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ABSTRACT

The theory of choice proposed in "Knightian Decision Theory, Part I" is
here applied to intertemporal problems. 4an analogue of dynamic programming
called maxmin programming is developed. Also, it is shown that detailed
contingent planning may not be needed in order to achieve maximality, a pro-
gram being maximal if no other program is preferred to it. In certain cir-
cumstances, a maximal program can be achieved by making a finite calculacion
in each period. This calculation ignores distant future stactes and could

also ignore unlikely contingencies. A decision maker making such calcula-

tions would behave much like a satisficer.

*This work has been supported by National Foundation Grants SES-8410219
and SES-8605046.



INTRODUCTION

In this paper, I apply the theory of Knightian decision to interzempor-
al problems. Knightian decision theory is described in the companion paper
"Knightian Decision Theory, Part 1" (Bewley, 1986). This theory is obtained
from the usual Bayesian theory by dropping the assumption that the prefer-
ence ordering on lotteries is complete and by adding what 1 term an inertia
assumption. The incomplete preferences are representad by a set of personal
probability disctributions rather than by a single discribution. One loctery
is preferred to another if its expected utility is higher according to all
the distributions. The inertiaz assumption asserts that in some circumstances
one can define a statuys quo, which the decision maker abandoms in favor of
an alternative only if doing so leads to an improvexzeat. The theory is
meant to apply to contexts invelving Knightian uncertainty, that is, to de-
cision problems where the probabilities of various outcomes are not known
objectively.

In this paper, I investigate how intertemporal decision theory is
affected by the shift from the Bayesian to the Knightian point of wview.
Perhaps the main insight gained by this shift is that in Knightian program-
ping one can in certain circumstances achieve an undominated program in an
infinite horizon problem by making in each period only finitely many calcu-
lations. These calculations ignore distant future periods. They could also
ignore future states of low probability, If a decision maker calculated a
program in this way, his observed behavior would be similar to that of a
Herbert Simom (1955, 1939) satisficer.

Another main result is that in certain circumstances one can define an
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analogue of dynamic programming, which I term maxmin programming.x This

form of programming would allow one to calculate a program deminating =z
given initial program and would be appropriate for a decision maker whc
wished to satisfy the inertia assumption.

The plan of the paper is as follows. In Section 1, I disecuss dbrielly

the representation of Knightian preferences when there are infinizel;

many
states of nature. The infinity of states arises naturally in intertezcoral
problems because many such problems are most easily formulated using inIin-

ite horizon models.

In Section 2, I describe two types of decision problems. Tre fir::
type is similar to the usual Markov decision problem. In the second tige, a
distinction is made between exogenous and endogencus states. The evolullon
of exogenous states is not affected by the actions of the decision make:.
Endogenous states evolve in response to his actions and to change in the
exogenous states. The rest of the paper analyzes only problems of the two
types.

Section 3 contains basic and unsurprising theorems for the two types of
problem. One theorem asserts the existence of maximal programs. A program
is maximal if no other program is preferred to it. The other theorem
asserts that any maximal program is optimal with respect to one of the per-
sonal probability distributioms.

Sections 4.6 are devoted to maxmin programming, which applies only to

the second type of problem. One can apply the usual dynamic programming to

*
Henig (1985) develops dynamic programming with rewards which are only

partially ordered. He does not define maxmin programming. I owe this ref-
erence to Donald Browm,



either type of problem simply by cprimizing with respect to a fixed proba-
bility distribution. However, this technique of optimizarion would not
necessarily yield a program dominating a particular initial program.
Sections 7-9 contain the main theorems that maximal programs may be
realized by finite algorithms. These theorams are motivated by the crici-
cism of decision theory made by behavioral theorists, who claim that actual
decision makers do not make the detailed contingent plans that optimization
requires. (For a critique of this nature, see Nelson and Winter (1982).)
One answer to this cyiticism is that if computactional costs are significant,
one should be interested only in approximately optimal programs. Such an
answer implies that detailed contingent planning should become more common
as technological improvements reduce computational costs. Another way to
meet the behavioralist criticism is to replace optimality with Knightian
maximality. The Knightian approach implies that detailed contingent plan-
ning might not be necessary. The behavioer suggested by the Knightian theory

resembles that which behavioral theorists eclaim to observe.

1. Representation of Preferences Given Infinitelv Manv States

Yakar Kannai (1963) extended Aumann’s representation of incomplete
preferences over lotteries to the case of infinite dimensional altermatives.
Here, I adapt his results to the context of the models in this paper.

The infinite set of states of the world is denoted O . Q is assumed

to be a compact metric space. M denotes the Borel o-field generated by the

open subsets of (G . The set of lotteries is C(Q) , the set of continucus
functions on Q@ . If x € C(0Q) , =x(w) is the payoff in utility in scate
w . The vector space C(Q) is given the maximum norm, !-[m , defined by




[Ix[]m - max{lx(w) twe ) . The function e € C{{) denotes cthe constant
function everywhere equal to 1. If x and y belong to C(Q) , " x>y "
means " x(w) > y(w) ," for all w in 0 . There is a preference ordering

on €{N) , denocted by > , which satisfies the following assumpCions.

