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1. INTRODUCTION

This paper describes the implementation and performance of
an algorithm for solving applied general equilibrium (AGE)
models. These nodels'are typically empleyed to study systems
involving more than one economic agent, each of which may have a
separate objective function. Models of international trade and
single-country models which focus on public finance issues are
commonly formulated in an AGE format.

Scarf (with Hansen) [1973) demonstrated the feasibility and
potential of numerical modeling in the Arrow-Debreu general
equilibrium framework. 1In Scarf’s work :onstructive proofs of
existence provided the building blocks for Qolution methods.
Subsequent research has produced new approaches to model
formulation and methods of solution. Following along the lines
of Robinson [1975], Hogan [1977]), Eaves [1978], and Josephy
[1979), Mathiesen [1985a)] proposed a modeling format and
sequential method for solving market equilibrium models. The
method is named SLCP. Preckel [1983)]) compared SLCP with other
methods and reported a considerable advantage in terms of
efficiency. This paper discusses implementational issues and
reports on computational experience with several test problems
and empirical models.

The software described in this paper is named MPS/GE (a
*mathematical programming system for general equilibrium
models"). MPS/CE {s a microcomputer-based system designed to

reduce the technical expertise required for formulating and
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analyzing AGE models. The system is written in Fortran-77 with
some assembly support for interactive modules.

Solution codes for AGE models1 typically require that the
model structure be provided in the form 6f a computer subroutine,.
With this arrangement, AGE modeling requires close familiarity
with the solution algorithm. 1In contrast, HPS/GE-separates the
tasks of model formulation and model solution. This frees model
builders from the tedious task of writing model-specifiec function
evaluation subroutines. All features of a particular medel are
communicated to MPS/GE either interactively or through an input
data file.

To ;implify codiﬁg, utility and production functions are
restricted to the "nested” constant elasticity of substitution
(CES) family. Two special cases: Leontief (fixed ccefficient) and
Cobb-Douglas are included! These nested CES functions aré
characterized by different trade-off possibilities within each
aggregate as well as between aggregates. Because functions are
entered in a data file, revisions of model structure are

simplified.
2

T

In contrast to the nonlinear programming language GAMS

1 See, for example, Broadie [1983a,b], Todd [(1980], Kimball

and Harrison [1985)], Merrill [1972], and Mathiesen [l985a].

2 See Maeraus [1983]. For a limited class of market
structures, an extension of GAMS (HERCULES) can soclve economywide
models. Ses Drud, Kendrick and Meeraus [1986].

Pearson [1986] has alsc developed a higher-level language
for economic modeling in the Johansen framework.
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MPS/GE does not altogether eliminate the need for programming.
In large-scale projects, model-specific programs may be used in
order to avoid the tedium of entering function coefficients one
element at a tine.. When 'model-gen?rntor programs; are required,
they be written in whatever language is most familiar.
Furthermore, these programs operate "stand-alone”, thereby
simplifying development and-debugging.

The MPS/GE system consists of three programs: a solver, a
model editor and & case generatdr. This paper focuses
exclusively on the soluticon code. ‘Details on the other

components can be found in Rutherford [1987].

2. FORMULATION
Mathiesen [1985a)] observed that applied general equilibrium
‘'models can be formulated in nonlinear complementarity (NLCP)

format. The general NLCP is stated:

Given F:lN*IN

Find ze!N, z 2 0 such that F(z) =2 0 z' F(z) = O

As formulated in MPS/GE, the unknown vector z represents
activity levels (y), prices (x), auxiliary wvariables (u) and

income levels (Y). That is, z is partitioned into (y,n,u,Y)

where ye!m, wc!n, pe!L, YexP and N = n + m + L + P. The
nonlinear function F represents unit profit-, ugrket excess
demand-, auxiliary constraint-, and income-functions.

