z; for all but a finite number of 1,
b) ¥ =i z; for all i, and
¢) v =i z; for at least one i.

Every Pareto optimal allocation is clearly Malinvaud optimal. It is easy to demonstrate that Pareto
optirnal allocations exist. For instance, if one consumer (say the first) has a strictly monotone preference,
then the allocation (w,0,0,...) is obviously Pareto optimal. However, it is considerably more difficult to
show that individually rational Pareto optimal allocations exist. (Recall that an allocation (zy,z2,...)
satisfying z; >; w; for all i is known as an individually retional allocation.)

The next result gives a condition that guarantees the existence of individually rational Pareto
optimal allocations.

Theorem 3.3. If the commodity space of an economy is a normal Riesz space, then the economy has
individually rational Pareto optimal allocations.

Proof. We know that the order interval [0,w] is #(E, E;)-compact. Therefore, if we equip [0,w] with
a(E, E;), then by Tychonoff’s classical compactness theorem the product topological space [0,w]¥ is
compact.

Now let

o
A={(21,22,-..): 2,20 and z;>;w foralli and Zz;:w],

=1

i.e., A is the non-empty set of all individually rational allocations. Next, choose constants A; > 0(i € N)
such that 3_;2, A;ui(w) < 0o, and then define a social welfare function U: 4 — R by

U(I],.‘Eg, . ) = z).,-u.-(:.-).

i=1

Put s = sup{U(z1,22,...): (z1,%2,...) € A} < oo. Clearly, any allocation {(¥1,y2,...) € A4 which
satisfies s = U(y1,y2,.. .} is automatically an individually rational Pareto optimal allocation. The rest
of the proof is devoted to proving that there exists some (y1,¥2,...) € A with s = U(y1,¥2,...).

To this end, for each n pick (z7,23....) € A with

Uz}, 23,...)> 8- ;’;

Next, note that for each fixed i, the sequence {u;(z?): n = 1,2,...} is bounded in R. Thus, by an
easy “diagonal” argument, we can construct a subsequence of {(z},z%,...) } (which we shall denote by
{(z%?,23,...)} again) such that limn—c ui(2]) exists in R for each i. Since {(z7,23,...) } is a sequence
of [0,w]*, it follows that {(z},2%,...)} has an accumulation point (z;,z3,...) € [0,w}¥. Clearly, each
z; € [0,w] is a 0(E, E;)-accumulation point of the sequence {z?: n=1,2,...}. The latter implies

o0
Zzesw.

i=1
and moreover, in view of 4;(2}) > u;(w;) for all 1 and all n, it follows from Theorem 2.1 that

ui(z:) > liminf wi(e}) = Jim ui(z?) > wilwi),
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1e., 2; =i w; holds forall i =1,2,....
Now let € > 0. Fix some k with ¥ o2, A;u;{w) < £, and then note that

k
z.\;u;(:}‘) >s-L-¢ {(*)
i=1

helds for all n, Thus, from (%) and Theorem 2.1, we see that

k
Z,\u,x, 22

L
Z (Jl!‘lf w(z?)) — ¢

- tim (Shuten) -
2(3—5)-—5-3—26.

Since £ > 0 is arbitrary, the latter implies [0, Aju;(x;) > s.

Finally, define (y;,%2,.. ) by yy =2, +w—3 02, #; and y; = z; for i > 2, and note that (y;,yo,...)
is an individually rational allocation. Now observe that Uy, y2,...) = 221 Asui(yi) = s holds, and
conclude from the latter that (y;,y2,...) is also Paretc optimal. The proof of the theorem is now
complete. W

4. THE FUNDAMENTAL THEOREMS OF WELFARE ECONOMICS

In this section we shall study decentralization properties of allocations. Let {z,z2,...) be a fixed
allocation for an economy & . The ideal generated in E by the countable set { z1, z9,...} will be denoted
by A. By A; we shall denote the ideal generated by the finite set {z:,...,z3}. The ideal 4; is, of
course, the same as the ideal generated by the element &3 := £ +---+ #z;. We have Ay C A4 for each

k and
=~
A= U Ag.
k=1
The || - ||o-norm on A is the lattice norm defined by

lelloo = inf{A > 0: fo} < A8e}, =€ A

The norm dual of (Ag, || - ||c) will be designated by Aj}.