Assumption 1.1. x> y> z implies x> z , and for no x is x> X .

Assumption 1.2. For all x ., (y|y>» x} is open.
Assumption 1.3. e > 0 and if y < x, then z <y implies z <x .

Assumption 1. 4. For all x, y and z in C{Q) and for all a such

that 0 <a< 1, y> z if and only if ax + (1—a)y>- ax + (l-adz .

Proposition 1.1. The set K = {x € C(Q) : x> 0} is open and convex.

Also, x>y if and only if x-ye€K . If y>x €K, then y €K and

e e XK.

This proposition is an easy consequence of the assumptions. Its proof
is contained in the proof of Theorem 1.1 in Bewley (1386).

The set of continuous linear functions on M{(R) is rca(Q) , the set
of regular, countably additive set functions on M (see Dunford and
Schwartz (1957), p. 2653). If g & rca(¥) , the corresponding functional on
€(Q) is definmed by pex = [x(w)p(dw) , for x € M(R) . The weak topology
on rea(fl) is the weakest topology on rca(fl) such that for each
x € C(Q) , the function carrying gz € rca(fl) to p<x 1is continuous. A
set function p € rca(ﬂ) is called a probability measure if p(A) >0,

for all A€M and if p(Q) ~1 . If p is a probability measure, then

E x denotes Jx(w)p(dw) . E x is the expected value with respect to p .



Corollarvy 1.2. There is a set II of probability measures in rca(Ql) such

that x>> ¥y if and only if ETx >EY . for all xe€XlI . N is convex and

weakly compact,

The set I is simply {r € rca(Q) : «(Q) = 1 and [xdx > 0, for all
x € K) , where K 1is as in Theorem 1.1. The measures in II may be termed
personal probability measures. The corollary follows easily from che separ-
ation theorem for Banach spaces and the Banach-Alaoglu theorem (Dunford and

Schwarcz (1957), p. 417 and Schaeffer (1970), p. 84, respectively).

2. Two Tvpeg of Decision Problem

The decision problems to be discussed are now described. A decision
problem is described by a set of cbservable states of the enviroument, sets
of possible actions, reward functions and classes of possible transition
probabilities. Throughout, it is assumed that a reward is received each
period and future rewards are discounted at rate § , where 0 < § <1 .

Ivpe I Problems. X denotes the set of states of the enviromment. X
is assumed to be a tree with root Xg xo being the initial state in per-
iod zero. The set of states possible in period t is Xt - {x € X|x is
connected to X, by t ares} . A member of X, 1is denoted by X For each
x € X, there is a set of possible actions, A(x)‘. The reward function is
r : graph A - {0,=] , where graph A = {(x,a){x € X, a € A(x)} . If

x€X, let I(x) = (y € X|y immediately succeeds x} and let

G(x) = {g : A(x) = I(x)} . The set of states on which personal probabili-

ties are defined is Q = x G(x) . States in § are termed probability
xeX
states in order to distinguish them from the environment states L Give

1 the product of the discrete topologies on the G(x) and lect M be the
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Borel o-field generated by this topology. Since the G(x) are finite secs,
1 is compact by the Tychonoff product theorem. Since 0 is metrizable,

corollary 1.2 applies, and one may assume that the set of personal probabil-

ities is a subser, U , of recall)
A program is a member of A = X A(x) . A program & and an w €D
p i
together imply a unique szate xt(é.m) for each peried t , where xc(é'u)

is defined by induction on t as follows. XD(E'w) = X, and, for all
t > o, xc+l(§,m) - w(xc(g,w), i(xc(i’“))) . In the last equation, w(x,*)

th C et s s .
denores the x component of w , which is {tself a function from A(X)

to I(x) . Given a€ 4 and wen, £(a,0) denotes
mt

L6 r(x_(a,w), al{x_{(a,w))}

t=0 €= -oE-

I next define random programs. Give A = X A(x) cthe product of the
xeX

discrete topologies on the A(x) and let A be the Borel o-field generated
by this topology. A random program is a o-additive probability measure on
A . The set of random programs is demoted T ., A may be considered to be

a subset of T in the obvious way. If yeT , 2£(y,0) denotes

Sy (a,w)v(da)

If x€N and yeT, Ef2(1) denotes JE(r,w)r(aw) . If v and

!

7' are random programs, then v is said to dominate ' if

wa(q) > Exf(v’) , for all mel . A program is maximal if no program
dominates it. A program y € I' is optimal with respect to = € I if it

solves E“f(;) - max Eﬂf(7)
; yel'

The following is assumed throughout the rest of the paper.

Assumption 2.1. For all x € X, if a and a' belong to A(x) and

awa , then ={wfw(x,a) = w(x,a')} =0, for all re I .