This formulation includes income variables in order to
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simplify the treatment of ad-valorem taxes on producers which
enter into consumer incomes. When there are endogenous income
flows, the addition of income equations can reduce the number of
nonzeres in the linearization. Fufthermore. as observed by
Shoven and Whalley [1979], the income variaﬁles are useful in
avoiding simultaneity_wﬁich otherwise arises in the computation
of consumer demands,

For concreteness, consider a model with an activity-analysis

description of production, Cobb-Douglas utility functions, and neo

auxiliary constraints. The vector function F is defined as:
- A'x
F(Yvrly) - A b4 - E(RIY)
b » - Y

nxp

where £(x,Y):% ~2" is the aggregate excess demand function,

derived from utility maximizatien subject to income constraints:

& Y
£, (x,Y) = I ik "k - b ] ;
k x

i

Aelnxm is the activity analysis production mactrix, a(:pxn is the

matrix of elasticities of utility with respect to consumption,
and bexP*® is a matrix of commodity endowments.

To solve the nonlinear complementarity problem, SLCP
repeatedly solves linear complementarity problems (LCPs). These
are defined as follows:

Given qe!N. HelNXN



Find zel“. z =2 0 such that

q+Mz2z220 z' (q + Mz) = 0

The LCP is a fundamental problem of mathematical
programming. It contains the linear- and quadratic programs as
special cases. (See Cottle and Dantzig {[1968].)

The data for SLCP subproblems are determined by taking a
first-order Taylor expansion of the nonlinear fumnction, F.

Linearized at point z, they are:
q(z) = V F(z) z - F(z) and M(z) = V F(z)

In the Cobb-Douglas - activity analysis example, these dats are

given by:
0 0 -A' 0
q(z)= [-£(x,¥) | , M(z) = A -D(n,¥) e(n)
0 0 b -1
nxn 3
where DeX is a diagonal matrix™ of own- and cross-price
effects:
b, = -3 —ikTk
i1 ¥ 2 !
s

eex™P is a nonnegative matrix of income effects:

*ik

ik
"

i

3 If more general CES utility or production functions are
employed, D is not diagonal but remains postitive semi-definite.
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and I-is the pxp identity matrix.

MPS/GE, because it includes income variables explicitly,
solves subproblems which differ slightly from those described by
Mathiesen [1985b]. In his formulation, matrices e.-b. and 1 do
not appear, and income and price effects enter together in the

Jacobian matrix, D,

3. ALGORITHMIC ISSUES

The SLCP algorithm is an extension of Newton's classical
method for solving simultaneous nonlinear equations which
accomodates both linesr and nonlinear inequalicties. Applied to

general equilibrium models, SLCP involves the following steps:4

1. Select a starting point, z, and set the iteration counter k
to zero. ’

2. Stipulate a numeraire commodity, index h.

3. Increment the ifteration count (k « k + 1).

4. Construct qh(zk-l) and Hh(zk_l).

5. Apply Lemke'’s algorithm to solve the subproblem. If no

solution exists or the problem fails to solve, select
another numeraire index and repeat step 4.

6. Given the LCP solution, z, conduct a backtracking line
search to determine the step length ay and the next iterate:

zZ, =@,z ¥ (l-ak) Zp.1r

In the process of conducting the search, determine the
current deviation from equilibrium.

4, The same algorithm may be used for partial equilibrium
models, In those cases, supply and demand functions are
expressed in nominal terms and Walras’ law does not apply.
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7. If the deviation exceeds the convergence tolerance ¢, repeat

steps 3-7.

Several details must be considered in implementing the algoricthm,
Among these nr; the following.
Function and gradient evaluation

The need to evaluate both F(z) and the n x n matrix VF(z) is
a dravback of the SLCP algorithm. While in theory, VF is
obtained simply by applying the chain rule, it can be a tedious
and srror-prone cnlculgtion in practice. An appealing aspect of
standard packages, such as MPS/GE and GAMS, 1s that they provide
gradients automatically. GAMS' ability to parse and lineariée
arbitrary algebraic systems makes it a flexible modeling rtool,
whereas MPS/GE offers only a limited range of functicnal forms.

A GAMS front-end to SLCP could be quite useful for the
computation of both partial and general equilibrium models.