Under the || - [joo-norm, A}, is a Banach lattice (in fact, an AM-space with unit £;). The inductive
limit topology & generated by the sequence {A,} on A is a locally convex-solid topology such that
(A, €Y = A holds; see [2, Section 3). Therefore, {A, A7} is a Riesz dual system.

We start our discussion with the notion of valuation equilibrium introduced by G. Debreu in [6).

Definition 4.1. (Debreu) Let F be an ideal of E containing A. An allocation (x,,z2,...) is said to be
a valuation equilibrium whenever there exists a non-zero price p € F~ (referred to as a2 supporting
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price) such that z € F* and p-z; > p-z imply z; =, z, i.e., whenever for each i the bundle z; isa
maximal element in the set {z € F*: p-z < p-2;}.

The requirement that the ideal F of E satisfies A C F C E indicates that A and E are the smallest
and largest ideals respectively, on which an allocation can be supported as a valuation equilibrium.
The main purpose of this paper is to present conditions under which a given allocation is a valuation
equilibrium either with respect to A or with respect to E.

Recall that a commodity bundle v > 0 is said to be strongly desirable for a preference relation
> on Et whenever £ + av > z holds for all z € E* and all « > 0. It should be noted that if in an
economy every consumer has a strongly desirable commeodity, then

a) Every Walrasian equilibrium is a valuation equilibrium; and
b) Any price supporting e valuation equilibrium s a posilive price.

To see (a), let (z1,22,...) be a Walrasian equilibrium with respect to a Riesz dual system (F, F7),
where F' is an ideal of E containing A. Pick a non-zero price p € F~ such that each z; is a maximal
bundle in the i** consumer’s budget set Bi(p) = {z € F*: p-2 < p-w;} andlet 0 < v; € F be
a strongly desirable commodity for consumer i. If p-z; < pw; holds, then pick some o > 0 with
p-(2i+ov;) < p-w; and note that z;+awv; »; 2; violates the maximality property of z; in B;(p). Hence,
p-z; = pw; holds for each 7, and from this we infer that (z1,z2,...) is a valuation equilibrium supported
by the price p. For (b) assume that a price p € F~ supports a valuation equilibrium (z1,z2,...) and let
z € F*. From z; +avi+ 1 >; z; , wesee that p-z;+ap-v;,+p-2;, =p-(zi +av; + 2} > p-z; holds
for all a > 0, and from this we infer that p-x > 0 holds, ie, p > 0.

Now the first fundamental theorem of welfare economics takes the following form.

Theorem 4.2. If in an economy every consumer has a strongly desirable commodity, then every
valuation equilibrium is Malinvaud optimal.

Proof. Let {z;,xs,...) be a valuation equilibrium supported by a price p € F~ (where F is an ideal
of E containing A) and let 0 < v; € F~ be a strongly desirable commodity for consumer i. Assume by
way of contradiction that {(z;,22,...) is not Malinvaud optimal. Then there exists another allocation
(y1,y2,...) and a finite subset B of A such that

1. ;. = z; holds for all i ¢ B,

2. y; =i z; holds for 8ll 1 € B; and

3. yi = z; holds for at least one i € B.

An easy argument shows that 3. .n v =}, 5 2 holds, and so

ZP'M‘=ZP'1‘£- (%)

ieB icB

On the other hand, y; »; z; implies y; + av; »; z; for all ¢, and so by the supportability of the price
p, we see that p-yi+ap-v; > p-z; for all « > 0. Hence, p-y > p-#; holds for each i, and so
from (*) we infer that p-y; = p- z; holds for all i € B. Now fix some j € B with y; »; z; . By the
supportability of p we have

Py >P T =P Y

which is impossibie, and the desired conclusion follows. B

As mentioned before, the objective of this paper is to study supportability properties of allocations.
We continue our discussion with the notion of weak irreducibility. If B is a subset of A" with at least
two elements and {z;: 1 € B} C E*, then we shall say that the assignment {z;: i € B} is weakly

irreducible over B whenever for any partition of B into two non-empty subsets B; and B there exist
some j € By, a finite non-empty subset Bs of B, and some 0 < z < Eie By Ti such that

i+ 2z >-;x;.