If this assumption is not sacisfied it may be obtained by replacing X by
((xq, Cage %9)0 ovey (o g, x:))]for alln, x €X, x . follows x_ and
a € A(xn)]

Assumption 2.1 implies that knowledge of X, implies knowledge of all
actions taken previously. It follows that transition probabilities are
Markewv. That is, for all x € I , the probabilicy of transition from X
to xt+1 when action a € A(xt) is taken depends only on xt , a ané =« .

The fact that transition probabilities are Markov is a notational con-
venience, but is otherwise of no use since states never recur. Of course,
in reality conditions do recur and as a result people learn about the prob-
ability laws governing their environment. All such learning is assumed to
be incorporated in the definition of I .

Type II Problems. The set X of environmental states is now wriccen
as S X W . The components s and w of (s,w) € § X W should be thought
of as exogenous and endogenous, respectively. § 1is assumed to be a tree
with root sy and the set of exogenous states possible in period t is
S, = (se€ S|s is connected with sy by t ares} . A member of S_ is denoted
by S, - W is assumed to be a non-empty subset of some Euclidean space
RN . An initial endogenous state, wo , 1s specified. Actions are assumed
to be members of an Euclidean space Rx . The set of possible actions is
defined by a correspondence A : S X W = Rx . The reward function is
r : graph A - [0,«)

The evolution of the endogenous state is determined by a function
h: YW, where Y = {(s,w,a)|s €S5, weW, and a € A(s',w), where s’

immediately precedes s} . Thus, if action a € A(st, w_ ) 1is taken in state

t
(s

o’ wt) , and if the succeeding exogenous state is Seil then the suc-



1f this assumption is not sacisfied it may be obtained by replacing X by

((xg, (ag, %)), ooy (3 4. x D) |for alla, x €X, x . follows x_ and

3 € A(xn)}

Assumption 2.1 implies that knowledge of X, implies knowledge of all
actions taken previously. It follows that rtransition probabilicies are
Markov. That is, for all =x € I , the probability of transition from «x_

Lo X

o4l when action a € A(xt) is taken depends only on X .2 and =« .

The fact that transition probabilities are Markov is a notational con-
venience, but is otherwise of no use since states never recur. Of course,
in reality conditions do recur and as a result people learn about the prob-
ability laws governing their environment. All such learning is assumed co
be incoarporated in the definition of T .

Iype 11 Problems, The set X of environmental states is now writ:ten
as § x W . The components s and w of (s,w) € § x W should be thought
of as exogenous and endogenous, respectively. S is assumed to be a tree
with root sy » and the set of exogenous states possible in period t is
S. = (S € S|s is connected with sy by t arcs) . A member of S_ 1is denoted
by S. - W 1is assumed to be a non-empty subset of some Euclidean space
RN . An initrial endogenous state, wo , 1ls specified. Actions are assumed
to be members of an Euclidean space Rg . The set of possible actions is
defined by a correspondence A : S X W ~ Rg . The reward function is
r : graph A = [0,=)

The evolution of the endogenous state is determined by a function
h:Y-W, vwhere ¥ = [(s,w,a)]s €8, wWeEW, and g € A(s',w), where s5'
immediately precedes s} . Thus, if actioen a & A(St' wt) is téken in state

(s

wt) , and if the succeeding exogenous state is s then the suc-

e’ t+l !



ceeding endogencus state is W = h(s_,,. ¥ 3)

t+l t

The sctates on which personal probabilities are definec is

Q= ((50, Syv - )IVt. Se € S and sc+l succeeds st} . Given gach §_ the

-
«

discrece topolegy and X St the product of these topolegies. Give Q che

t=0
-]
relacive topology as a subset of X St . 0 is metrizable and is compac:,
t=0
m
being a closed subset of the compact set X St . let M be the Boral

t=0

g-field on 01 generated by this topology. The set of personal probabili-
ties is a subset, @I , of rca(Rl) . Because S 1is a tTee, each 7 €I is

2 Markov process on S

K . - .
The set Z = X R may be considered te be the set of potential pro-
S€ES

grams. Given a € Z , cthe endogenous state in period t , w_(a, s )

defined as follows, if it may be defined at all. The definicion procesds by

induetionon £t . For t =0, ,wo(g, so) -V - Suppose that w:(f’ st)
has been defined and that Seal succeeds S, - 1f

a(s,) € A(s_, w (2, 5)) , let w_.(a s.,)~ Bis 4. ¥ (2, 5.0, a(s.))
Otherwise, wt+1(§, st+1) is not defined. A potential program, & , 1is
called a program if wt(g, s:) is defined for all t and all S. - The
sat of programs is denoted A, or by é(su, wo) if it is necessarj to

indicate the dependence on the initial state.

If aeA and w -~ (so,'sl, ... Y €O, then i(i.w) denotes

o

t
tEOS r(st, w:(g, st), g(st, wt(g, st))) . 1f a and a’ are programs, a
dominates 3" if Exf(i) > E“f(é') , for all 2 €0, where

Eﬂf(i) - f#(a,w)r(dw) . a is maximal if no program dominates it. A

program E € A 1is optimal with respect to w € I if it solves

E #(3) = max E £(a)
i st "



The states s, are assumed to be observable, so that at any moment one
¢an calculate what past and current returns would have been had one followed
an alternative program. SucH an assumption is appropriate for problems in-
volving investment in securities wich published prices and dividends. It
might not be appropriate for problems invelving investment in machinery and
equipment, where one might know the return only for the type and scale of
production process actually used. Such problems might bettar be modeled as

problems of Type I.