An advantage of MPS/GE’s specialized functional forms is
that the Jacobian can be generated inexpensively. Simple
arithmetic operations such as addition and multiplication are
less costly than transcendental operations such as
exponentiation. In the case of nested CES utility and production
funetions, exponentiations are required to compute F, but
(through judicious use of intermediate varjiables) VF can then be
obtained using only simple operations. Ignering programming
costs, VF is therefore inexpensive to compute.
Choice of pumeraire

Production and utility functions are homog&neous of degree
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zero, so the basis associated with the set of positive prices,
activity levels and income variables becomes singular as the
equilibrium point is approached. This reflects the fact that
equiltbrium conditions determine relative and not absolute
prices.’ |

MPS/GE overcomes this problem by fixing a price and dropping
the corresponding market clearance constraint. Closure of income
flows assures that the omitted constraint is satigsfied at
equilibrium. This t;chnique explains the difference between
(q,M) and (qh, Hh). The latter LCP Is of dimension N-1, derived
from (q,n) by fixing_xh at unity and dropping the constraint for
market h. The omitted constraint will, through Walras' law,
automatically be satsified at equilibrium. (In subproblem
solutions away from the equilibrium this constraint will not be
satisfied.)

The ilterative process is influencedlby the choice of
numeraire. A subproblem sclution might be denoted z(z,h),

indicating that it depends both on the linearization point, z

and the numeraire index, h. For computational efficiency, some
prices are more effective numeraires than others. Foremost, the
numeraire's price must be nonzero at equilibrium. 1In addition,

experience suggests that the best numeraires are "important
commodities®™, i.e., goods which command a large share of factor
payments or final demand expenditures.

The freedom to specify a numeraire provides a recovery

strategy when a particular subproblem fails to solve, When this



happens, the algorithm switches numerajires, evaluates at the same
point and continues. It is likely that improvements could be
made Iin this procedure. An inexpensive method for ex-ante
selection of a "good" numeraire would be particularly useful.
Presently, a poor numeraire is only detected when Lenmke's
algorithm fails to compute a subproblem solution.

Stipulation of a numetaire'is but one of several methods for
dealing with linear dependence. One might, for example, perform
the substitution: x = l . Zi LR but this would result in an
unacceptable increase in density. Other approaches are proposed
by Stone [1985].

Measuring deviagion
The deviation lssocinted with a2 point z is taken to be:

§(z) = max ( -z, - F(2)g, | 2, F2)y | )
i

This measure is affected by scaling of prices and activity
levels. This is but one of several norms which could be
employed. It would be useful if a norm could be designed which
would guarantee a decrease in each iteration for a sufficiently
short step length.
ubpr em u

Lenke’s algorithms is used to solve subproblems., It

performs two functions: it identifies a feasible, complementary

basic set, and it sclves the corresponding system of equations.

3 See Lemke [1965] and Cottle and Dantzig [1968].
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Observe that the generic linear complementarity problem

(q.M) may be stated as follows:
N .
Given qeX, MeX

Find ze!N, we!N such that

NxN

we--aq+ Mz z' we=20 z 20 wez

In this formulation, w may be regarded as a vector of slack
variables.

Lemke's algorithﬁ maintains a complementary basis
throughout. That is, at most one of each pair of complements
(wi,zi) is positive. Typically the algorithm is initiated "at
the origin", with the complementary basis w = q. If this
solution {s infeasible, an artificial variable and column are

added, producing a tableau of the following form:

The artificial column, aeln, contains elements ai which are

-1 when 9 is negative and zero otherwise. The artificial

variable, z enters the basis on the first pivot, initiating a

0 L
sequence of pivots. A combinatorial rule determines wvariables
entering the basis. 1In each pivot, the complement of the

variable which last left the basis is introduced. For example,

if z, replaceas w, in the initial pivot, the next pivot introduces

k

Z - Analogous to the simplex method for linear programs, a min-
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ratio test is used to determine outgoing variables.