7



It should be noted that if { z;: i € B} is weakly irreducible over B, then z; > 0 holds for all i € B.

We continue with the notion of irreducibility for allocations. The concept originated with the works
of L. W. McKenzie [12,13] and it was modified by C. A. Wilson [17]. The definition below is a generalized
version of Wilson’s definition.

Definition 4.3. An allocation (21, #2,...) is said to be finitely irreducible whenever for any non-
empty finite subset B of N there exists another finite subset C of N' containing B such that {z;: i€ C}
is weakly irreducible over C.

It should be noted that if an allocation (z1,z3,...) satisfies z; > 0 for each i and all preferences
are strictly monotone (i.e., # > y > 0 implies z »~; y for each i), then the allocation (z;,z3,...) is
automatically finitely irreducible. Thus, finite irreducibility is weaker than the strict monotonicity of
preferences. .

Definition 4.4, An allocation (z1,%2,...) is said to be a basic allocation whenever for each n the

bundle #, = 3 i_,z; is strongly desirable by consumers 1,...,n, i.e., whenever z + a#, »; z holds for
al z€ E* all a>0 andall 1<i<n.

We now come to the main objective of this section; namely, to state and prove for economies
with a countable number of agents the following version of the second fundamental theorem of welfare
€CONOITcs.

Theorem 4.5. Every basic finitely irreducible Malinvaud optimal allocation is a valuation equilibrium
that can be supported on A by an order continuous price of A”.

The proof of this theorem is quite involved and it will be accomplished by a series of steps in the
form of lemmas. For the proof we shall construct a sequence of prices that support the given allocation
“locally”. An “asymptotic limit” of such a sequence will allow us to obtain an extended price that
supports the allocation.

We start the discussion about the proof of Theorern 4.5 with one more definition.

Definition 4.6. A fundamental sequence of prices for an allocation (z;,23,...) is a sequence
(p1,p2,...) such that:
a) 0 < p, € A}, holds for each k; and
b) For each k > m the price py supports (£1,...,2.;) on A, Le., z € A:’ and z »; z; for some
1<i<mimply pp 22 piz,.

Qur first goal is to establish that basic finitely irreducible Malinvaud optimal allocations admit
fundamental sequences of prices.

Lemma 4.7. Let (z;,22,...) be a basic finitely irreducible Malinvaud optimal allocation. Then for
every non-empty finite subset B of A there exists a price p > 0 on the ideal generated by {z;: i € B}
such that for each i € B we have

a} p-z; > 0; and

b} = »; z; in the ideal generated by {z;: i€ B} impliesp-z > p- z;.
Proof. Assume that (z;,23,...) is a basic finitely irreducible Malinvaud optimal allocation and let B
be a finite non-empty subset of A'. Put k = max B and then select a finite subset C of A such that
{1,...,k} € C and {2;: i € C} is weakly irreducible over C'. Let I denote the ideal generated by
{z;: i€ C}. Also, for each i € C consider the non-empty convex set

Gi={zelI* z¥r;z},

and let

G =3 (Gi~=).
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If X = Int(I*) with respect to the ||-||cc-norm of I, then K # @, and we claim that GN(—K) = 8.
To see this, assume by way of contradiction that GN(—K) # 8. Then there exists some £ € K with
—e € G. Pick y; € G; (i € C) such that —e = 3, ~(yi ~ 2;), and note that