3. Basic Theorems
I here state conditions under which a decision problem of either type

has a maximal program and is such that any maximal program is optimal with

respect to some w € [I .

Ass tions A ing to Both es of Problem
Assumption J.]. The reward fumction r : graph A -+ [Q,®) is bounded.

Assumption 3.2. [ is non-empty, convex and weakly compact.

Ass io i o _Tyvpe T Problems

Agsumption 3.3. For each x € X, I(x) and A(x) are finite non-empty
sets,

Ass ions A i t I Problems

Assumption 3 &, Each s € S5 has a finite and non-empty set of immediate
successors. W 1is a closed, convex and subset of RF with non-empty in-
terior. For all (s,w) € S x W , A(s,w) is a non-empty compact subset of

X
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If s€S and s ¥ sy, let Y(s) = {(s',w,a) € Y|s’' =« s) , where Y

th

is as defined in Section 2. For n =1, N

, let h_ be the =n
n

component of h .

Assumprion 3.5. For all s € S, graph A(s,+) 1is convex and closed and

r(s,*) : graph A(s,+) -~ [0,0) 1is concave and continuous. For s » s, and

0
for n=1, ..., ¥, hn(s.-) : Y{s) = W 1is concave and concinuous.
Assumption 3.6. If w and w' belong to W and w>w' , then
A(s,w) 2 A(s,w') for all s . For all s and a and for n=1, .. N,
the functions of w , r(s,w,a) and hn(s,w.a) , are non-decreasing.

Throughout the rest of the paper, it is assumed that the above assump-
tions apply to the respective types of problems. The following theorems

apply to either type of problem.
Theorem 3.1. A maximal program exists.

Theorem 3.2. A program is maximal if and only if it is optimal with respect

to some &Il .

Proof o eorem 3. or Type T Problems
As in the previous section, for each x € X, lec A(x) have the dis-

crete topology and let A = Xx A(x) have the product topology. Since each
xeX

A(x) 1is finite by assumption 3.3, A(x) 1is compact and so by the Tychonoff

product theorem A is compact.
Since by assumption 3.1, r is bounded, the function £ : AxQ

<+ {0,=) is continuous with respect to the product of the topclogies on A

and O . Since A X 0 is compact, £ is uniformly continuous. (The
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topologies on A and 0 are metrizable, so that uniform continuity may be
defined.) Therefore, for any n € II , the function ETf 1 A= [0,@) is
continuous. Since A 13 compact, ETE achieves its maximum. Any program

achieving the maximum is maximal in the sense of being undominated. .E.D.
g g

Proof of Theorem 3.1 for Tvpe IT Problems

Give the set of potential programs, Z = X RK , the producz of the
5€3

K . .
usual topologies on each copy of R~ . Give A the relative topology as a
subset of Z ., It is routine to verify that A 1is non-empty and compact.

It is not hard to verify that ¢ : A x O ~ [0,») 1is continuous. As in

the previous proof, it follows that there exists a maximal program. Q.E.D.

Proof of Theorem 3.2 for Tvpe I Problems

Clearly, any program optimal with respect to some = € I is maximal.
In order to prove the comverse, it must be shown that if ¥y € I' is maximal,
there exists = € I such that E-2(3) 2 Ezf(7) , forall ye&T .

Let D = {£(y,*) : 0= [0, @)[y €T}l cC(Q) . D is comvex, for if T
and 1, belong to T and 0 < e <1, then evy + (1—-::)12 € D and
Blay; + (1ma)7y) = ebly)) + (1~2)i(y,)

Let K = {x € C(M|E _-x > E£(7), for all € M . K is convex and
has non-empty interior with respect to the maximum norm on C{(f2)

Since 7 is maximal and I is non-empty, DN K= ¢ . By the separ-
ation theorem for Banach spaces, there exists X € C(0) such that =7 » 0
and  [(x(w) - y(w))m(dw) >0, for all x €K and yeD . It follows
that =#(Q) > 0 , so that one may assume =(Q) = 1 . Also, if Ex>0,
for all w0, then E;x >0 . Since TN is weakly compact, it follows

easily that % € I . Clearly, E-2(3) > E-f(y) , for all y€T . Q.E.D,
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Proof of Theorem 3.2 for Tvpe 1T Problems

The following lemma is easy to wverify.

Lemma 3.3. Let a’ and 2" belong to A and 0 <a<1l. Lec a be
defined by a(s) = aa’(s) + (l1-a)a"(s) , for all s €5 . Then, ae€aA

and wt(g, st) > awt(g , Sc) + (l—a)wc(ﬁ , Sc) , for all t and all S,
and f(g,u) > a%(g', w) + (l—a)i(i“, w) , for all we.
The proof now proceeds as for Type I problems with D defined to be

(x € C(?)|x < £(a), for some 2 € A} . Q.E.D.