To accelerate Lemke’'s algorithm, our implementation
initiates from a basis defined by the previous subproblem’s
solution. That is, rather than solve (q,M), Lemke's algorithm is

1q, B-IN) where (I -M) is partitioned into (N B)

applied to (B;
according to an initial basis. By construction, the basis B is
complementary. It may contain both slacks and structural
columnsg. If B is a "nearly feasible”, this technique often
reduces the cost of solution. It provides significant savings in
later iterations where the optimal basis stabilizes and a single
factorization provides aﬁ LCP scolution. In tﬁese iterations,
SLCP iterates are equivalent to Newtoﬁ steps.

In the initial {iteration, a user-supplied starting point
defines the set of prices and activities which are employed in
the initial basis. In cases in which this basis is singular,
Lemke's algorithm is initiated with a slack basis.

Lemke’s algorithm concludes in one of two ways. If, at any
point, z, is selected as the outgoing variable, the subproblem is
solved, Alternatively, the algorithm can terminate on a
secondary ray. This describes a situation in which there are no
feasible pivot candidates Iin an incoming column. This can and
does occasionally happen with SLCP.

When a ray is encountered, the LCP is not abandoned.
Instead, a recovery procedure is invoked which constructs a new
artificial column with respect to the best basis encountered to

that point. (The code maintains a copy of basis indices and
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updates these pointers whenever the artificial variable begins to
increase from the minimum value which has yet been observed. 1In
the event of a restart, the artificial column is discarded from
this basis and one of the noncomplementary pair is inserted.

This ré-parameterizes Lemke’s algorithm, presumably closer to a
new solution than at the secondary ray.) In experiments reported
below, an LCP is abandoned and a new numerire is installed only
after the recovery routine has been invoked four times.

Data handling

Early implementations of SLCP represented all or part of VF
in dense format. Tﬁis simplified implementation, but it imposed
limitations on the size of problems which could be processed.
Typically, these matrices have desities on the order of 6% to
10%.

In MPS/GE, sparse data structures are used throughout.
Elements of VF are computed and initially stored in a linked lisct
with three parallel arrays, A(}), IA() and JA(). These first two
contain nonzeroes and row indices. The index array JA() sets up
a linked 1ist for storing data during computation of the
Jacobian. After all coefficients have been loaded, they are
sorted into the column-dominant order. The workspace occupied by
JA() LIs then allocated for matrix factorization.

a ena

The factorization routine is a fundamental building block

for direct numerical methods. The MPS/GE code benefits from a

efficient and robust plece of software for computing and
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maintaining sparse basis factors. LUSOL (See Gill et al. [19B6))
is used to factorize bases, solve systems of equations, and

update the factorization through column replacement operations.

Convergence
There are two obstacles to convergence of SLCP. First, it
can and does happen that a subproblem fails to solve. Second,

and less often, the sequence of iterates might fail to converge.
Rutherford [1982] and Mathiesen and Rutherford [1983] tested the
SLCP algorithm with small examples and identified instances in
which & subproblem (qh(i). Hh(i)) failed to solve for some
linearization peint, i, or numeraire, h. It seemed éxceedingly

rare that (qh(i), Hh(i)) failed to solve for all h for a fixed
- 6 ' :

z.

Failure for one numeraire slows but doesrnot interrupt the
iterative procegss. It is possible to try different numeraire
indices until a solution is obtained. 1In large problenms,

however, this can be time consuming and it is not always
successful.

Eaves [1978], Josephy {1979], Hogan and Ahn [1982] and Pang
and Chan [1983] provide various c¢onditions under whiéh iterative
algorithms such as SLCP will converge, either globally or when
initiated in a neighborhocd of the equilibrium. These
convergence results do not appear to apply to the complete class

of models representable with MPS/GE. For more on this topic, see

6 Scarf’‘s exchange ngdel (Scarf [1960}) is a model in
which, for gsome values of z, (qh(z).Hh(z)) fails for all h.
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Mathiesen [1987].