Z(yl + #5) = zxia

fEC i€C

where m denotes the number of elements of C . Since e € Int(/*), there exists some a > 0 such that
e > ai, where £ = ) ;. ozi. Clearly, £ 2 & = Ef=1 z;. Now put
Le for i€C and z=2; for i¢C,

m

Z =y +
and note that (z1,z;,...) is an allocation. In addition, for 1 < i < k we have
n=yi+ Leriyi+ SEmip iz,

and z; »; z; for i > k, which contradicts the Malinvaud optimality of (z;,22,...). Hence GN(~K) = 8.
Since G and —K are both non-empty convex sets and — K is || -||co-Open, it follows from the classical
separation theorem (see, for example, [4, Theorem 9.10, p. 136]) that there exists some 0 < p € I’ such
that ¢ € G implies p-g > 0. Since p- £ > 0 must hold, we infer that p-z; > 0 must also hold for some
i€ C. We claim that p-2; > 0 holds for all i€ .
To see this, assume by way of contradiction that p-z; = 0 for some i € C'. Then the two sets

Clz{ieC: p-z,->0} and Cz={i€C: p-ri=0}

are both non-empty. Thus, by the weak irreducibility of {2;: { € C} over C there exists some t € C}
such that

y=2z;: + Zfi =t Ty,
i€Cy

Clearly, p-y = p-2; > 0. Now by the order continuity of the utility functions there exists some 0 < § < 1
with 6y »; ;. From éy — z; € G, it follows that
py>bp-y=p-(By)2p-r=p-y

which is impossible. Hence, p-z; > 0 holds for all i € C.
Finally, note that the restriction of p to the ideal generated by {z;: i € B} satisfies the desired
properties. @

An immediate consequence of the preceding lemma is the following result.

Lemma 4.8. If (21,22,...) is a basic finitely irreducible Malinvaud optimal allocation, then (z;,z2,...)
admits a fundamental sequence of prices (p;,p2,...) such that

Pr-zi >0

holds for all k and all i with k > i.

Proof. Let (z,,z2,...) be a basic finitely irreducible Malinvaud optimal allocation and let k be fixed.
By Lemma 4.7 there exists a price § < px € A} such that p-z; >0 holdsforall 1 <i{< k and z >; z;
in A} implies p-z > p-z;. Now the sequence (p;,p2,...) satisfies the desired properties. W

The next lemma presents a growth estimate for a fundamental sequence and is the analogue of
C. A. Wilson’s Lemma 3 in [17].



Lemma 4.9. Let (r;,z2,...) be a finitely irreducible allocation and let (p1,p2,...) be a fundamental
sequence of prices for the allocation such that p; - z; > 0 holds for all k and all i with k > :. Then for
each fixed pair of natural numbers £ and m there exists some constant M > 0 (depending only upon £
and m) such that

O<pe-ze S Mpr-2m

holds for all k > max{£, m}.

Proof. Let (z;,22,...) be a finitely irreducible allocation and let (p;, pe,...) be afundamental sequence
of prices satisfying p; - z; > 0 for k > i. Let £ and m be ﬁxed and suppose by way of contradiction that
our claim is not true. That is, assume that liminf,,(%Z2) = 0, where ¢ = max{{, m}. By passing to
a subsequence (if necessary) we can suppose without loss of generality that

. Pn-Im
hm ——
n—0 Pp Iy

=10

Next pick a finite subset C' of A" such that {£,m} C (' and with {z;: i € C} weakly irreducible over
C. Put

Ci={ieC: hmsup .=O} and Gy ={ieC: hmsupp :‘ > 0}.
¢

n—eo Pn't n-—+00 Pn

Clearly, C = C1 U2, £ € Cy and m € C,. Now by the weak irreducibility of {z;: i € C}, there exists
some i € O3 such that
T + Z Ty - X

JjEC,

Since the utility function u; is myopic, there exists some 0 < 8 < 1 with

bx; + z i =i Iy,
JEC,
Therefore, by the supportability of p,, we see that
5pn - i + pn - (Z’:j) 2 Pn
J€C)

holds for all sufficiently large n.
Thus, we have

po- (L 25) 201 = O)pa i,

JEC:
and hence P T P
Z Pn "L > (1 6) n i
jeC, n "Lt

holds for all sufficiently large n. Consequently,

limsup( Z fl‘_z:) >(1- 6)hmsup Pni %

n—eo Mew Pn n=—oc Pn* 374!
which in view of -z
0<hmsup(z —'-‘-—-’—) thsup L=,
P n—oo Pn Tt
JEC 1€C,

implies msup,,_ . E% = 0, contrary to i € Ca. The proof of the lemma is now complete. W
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Now consider a fundamental sequence (pi, pz,...) of prices for an allocation (z;,z2,...). Then for
k < £ we have Ay C A; (where, of course, A; is also an ideal of A4;). Thus, if z € A;, then p; -z is
well defined. In other words, for each £ >> & the price p; defines a positive linear functional on A;. This
observation will be used in the next lemma.