4, Recursivicy in Problems of Tvpe 1T

I now describe a special assumption on @I , which applies to problems

of type II. First of all, the following miner assumprion is needed.
Assumprion &£.1. For all se€S, =#(s) >0, forall =ell.

For each s € § , let I(s) be the set of immediate successors of

s . If s, € S and n €I, let “T(St+llst) be the probability accord-

ingto # of s conditional on the occurrence of s - Let

t+l

0.(s) - {«T(-ls)lw € M) . ( "T" stands for "transition.”) By assumption

4.1, HT(s) is a well-defined, closed convex set of probabilities on

I(s) . Let F: I~ xIL(s) be the map defined by F(r) = x,(+|s) for
55 s T

all s &8s .

Definition 4.2. T is recursive if the map F is subjective.

This assumption plays the same role in maxmin programming as the Markov
assumption in the usual dynamic programming. However, it is not a general-

ization of independence, as is the usual Markov assumption. If it were
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believed that the factors influencing transition from s, to s, were
independent of S. o for all ¢ , then the sets HT(St) should, for each
. ] )

t , be independent of Se and, say, equal to HTt . Also, if T € HTC R

for all t , then there should be x & I such that xT(-[st) -~ for

all s and t . However, if = = HT , for each s and t , it does
T s, t T

n

°F follow that there is = € I such that m.(*|s) = =
c

, for all =t

and S, ., SO that 1 1s not recursive.

Nevertheless, even if the s are independent in the sanse just de-
scribed, 11 may contain a recursive subset, so that recursivity may be used
for some purposes, such as the result of Section 9 below. I the sats uTt
are sufficiently large, then @I contains a recursive subset. (In the ex-
treme case in which each nTt consists of all possible transition probabil-

ities, I consists of all regular, countably additive probability measures

oun M . The sec of all such probability measures is cerﬁainly recursive.)

5. in Programming for Problems of e T

In order to describe maxmin programming, some additional notation is
needed. For any (st, w) € 5XW and any t , there is a decision sub-
problem P(st, w) with inicial state (st, w) . The tree of exogenous
states for P(s_, w) 1is S(s.) = (s € S|s = s, or s follows s ) . The sec
of personal probabilities for P(s_, w) is IH(s.) - {x[-[s ]|r € I] . The
probability measures in H(st) are defined on the measurable subsets of
(s.) , where 0(s ) = (v = (s, s], ... )60|s;: - s} . Let A(s., W)
be the set of programs for P(st, w) . If ae€ é(st, w) , 1gt

(st, v, a, +n) be defined just as wc(é, st) was defined in Section

w s
t+n t

2. That is, wt(st, v, &, st) -w and w (st' w, a,

t+n+l sc+n+l)



= inal
h(s 110 YWeun(Ser ¥ 20 s, ), g(sc+n, wtm(sc, v, 2, s ) Finally,
if aeals,,w) and w=(sy, S5, ... )€ a(s)) , let f(s., w, 2, v)
S n
- n;os TS0t Weun(Ser ¥ 2 Sean)t 205 p LA CHPRL SO SR )
If a4, let R:(g, st) - r(st. wt(g. St)' E(s:)) , where
wt(a. St) is as defined in Sectiom 2. Also, if w e Q(st) , let
~ o
R(él st' U) - E 6nRt+n(§' S:+n) ) where W - (50' 51' . st‘ $c+l' ‘_-)

n=0

The value function for maxmin programming is defined relative to a

fixed program E € A, the value function being
V(g,s,w) -  max min E {£(a) ~- R(E,s)] . Clearly, V(a, Sgr ¥o) 20
aci(s,w) wel(s)

and 3 is maximal if and only if V(3, 55, wy) = 0 . Also, if 3 is

maximal, then V(E' S. wt(i, st)) =0, £for all S, -

Theorem 5.1. ¥(a) is well-defined and satisfies the equation V(a, S.o W)

- aEA?:x " [r(st,w,a) - R(E's;) + § mi?s )EﬂV(E, S i1’ h(st+l,w,a))] .
t’ ﬂ‘EHT t

Progf. It is first shown that V(a,s,w) is well-defined. Because I(s)

is weakly compact and i(g) - i(g.s) € C(f(s)) , the minimum over I(s)
exists. As in the proof of theorem 3.1, the function

£ é(s,w) X f1(s) - [0,2) is continuous and é(s,w) and Q(s) are compact
and metrizable, It follows that % is uniformly continuous and so

min Eﬂf(g) is continuous with respect to a . Hence, the maximum over
x€ll{s)

a exists in the definition of V .

The recursion equation for V follows from the following equations.