4, NUMERICAL TESTS

A numbar of models have been implemented using MPS/GE. This
section reports on convergence tests conducted with a few of
these. Our objective is to evaluate the speed with which MPS/GE
can solve ACE models containing various economic features. When
formulating a new model, solution cost and feasibility are
important considerations. They can govern the size of a model
which can be undertaken and/or dictate the machine which must be
used to solve it. From the standpoint of computational cost, the
salient characteristics of MPS/GE models seem to be the
following:

» Dimensions: the number of commodities, activities,
consumers and institutional constraints.

+ Density: the complexity of supply and demand functions, as
evidenced by the number of nonzeros in the linearized system.

+ Struccture: determined by the types of constraints and the
pattern of nonzeros in the linearization. For example, with
linear programs, stafircase structures are typically more
difficult than diagonal or band matrices.

Before describing the test problems individually, we provide
a broad overview of numerical results. Figures 1 and 2 indicate
the solution times for all test problems included in this study.
In the first figure, the horizontal axis relates problem

dimension, measured as the number of production sectors,
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commodity markets, institutional constraints and comsumers (N = p
+ n+ L+ p). The vertical axis of Figure 1 measures sclution
time in minutes elapsed, excluding input and output. All
problems are solved to a tolerance of 10'5. Indices appearing in
Figure 1 correspond to problem numbers in Table 1.

Figure 2 measures problem size by the number of nonzeros in
a subproblem linearization. This accounts for the density of

supply and demand functions.
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minutes (4.77 MHs IBM/PC)

minutes (4.77 MEs IBM/PC)
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Table 1: Solution Statistics

----- Dimensions ---- + Solution Stats -
Time
Model _ < M £ A _R Itrs. LCP _Total
1. SCARF 8 [ 5 0 126 3 : 11 128
2. HANSEN 26 14 4 0. 393 3 :20 149
3. GEX.V.T.
a) 15 region 60 21 3 0 612 8 2:08 2:57
b) 18 region 72 24 3 4] 729 6 5:03 5:48
4. GEMTAP
a) 10% 82 65 14 0 2546 3 6:01 8:49
b) 20% 62 65 14 0 2546 4 8:01 10:5¢6
c) 40% 62 65 1la 0 2546 8 16:02 23:11
5. RAMSEY . _
a) 10 period 19 39 1l 0 356 11 1:44 3:04
b) 20 period 39 79 1l 0 926 10 5:49 7:45
c) 40 period 79 159 1 0 2666 9 29:56 32:52
6. LTM )
a) 3RT-warnm 63 83 3 6 2032 11 10:35 13:30
b) 3RT-cold 63 813 3 6 2032 13 23:26 30:14
¢) 4RT-warm 72 98 4 0 1449 6 5:44 7:37
d) 4RT-cold 72 98 4 0 1449 12 15:38 18:23
7. CAMEROON 49 73 4 0 1026 5 6:49
Key:
s Production sectors. N Nonzeros in VF(z).
M Commodity markets,. Iters. Iterations.
c Consumers. Time minutes : seconds
A Auxiliary constraints.

All computations were conducted on a 4.77 MHz IBM/XT
micrecomputer, with 8087 coprocessor. Times exclude input and

output. The convergence tolerance was .00001 for all cases.
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4,1. Test Problenms
Scarf and Hansen

These models have linear s2ctivity analysis description of
production and single-level CES utility functions. Both are
described in Scarf [1973].

Generalized von Thinen

This highly stylized spatial equilibrium model is originally
due to von Thdnen, & 19th century mathematical economist. His
model was generalized in a partial equilibrium format by
MacKinnon [1976]. Rowse [1981] and Mathiesen [1985] also report
numerical results with the partial equilibrium model. Although
it closely resembles MacKinnon's test problam, the model used
here has noncompensated demand functions.

The model describes a closed agricultural economy in which
there are ¢ commodities grown on M tracts of land. Agricultural
production requires inputs of land, labor and transportation.
Discrete tracts of land, oriented in concentric rings, are
centerad on a town which serves as the point location of final
demand. Cobb-Dbuglas production functions describe labor and
land inputs to production. These functions vary between goods
but are constant over regions, Transport requirements increase
linearly with distance from the town and may vary between goods.