Lemma 4.,10. Let (z;,z3,...) be a basic finitely irreducible allocation and let (py,p2,...) be & funda-
mental sequence of prices for the allocation such that for some m we have py -z, = 1 for all k > m.
Assume also that p, - z; > 0 bolds for all k > .

Ify, | 0 holds in A, for some n > m, then the net {y,} converges to zgero uniformly on {p,: k > n}.
In particular, px restricted to A,, is order continuous for each k > n.

Proof. Fix n > m and let y, | 0 hold in A,,. Without loss of generality we can assume that 0 < y, < &,
holds for all a, where £, = 3_7_, z;. Keep in mind that by our hypothesis, the bundle &, is strongly
desirable by each consumer 1 < i < n, ie., we have z; + 8%, »; z; holds for all § > 0 andall 1 < i < n.

Now let € > 0. Lemma 4.9 applied to the pairs (£,m) for £=1,...,n guarantess the existence of
some M > 0 satisfying p; -, < M for all k > n. Put § = gf—. Note that for each 1 < { < n we have
z; + 68, — yo A x; > 0. This, coupled with z; + 6%, »; z;, the fact that y, A z; |, 0 and the order
continuity of the utility functions, implies the existence of some index oy with z; + 6, — yo A zs > 2
for all ¢ > ag and all 1 € i < n. Since for each & > n the price p; supports (z1,...,zx) on Ag, it follows
that pr - (2i + 82, — Yo A Zi) 2 pr - 2; holds for all & > ag and all 1 < i < n. Therefore, for all o > oy
and all 1 <i<n we have

Pr- (Yo AZ) < bpr -3, <6-M.

Now by using the lattice inequality yo = yo A (3j2; Zi) € T 1=, Vo A i, we see that

0<pe va SO P Wahz)<D 6 MSE- M n=c

i=1 i=1l
holds for all @ > ag and all ¥ > n, and the desired conclusion follows. M

The next lemma tells us that if (p;,ps,...) is a fundamental sequence of prices, then for each k the
set {pn: n >k} is a weakly compact subset of A}.

Lemma 4.11. Let (z,,72,...) be a basic finitely irreducible allocation and let (p,,p2,...) be a fun-
damental sequence of prices for the allocation satisfying py - 2,, = 1 for allk > m and p; - z; > 0 for
k>

Then for each n > m the set of prices {p;: k > n} (where each p; is considered restricted to A, )
is a relatively weakly compact subset of A!,.

Proof. Let n > m be fixed. By Grothendieck’s classical compactness theorem {4, Theorem 13.10, p. 208]
it suffices to show that the set {ps: k¥ > n} (as a subset of A!) is norm bounded and every disjoint
sequence of [0, £,] converges uniformly to zero on {p;: & > n}.

To see that the set {pi: k¥ > n} is norm bounded on A, note first that

n
sl = pi - 20 = Zm - i
=1
and then apply Lemma 4.9 to the pairs ({,m) for £=1,...,n.

Now let {ym} be a disjoint sequence of [0, #,]. For each m put z;n = Y i, ¥i = Vi, % < Za. Since
E is Dedekind complete, there exists some z € [0, Z,] with z,;, { z. Next, note that

OSym=2m—Zm-lSZ—Zm-—1=Cm10-
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By Lemma 4.10, the sequence {(n} converges to zero uniformly on {p:: & > n}, and from
0<p ym Pk (m (kZ ")7

we infer that {y,} converges likewise uniformly to zero on {pi: k > n}. The proof of the lemma is now
complete. B

Let (p1,p2,--.) be a fundamental sequence of prices for an allocation (z1,x2,...) and let (as usual)
A denote the ideal generated by {z;,z2...}. A non-zero positive linear functional p: 4 — R will be
called an asymptotic limit for the sequence {p,} whenever there exists a subsequence {p;_} of {p.}
such that for each y € A we have

pry= Him p -y,
n—oo

where, of course, the value pi - y need not be defined for a finite number of n.
The next lemma guarantees the existence of asymptotic limits.