V(a, s, W) =  max min E_[£(a) - R(2, s.)]
a€i(s_,w) nel(s )’
=S t
- max {r(s_, w, 5(5 ¥y -R (E, s )+ min z w(s_.,) min
§E§(st,w) ¢ c ¢ ¢ xeﬂr(sc) Seel trl ﬂ'EH(St+1)

E_,[2(a) - r(s_, w, a(s ) - R(3, 5_ )]

) aeﬁ?:i,w)(r(st. e ¥ R(E' S:) i «E;i?st) si+1ﬂ(sc+l)
Eeé(st+lT;?sc+l'w'a)) H,GH?§:+1)E3'[2(3) TR St+l)]}
The first and last equations follow from the definitiom of V . The

second equation follows from the definition of £(a) and R(E. st) and the

recursivity of I . The third equation should be obviocus. Q.E.D.

It is not hard to obtain an analogue of the policy improvement method
using V . In order to do so, it is necessary to characterize V as the
unique fixed point of the obvious contraction mapping. Give S x W cthe

product of the discrete topology on S and the usual topology on W as a
subset of RN . Let Cb(S X W) be the set of all continuous bounded funp-
tions on §xW . If veEC(SXxW , le H(@)v be the function on

S x W defined by H(E)v(st, W) - max f{r(s

w, a) - R (a, s_)
aEA(st,w) £~ =t

tl

+ § min E"v(s h{

wEHT(st)

H(g) : Cb(S X W) = Cb(S X W) 1is a contraction with respect to this supremum

e+l Sep1r ¥ a))] . Then, H(a)v e cb(s X W) , and

norm on Cb(S X W) . The next theorem is an immediate consequence of the

contraction mapping theorem and theorem 5.1.
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Theorem 5.2. V(a) is the unique fixed point of H(g) and so belongs ts
cb(s xW) . If ve Cb(S x W) , then Hn(g)v converges uniformly to V(E)
as n goes to infinity. V(a,s,w) is a concave functiom of w for ezen

H

a and s .

Once V(a) 1is known, it is possible to describe how to compute a

such that min E [$(a) - £(3)] = ¥(a, s,, w,) . The program a must, for
T - - P ¥} 0 -
i 3 - - 3
each st , sSolve the equation V(i, St' wt(é.sc)} r(st, wt(E,st) _(s:‘)

-R (z,s )+ 4§ min E V(a,
t'—-" C -
nel (s ) "

A(St’ wt(a, St)) is compact and V(a) 1is continuous, this equation has =

Sca1? h(sc+l' w:(i' St)' E(S:))) . Since

solution, provided wt(i' sc) is known. Since wo(g, so) =V, is knowm,
one can build up é(sc) by induction on t , starting from t - 0 .

It is now possible to describe the analogue of the policy improvement

method. The improvement step proceeds as follows. Suppose one is given

program En . Compute V(En) . If V(En, sy wo) -0, a2, is maximzal and
no improvement is possible, If V(En. Sg+ wo) >0, let 21 be such
min E (2(a_,) = ©(a )] = V(a , sy, wy)
el

If one starts with an arbitrary a, . then successive application of
the improvement step yields a sequence - LI If this sequence

continues indefinitely, it has a limit point, since A 1s compact. Let a

be either the last member of the sequence or a limit point.

Theorem 5.3. E is maximal and dominates 2, unless E -2, .

The improvement method just described is not, of course, an algorithm,
for it may not be possible to carry out any of the steps exactly. However,

the method suggests how to obtain an approximately maximal program dominac-

ing a given program, for each of the steps can be carried out approzimacaly.
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Proof of Theorem 5.3. If a = a, s for socme n , then V(a, g wo) -0,
so thac g is maximal. Suppose that E is a limit point of 2y 3
For each n , let € - min Ex(r(5n+l) - r(in)] . For all n , < >0

N well

and nfosn < :ég Eﬂ[i(EN+l) - E(EO)I . Since the right-hand-side of this

inequalicy is bounded, 1lim ¢ = 0 .
s

For each n , let fn : A(so. wo) ~+ (==, @) be defined by

f (a) =» r(s., w., a) - R (a_, 5,) +§ min E V(a
n Q Q'=n” "0 “GHT(SQ) T

Similarly, let f be defined by the same formula with 3, replaced by a .

-—

n' sll h(sll wo! a))

Neocice that . = fn(5n+1(so)) = may fn(a) , for all n .
asi
There is a subsequence En(k) , k=1,2, ... such that
iiz En(k)(s) - g(s) , for al} s . Then, ii: fn(k)(a) = f(a) , for all a.
Suppose that E is not maximal. Then, V(E, so, wo) >0, so that

1
f(a) >0, for some a . Therefore, cn(k) 2 fn(k)(s) > if(a) , for k

sufficiently large. This contradicts lim ¢ = 0 . This proves that a
Koo n(k) b
is maximal.
It remains to be shown that g dominates 2, when E "2, - If

_ _ N-1

a=a., for some N , then min En[r(f) - r(go)] > Z < >0, so that
el n=0

E dominates a, . If g - 1lim En(k) , £for some subsequence n(k) , then

k=

min E [£(a) ~ £(a,)] = lim min E [£(a ) - f(g J}] ., and for all k such
e =0 ko 7€l ¥ n(k) 0

that =ndk) >0 , :; Eﬂ[?(_a_n(k)) - f(go)] 2 ¢4 > 0. Q.E.D.
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§. First Order Conditiogns for Tvpe II Problems

Subgradients of the maxmin value function give rise to first order con-

ditions just as they do in the usual dynamic programming.