Thers are three consumers, distinguished by their
andowments., Workers provide labor for production at all
locations, land owners collect rents from each of the production

tings, and porters provide a commedity entitled "transport™.
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Associated with each consumer is a Cobb-Douglas utility function
including one or more of the agricultural goods. Workers value
laisure, so the labor supply is elastic.

Algebraic parameters for this model include:

M Number of regions.
c Number of produced commodities.
L Labor endowment. Labor supply equals L minus

leisure demand. Leisure’'s budget share in

vworkers' final demand equals (1 - Ii a;q).
T Transport endowment.
dj Distance from the jth ring to town;
dj = 5 (23 -1
aj Area of the jth preduction ring:
ai - 2 x 3.1415 x dj
€y Transport requirements of the ith good, per

unit distance transported, Unit transport
inputs for the ith good from the jth region
are then t, times d_.
i b
Ai.ﬁi Cobb-Douglas production function coefficients
for the ith good. For labor inputs of x and
land inputs of y, output equals:

f(x,y) = A x?1 yl'ﬁi

e Budget share of the ith commodity by the kth
consumer, k~=1,2,3 representing workers,
owners and porters.

In total, the model contains 3 consumers, M X n nested
(Leontief:Cobb-Douglas) production functions, and n+M+2
coamodities. Numerical values for these parameters are as

follows:
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Table 2: Numerical Parameters for von Thiinen Hodal

dimensions: c =4 M - 15, 18
sendovments: L = 30. T = 20..
technology: | 1 | 2 | 3 | 4
{ 1 2. 3. 4,
31 .9 .7 .5 .3
L .015 0086 004 .01
preferences: | 1 | 2 | 3 | 4
a (workers) 2 3 1 3
e {owners) 3 3 2 2
a (porters) 6 2 1 1

This model 1is a ﬁarticularly challenging test case involving
inequalities that are sometimes binding and sometimes not. For M
sufficiently large, equilibrium rental rates on outer rings equal
zero. Unit factor demands for land in the fallow tracts are
infinite. The assoclated activities, however, are not operated
because the farmgate price does not cover the cost of transport.
For purposes of computation, prices are perturbed in order to
evaluate producer responses.7 These features can lead to
numerical difficulties. For example, the magnitudes of matrix
coefficients vary from 10-5 to 106. It is possible that scaling

could overcome these problems. A first step might be to adopt

7 _;hlt {5, when evalug;ing functions, any factor price less
than 10 is replaced by 10 ", At equilibrium, no sector in
which factor prices are perturbed is operated at postive

intensity (cf. equilibrium activity levels in rings 17 and 18,
Table 3).
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the Harwell scaling routine used in LCPL. (See Tomlin [1976].)

SLCP does not process this model from an arbitrary starting
point. The following heuristic has been used successfully in
deternining a good starting point:

a) Specify initial estimates of commodity prices (ni), the
wage rate (w), the price on transport'(r) and the price of land
in region one (rl). In the cases reported here, unity is
specified for all prices.

b) Specify an estimate of v for recursively computing the
price of land in regions 2 to M, using the relation: r, = y r

J

In both cases reported here, a value of .5 1is used for -.

-1

c) Compute the unit rate of profit for production of each
good in each region:

I - x, - v d, ¢

13 i j %1 )

Cylv.xy

where Ci(w.r

J) is the unit cost function for labor and land
inputs:
1 w B r l-5.
Cy(w,xy) = ( y o —d— 7t
Ay By 1 -8

d) Assign estimates of production levels based on the

following rTules:

Y } .j / aKij if Hij>0 and nijznkj ¥ k
1 0 otherwise,
where a is the profit-minimizing input coefficient for land

Kij
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inputs:

Equilibrium prices and activity levels for the 18 region
version are displayed in Table 3. (The 15 region model has very
nearly the same solution.)