Lemma 4.12. Let (z1,z3,...) be a basic finitely irreducible allocation and let (p;,p,,...} be a funda-
mental sequence of prices for the allocation. If p - z; > 0 holds for k > i and for some fixed m we have
Pk - Tm = 1 for all k > m, then the sequence {pn} has an asymptotic limit.

Proof. Assume that the allocation (z1,z2,...) and (p1,p2,...) satisfy the hypotheses of the lemma.
The desired subsequence of prices will be constructed by a diagonal process using induction. To do this,
we shall construct subsequences {pt}, £=0,1,2,..., of {p,} such that:

a) The sequence {p2} is a subsequence of {p,}; and
b) For each £=1,2,... the sequence {p.} converges pointwise on the ideal Ag,_,, where p, , = e
Start by letting p = pn4m—1 for each n and kg = m. Then the sequence {pl} considered restricted
to A, forms (by Lemma 4. 11) arelatively weakly compact subset of A, . Thus, there exists a subsequence
{pL} of {p1} such that limp} - y exists in R for each y € Am = As,. Now for the inductive step, assume
that a subsequence {pt} of {pi'} has been chosen such that lim pf, - y exists in R for each y € A,_,,
where pi, , = p'~1. Then the sequence {pS} considered restricted to Ay, where p;, = pt, forms (by
Lemma 4.11) a relatively weakly compact subset of A} , and so there exists a subsequence {p;*'} of
{pt} such that lim p5*!: y exists in R for each y € A;,. The induction is now complete.
Next, consider the subsequence {px.} of {p.}, where pi, = pi. An easy argument shows that
lim p; - y exists in R for each y € A. Therefore, if for cach y € A we put

py= lim p -y,
n—0oo

then p defines a positive linear functional on A. From pi - #m = 1 for all n, we see that p-z, =1, and
so p is a non-zero asymptotic limit of {p,}. B

Now the proof of Theorem 4.5 is as follows. By Lemma 4.8, there exists a fundamental sequence
(p1,p2,...) of prices for (z1,22,...) such that pi - z; > 0 holds for all k¥ > i. Replacing each pp by
pr/pe - £1, we can assume that p; -z; = 1 holds for all k. By Lemma 4.12 there exists an asymptotic
limit p for the sequence (p;,pz,...}. Applying Lemma 4.9 with £ = 1, we see that for each fixed m the
sequence {px - Tm: £ = 1,2,...} is eventually bounded away from zero, and so p- z,, > 0 holds for all
m. Now we claim that p supports the allocation (z1,22,...} on A.

To see that z; is a maximal element in the set {r € A*: p-z < p-z;}, let some z € A% satisfy
p-z < p-z;, and assume by way of contraction that z ~; z; holds. Then there exists some k such that
z >; z; holds in A} for all n > k, and so

pz= limpe,-z> lim pe,-2i=p-z; > 0.
=00 n—e 00
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Next pick some 0 < & < 1 satisfying 6z =; z; (the order continuity of the utility function u; guarantees
that such a é always exists), and note that by the above argument we have

pe>épx=p (82)2p- -z,

contrary to p-r < p-2;. Consequently, 2; is a maximal element in the set {2z € A*: p-2 <p-2;}, as
desired.

Next, we establish that p is order continuous on A. To see this, it suffices to prove that p is order
continuous on eackh A;. Indeed, by Lemma 4.10, we know that on each A; the price p is the pointwise
limit of a sequence of order continuous linear functionals, and so p is likewise order continuous on each
Ay; see [4, Exercise 14, p. 214).

Finally, we close the section with the presentation of the following combination of the two funda-
mental theorems of welfare economics {Theorems 4.2 and 4.5).