Theorem 6.1. A program a is maximal if and only if for each . there

. N . . in =
exists p(st) e R+ and RT( Ist) € HT(st) such thac, for all S.

1) p(st) is a subgradient of V(a, S w) at w=1w_(a, sc) and

2) a(s)) solves max [x(s_, Wc(i. Sc). a)
- aca(s v (2,5))

’ 6E“T('Isc)(p(sc+1)°h(st+l’ ve(a, so). 2l

The following example should clarify the meaning of the theorem. The

example represents the saving problem of an immortal consumer.

Example, Let W= [0,=) , A(s,w) = {0,w] , r(st. W, &) = u(st, a) , and

his 4, %, a) = (L +R(s_ ,))(w-a) + y(s_.,) , where y(s_.q) >0, for

all Sei1 - Also, w is wealth, a is consumption and w-a is saving.

R(st+l) is the real interest rate om saving, and u is the utility func-

tion.

A program a 1is maximal if and only if for each Se s there exists

A(st) such that for all S »

du . .
1) az(st, E(St)) < l(st) , with equalicy if E(st) >0, and

2) As) £A(s) , amd XMs) £ X(s) if a(s) <v_(a, s) , where

t
A(s ) = & min

E . ({1 + R(s A(s_ . ,)) , and
”T('lst)enT(st) L |St) t+l t+1

Xs) =6 t)((1 + R(S DA 1)) -

max Ew ar
xT(-lst)EﬂT(st) T
The numbers x(st) and A(st) are, respectively, upper and lower marginal

utilities of saving.
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Proof of Theorem. Suppose that a 1s maximal. By theorem 3.2, there is

7 € I sueh that a solves max E f(g’) . As in Section &4, for each s_ ,
e

lec wT(-[sc) € M (s.) for the transicion probability defined by = . For

each (s,w) € § xW , let Vﬂ(s,w) - max{Eﬂf(g')lE’ € A(s,w)] . By the

usual first order conditions for a concave programming problem, there exists
N
uc
for each S. o p(st) € R+ such thac for all Se

n p(st) is a subgradient of Vﬂ(st, W) at w o= w:(é, sc) and
2) E(Sc) solves erce mix(a . ))[r(sc, wt(é, sc), a)
a the=""t
+ §E

xT(-

s ) P(e) By ¥ (20 50, 2]

That p(s_.) 1is a subgradient of V(a, S w) at w=w (a, st) follows

from the following inequalities,

p(st)‘(w - w(_a:l sc)) 2 vﬂ(st' w) - vﬂ(st' wt(ét st))
- max E [Z(a') - i(3. St)]
aea(s,w " T -
> max min Eﬂ,[f(g') - R{(a, st)I

! ’
a Eé(st,w) T eﬂ(st)

- V(a, s_, w) =V(a, s_, w) - V(a, s_, wt(g, sc))

c' - T - t

This completes the proof that the conditions of the theorem are necessary
for maximality.

Now assume that conditions 1 and 2 of the theorem apply. Fix s, € S

and let a' e é(st, wt(é' st)) . Then,
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min Eﬂ[f(g') - R(a, s

w_(a, s )]
ﬂ&"I(St) e

cl

Srls., v (3, 8), a’'(s))) ~ (s, v.(a, s), als ))

+ SE”T(.ISC)V(E' St+l' h(st‘['l' wc(év Sc): 5'(SC)))

[ ¥a

(s, wt(g. s.)y a'(s)) - x(s, w.(a, s), a(s))
+ SE"t('lsc)EVCE' Seal’ h(5c+l' wt(g. st), E(SC))

+pls ) (hls g, v (a, s, a%(s)) ~nls_,, w (2, s, als)))]

A

V(a,

Frpe]s V@ Seap Ve (@ Seay))

The second and third inequalities above follow from conditions 1 and 2,

respectively. It now follows from the definition of V(2) that

V(i, St’ wc(g, St)) < SE”T('[st)V(§' st+1, wt+l(§' st+l)) . Since the
numbers V(a, Seo wt(é, st)) , for S, € § , are non-negarive and bounded,
it must be chat V(a, Sy wo) = 0 . Hence, a is maximal. Q.E.D.
7. Recursivity i oblems of e I

In order to define recursivity for problems of type I, I assume the

following.
Assumption 7.1. For all t and x, [= Xt , there is a program a € A such

that w{wlxt(g,w) -x)>0, forall rel.