MPS/GE fails to solve this model when the number of regions
is increased from 18 to 20. 1In fact, the 18 region version very
nearly does not solve; the second LCP encounters and recovers
from three secondary rays before a solution is obtained. The
difficulties in solving the first two LCPs eaxplain the difference
in run times (2:48 versus 5:57 minutes) between the 15 and the
18 region models,

Table 3: Equilidbrium Values for von Thinen Model

T = (1., .580730, .330647, .413635) w = .611334 r = ,610758
Ring r Yl Y2 Y3 Ya
1 2.032540 6.69174 0. 0. 0.
2 . 740740 6§.88784 0. 0. .46128
3 .548514 0. 0. 0. 4.71679
4 .374762 0. 0. 0. 5.89040
3 .222589 0. 1.48949 0. 4.56510
6 .163663 0. 4.97181 0. 0.
7 .116631 0. 4.63521 1.09237 0.
8 .079986 0. 3.22987 4.83489 0.
9 .055672 Q. c. 4.33032 0.
i0 .Q35752 Q. 0. 3.59977 0.
11 .020224 0. 0. 1.78738 0.
12 .009090 0. .44500 C. 0.
13 .003803 0. .81172 0. 0.
l4 .001165 0. .38300 0. 0.
15 .000183 0. .11262 0. 0.
16 .000002 0. .00508 0. 0.
17 0 0. 0. 0. 0.
18 0 0. 0. 0. 0.
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CEMTAP

This model of the U.S., economy and tax system has been used
in a number of policy studies. (See Shoven and Whalley [1972]
and Ballard et al. [1985].) The model contains 19 production
sectors and assoclated sectoral commodities. There are 14
consumers and 16 consumption goods. The factors of production
include labor and capital. There are numerous detailed tax
#istortions: ad valorem taxes on production and consumption,
affine income tax sche#ules, and taxes on factor payments.

The model structure permits dimensionality reduction to be
exploited., This was essential given the solution toels available
at that time the model was conceived. Functicnal forms are
specified so that three variables (two factor prices and
government income) are sufficient to evaluate excess demands in
all mlrk.ets -

The MPS/GE implementation of GEMTAP does not take advantage
of dimensionality reduction. The model is implemented with all
sectoral and consumption goods explicitly represented. This
leads to a larger system, but this simplified implementation and
accomodates revisions in structure.

Using the factor price revision rule (Kimball and Harrisen
[1985]) the conputational cost for this model is roughly 15
minutes. The computational cost under SLCP is typically faster,
but it depends to a certain degree on the quality of the initiel
guess. In the runs reported here, we perturb prices from the

benchmark levels. With a p% deviation, p% is added and
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subtracted from alternate initial values. As p increases, the
starting point moves further from the equilibrium.
Ragsey
This growth model is a traditional test problem -for

nonlinear optimization. It concerns allocation of output between
consumption and investment over a finite planning horizon in
order to maximize an 1ntercempqr;1 utility functien. The utilicty
funetion is Cobb-Douglas:

u(e) - Til a® 1n(c)) + E a® 1n [Cp (1 + 7T

t=1 t=T

Qutput in each period is d;termined by inputs of capital (Kt) and

labor (Lt):.

To complete the formulation, there are equations which govern

investment and capital accumulation:

Ke =Koy * Loy

K1 fixed (inicial condition);

+

IT - KT (terminal condition);

and I_ < B

In AGE models with a single consumer, demand functions are
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integrable and equilibrium conditions are equivalent to first
order optimality conditions for a particular nonlinear
optimization problems, namely that wvhich maximizes the sum of
producer and consumer surplus. (See Samuelson [1947]). It {is
for precisely this reason that Ramsey 1s a interesting test
problem. It permits an efficiency comparison of SLCP with an

optimization code. Figure 3 illustrates these results, comparing

MPS/GE with GAHS/HINOS’.