Theorem 4.13. A basic finitely irreducible allocation is a valuation equilibrium if and only if it is
Malinvaud optimal,

5. THE OVERLAPPING GENERATIONS MODEL

The objective of this section is to establish the basic welfare theorems for overlapping generations
models by applying the results of the previous section. In particular, we shall establish that every
Malinvaud optimal allocation can be decentralized by a price.

The index t will denote the time period of our overlapping generations model. The commodity-
price duality at each period ¢ will be described by a Riesz dual system (E,, Ej). Therefore, we have a
sequence ({E;, E1),(E3, E5)...) of Riesz dual systems each member of which describes the commodity-
price duality at the specific time period. We shall write

E':E]_XEQX--- and E’:E;)(E;

To simplify matters, we shall assume that

a) only one consumer is born in each period, and
b) each consumer lives two periods.

Thus, consumer t is born at period ¢ and lives all his life in periods ¢ and ¢ + 1. Each consumer
trades and has tastes for commodities only during his life-time span. We assume that consumer t has
an initial endowment 0 < w! € E, at period ? and an initial endowment 0 < wi*! € E,,, at period
t+ 1 and nothing else in any other periods. Consequently, his total initial endowment w, is the vector

we=(0,...,0,w!,wi*,0,0,...) €E,
where w} and w!*! occupy positions ¢ and ¢ + 1, respectively. In addition, we shall assume that the
“father” of consumer 1 (i.e., consumer 0) is present in the model at period 1. He will be designated as
consumer ( and his initia! endowment will be given by the vector

wo = (w},0,0,...),

where 0 < w} € E;. Thus, the total endowment of the overlapping generations model is given by the
vector

oC
_E — 1 1 2 2.3 3
w = wg—(w0+w1,w1+w2,w2+w3,...)EE.
t=0
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I8 =w_;+ui, t=1,2,..., then w=(8,02,...). The ideal generated by 6 in E; will be
denoted by ©,. That is,
Or={zeE:3 A>0 with |z[ < A6}

The ideal generated in E by (8,,...,0,,0,0,...) will be denoted by A, . Clearly,
Ar=0; % x99, x0x0...,

where 0 = {0}. It should be noted that A, C A,y holds for all n. If A denotes the ideal generated
in E by the sequence {wgp}, then

If £ denotes the inductive limit topology on A generated by the sequence {A,}, then the topological
dual of (A,£) coincides with the order dual of A. Morzover, we have

A=0x0)yx--;

see [2, Theorem 7.2].
The vectors of the form
x, =(0,...,0,2z,2i%1,0,0,..),

where x} € Ef and 2i*! € EY, | represent the commodity bundies for consumer ¢ during his life time.
Each consumer ¢ maximizes a utility function u; defined on his commodity space, i.e., u; is a function
from E}f x E},, into R. The value of , at the commodity bundle x, = (0,...,zk2i%,0,0,...) will
be denoted by u(z},zi*'). The utility functions will be assumed to satisfy the following additional
property:

Each u, is strictly monotone on E; x E} ., that is, (z,y) > (zi,1) in E} x E}Y, implies
u(z,y) > uwlzn.y)

The case { = 0 is a special case. The utility function uy is a function of one variable defined on E}.
It is also assumed to satisfy the above property.

Now assume that x = (Xg, X1, X2,...) is an allocation for the overlapping generations model, where

xo = (23,0,0,...) and x: =(0,...,0,2¢, zi¥1,0,0,...), t> 1
Furthermore, assume that
>0, zi>0 and zi*'>0 dor t>1

A moment’s thought reveals that

a) (xo,X1,X2,...) is a basic allocation, and

b) (x0,%1,X2,...) is finitely irreducible.
(Claim (a) follows from the strong monotonicity of each utility function u; on E} x Ef;. For (b)
note that if B is a non-empty finite subset of consumers and k = max B, then the set C = {1,...,k}
satisfies B C C and (X¢,X1,X2,...) is weakly irreducible over C.)

Definition 5.1. Ap allocation x = (Xo,X1,X2,...) Is said to be admissible for our overlapping
generations model whenever

>0, z>0 and z*'>0 for t>1
hold.
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From the above dsicussion and Theorems 4.2 and 4.5 the following results should be immediate.

Theorem 5.2. Every admissible valuation equilibrium in an overlapping generations model is Malinvaud
optimal with respect to the Riesz dual system (A, A"}

Theorem 5.3. Every admissible Malinvaud optimal allocation in an overlapping generations model is
a valuation equilibrium that can be supported on A by an order continuous price of A"

We now turn our attention to overlapping generations models with proper preferences. Proper
preferences were introduced by A. Mas-Colell [10]; see also [2, Section 4]. Let us say that the preference
>, induced by u; is uniformly proper whenever there exist locally convex-solid topologies on E; and
Ei41 consistent with the dualities (Ey, EY) and (E.4y, Ey,,) such that each >, is uniformly proper with
respect to the product topology on E; x Eyyy. Equivalently, u, is uniformly proper if and only if it
is uniformly proper for the Mackey topology 7(E; x E;41, E{ x E{ ;). The preference >=; is uniformly
proper whenever it is uniformly proper on Ey. Also, let us say that the overlapping generations model
is proper whenever

a) Each preference & ({ =0,1,2,...) is uniformly proper; and
b) Each #; = w}{_, + w is a strictly positive element of E, for each t > 1. (Recall that 8, is strictly
positive whenever ¢ - 8; > 0 holds for all 0 < g € E}.)

Next consider the Riesz space
se={y=ys...)EE: 3 k with 3, =0 V i>k}.

Clearly, ¢£ is an ideal of E containing A, and moreover, under the duality

oc
PY=)_ PY
i=1

the dual system (¢g,E’} is a Riesz dual system.
For proper overlapping generations models Theorem 5.3 can be improved as follows,

Theorem 5.4. Every admissible Malinvaud optimal allocation in a proper overlapping generations
model is a valuation equilibrium that can be supported on ¢g by a price of E'.

Proof. Let {xg,x1,X32,...) be an admissible Malinvaud optimal allocation for our overlapping genera-
tions model. By Theorem 5.2 there exists a price p = (p1,p2,...) € A" supporting (xp,x1,X2,...) on A
and satisfying p-x; > 0 for £ =0,1,2,... . We have p, € ©; for each t.

Now by a Theorem of N. C. Yannelis and W. R. Zame [18] (see also [2, Theorem 9.2]) each linear
functional p;: ©, — R is o(Ey, £f)-continuous. Since @, is o(Ey, E{)-dense in E\, it follows that p; has
a continuous extension p; to all of E,. Thus, p* = (p},p5,...) € E/, and we claim that p* supports
(x0,%1,X3,...) on ¢g.

To see this, let y »; x, in E}f x E,*_,_l. Fix 6 > 0 and note that y 4 w; »; X;. Since each ©;
is o(E;, E])-dense in E;, it follows that ©; is also dense in E; for the locally convex-solid topology
|¢|(E;, E}), and so for each i the ideal ©; is order dense in E;; see [3, Exercise 6, p. 50). In particular,
the ideal ©; x ©4; is order dense in E; x Eyy;. Thus, there exists a net {y.} C 6} x 9;’“ with
Yo 1 ¥ + 6wy, and 80 yo — y + 6w;. In view of y + 6wy ¢ x¢ and the order continuity of u;, we can
assume that y, »: x¢ holds for all @. Thus, by the supportability of pon A, we get p -y, > p - x; for
all @, and by the weak continuity of p* on E; x E;,;, we see that p*-y + ép*-w; > p*-x, for all § > 0.
Therefore, y = x; in E} x E';f,_l implies p*-y > p* - x¢, and the proof is finished. W

Finally, we remark that the above discusssion {with some obvicus modifications) shows that Theo-
rems 5.3 and 5.4 are, in fact, true for the general overlapping generations model. That is, Theorems 5.3
and 5.4 are true for an overlapping generations model where
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1) r persons are born in each time period, and
2) each person lives £ periods.
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