Figure J3: Ramsesy Model Solution Times

ssiutisn tims (mMminutss)

prediam size (oumber of periods)

It can be seen that the GAMS/MINOS times are faster

For a general description of GAMS, see Meeraus [1983].
Manne [1986) describes this particular model,. The runs in Figure
3 were conducted on an 8 MH:z IBM/AT microcomputer.
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than can be achieved with the MPS/GE code on this problem. Just
the same, the comparison is encouraging: the optimization method
works with a system containing half as many rows and roughly one-
third as many coefficients as does SLCP. It should also be noted
that the simple upper bounds on investment activities are handled
implicitly in MINOS but are specified explicitly in SLCP.
Implicit upper bounding could be implemented in Lemke's
algorithm, and it would improve the SLCP run times for this and
related models.9
eroo

This is a static open economy model which has been
formulated as a square'system of equations by Dahl and Devarajan
[1987]. They solve the model with GAMS/HINOS,'using‘the
nonlinénr optimizer simply te obtain a feasible solution. The
solution time using MINOS is roughly five times longer than SLCP.
The lesson provided by this example is that not every model which
can be represented in optimization format should be solved as
such. 1In particular, the projected Lagrangian algorithm
implemented in MINOS 5.0 performs well when nonlinearities appear
bnly in the objective function and the constraints are linear or
nearly-linear fundtions. (See Murtaugh and Saunders {1982].)
LI

This model is described in Manne and Rutherford {1984] and

Rutherford [1986]. Two data sets are considered here. The three

Bounds could be incorporated into the min-ratio test in a
manner directly analogous to the treatment of bounds in the
simplex method. On theoretical implications, see Kaneko (1978).
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region model, although smaller in terms of variables, has more
nonzeros and is considerably more difficult to solve. This is
because it includes bilinear balance of payment constraints on
capital flows of one regiocn and these constraints are
particularly dense.

"Cold-start™ runs for both models nfe initiated from prices
and activity levels from a steady-state equilibrium. 1In the base
year, capital stocks are poorly adjusted, so this is not a
particularly good starting point.‘ The "warm-start”™ runs Aare
initiated from the solutions of related cases. In the four
reglion model, the initial deviations are 31.00 and 0.41 in the
cold and warm starts, respectively.

The high cost of starting from scratch is metivation to save
solutions for initiating related cases. Moving further from the
solution increases both the number and cost of iterations.

Figure 4 compares the cost per iteration for warm- and cold-
starts, using the four region test case. 1In the cold start case,
the initial basis i3 singular, sc the first LCP is initiated from
the origin. As a result, this LCP takes-far more time than
later subproblems. From iteration 5 onwards, the algorithm takes
few if any Lemke pivots, and from iteration 8 it is equivalent to

a Nevton process on a system of equations.
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Figure 4: Elapsed Time by Iteration
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$S. CONCLUSION

This paper has described an implementation of Mathiesen's
SLCP algorithm for solving applied general equilibriue models.
We have explored issues vhich do not arise in a theoretical
analysis but which are unavoidable and important in designing
reliable and efficient software. The paper revieved system
performance with test problems and empirical models. We
substantiated Hathiosen'l.finding that SLCP 1is considerably
faster than fixed-point and other methods for solving general
equilibrium models. We find that when deaand functions are
integrable, optimization methods can be faster, but this is not
necessarily true when there are highly nonlinear constraints.

In the course of the paper, several directions for further
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development and research work have been identified. These
include

(1) using inexact subproblem solutions to avoid costly
computation ofrexacﬁ LCP solutions when far from an equilibrium;

(2) implementing (implicit) simple bounds;

(3) introducing a scaling routine to imaprove robustnﬁss and
overcome numerical problems;

(4) finding a merit norm for which a decrease in each
iﬁerltion is assured; and

(5) determining ex-ante rules for the assignment of
numeraire index,

Items (1), (2) and (3) are ideas which can be implemented
and tested empirically, wheras (4) and (5) require new results in
convergence theory.

In light of the efficiency of the SLCP algorithm applied to
test problems and empirical models, it seems worthwhile to
explore means of improving robustness and accessibility of the
method. For the second of these objectives, extending GAMS to
accomodate nonlinear complementarity problems would be a logical

approach.
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