By assumption 2.1, w{w}xt(é,w) - xt) is independent of a2 . Define x(xc)
to be w{u[xt(g,w) - xt} for some a€Ai such that this quantity is posi-
tive. Also if e & A(xt) , let ﬂT(xt+llxt' a) = ﬂ{w[xt(g,w) ~ X and

-1 . .
w(xt. a)y = xt+1](ﬂ(xt)) ., where & is some program such that
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niwlxt(g.w) - xt} > 0 . Again by assumpzion 2.1, the tramsition probabilicy
KT<xt+l|xt' a) is well-defined. Let xT(-ixt) be the function, f , from
A(x.) to the set of probabilicy measures on I(x ) defined by
f(a) = rT(-]xt, a) . For each x & X, let Eo(x) = {1T(-[x) T r e

Finally, let F : T~ X L. (x) be defined by F(x) = (v [%)
xeX )

Definition 7.2. N 1is recursive if F 1is subjective.

Just as in the case of problems of twvpe 1I, I may contain a recursive
subset aven if it itself is not recursive.

There is an alternacive definition of recursivicy which is very similar

to that of Secrtion 4. let ﬂc = X G(x), and, for t >0, let
x=X
T
5. = (wg, .o, uc—l)lwn €a_, for all n) . Letring s, be an arbitrary
o)
point, one can define, in an obvious way, 5 = lso} v us to be a tree
t=l
with root so . One could define NI to be recursive if it were recursive

relative to § 1in the sense of definition 4.2. This definition of recurs-
ivity is not useful because one cannot cbserve the Se in 8§ . If ome
could observe the s, . ome could use this definition of recursivity to

define maxmin programming. Neither of the altermative definitions of re-

cursivicy implies the other.
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8. Maximalitv bv Avproximaciom in Problems of Tvpe I

The object of this section is to show that under certain conditions one
may realize a maximal program for a type I problem by making a finite compu-
tation at each state at which one arrives. The intuition behind the rasulc
is that if one does not know how to evaluate precisely probabilities of
future events, then it is pointless to carry contingent planning beyond a
certain level of detail.

Assume that assumptions 2.1 and 7.1 apply. More notation is required
in order to describe two addizional assumptions. Let 1I(x,2) be the set of
those immediate successors of x which occur with positive probabilicy iZf
action a € A(x) is taken. By assumption 7.1, I(x,a) is well-defined.
Let AI(x,a) be the set of all probability measures on I{x,a) and let

A(X) = x AI(x,a) . This sat contains HT(x) . Give A(x) the usual
acAa(x)

topology as a subset of a Euclidean space.

Assumption 8.1. For all x , HT(x) has non-empty interior in the topology

of aA(x) .

This assumption asserts that the decision maker is uncertainty averse and is

unicertain about all possible random events,
For each x € X there is a decision subproblem, P(x) , with initial
state x . This subproblem is defined much as P(St’ w) 1is defined at the

beginning of Section 5. The notation applying to P(x) 1is like that of

Section 5. The set of states is X(x) = {x'|x’ equals or follows x} . The

set of probabiiistic states is Q(x) = x G(x')Y , and M(x) 1is the set
x'eX(x)

of measurable subsets of Q(x) . M(x) may be considered to be a subset of

¥ by means of the natural projection from O to Q(x) . By assumptions



2.1 and 7.1, #(x) is well-defined in 7 € I , sco thac

W(C[x) - w(C)(ﬂ-(x))-1 is well-defined, for C € M(x) . The set of personal
probabilicies for P(x) is I(x) = (x(+|x)|r € ) . The set of determin-
istic programs is é(x) . IfA ae é(x) and w € Q(x) , <the total rewaré
is f(x,i,m) . If melx), let Vﬁ(x) - max(Eﬂf(x,§)|§ € A(¥)) . Vx(x)
is the value of P(x) if the personal probability measure =x is usad to
evaluate programs. If x' follows x and = € O(x) then x(-[x’) S

H(x’') 1is well-defined.

Assumption 8.2. For all (x,a) € graph & and = € I{x) , )(x') is

V‘.‘l'(' [xu

not comstant as x’ varies over I(x,a)

This assumption asserts that random variations always mattar.

I .now define what it is for a program to be calculable. If X, € X
and n is a positive integer, let X(x_, n) = {x_, € X(xt)lo <k £ n)
There corresponds to X(xt, n) a decision subproblem, P(xt, n) , with
states X(xt, n) . P(xt, n) 1is defined much as P(xt) is defined.
Because P(xt, n) has only finitely many deterministic programs, a maximal
program for P(xt, n) can be calculated in finitely many steps. A program
E € A 1s calculable if at each state X there is a finite procedure for
choosing a positive integer n(xt) and a program a, for P(xc, n(xt))

T
such that 5(xt) -2 () .

t
The procedure used to calculate a ignores distant future states. The
procedure could be improved by ignoring states of very low probability as

well.

Theorem 8.1. If assumptions 8.1 and 8.2 apply and NI is recursive in the

sense of definition 7.2, then there exists a calculable mz»imal program a .
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Proof. First of all, I need notation applying to the prablem P(x_, n)

The set of probabilistic stazes is Q(xt, n) = x{G(x)|x € K(xt, n)} . The

sets of personal probabilities and of deterministic prograns ars denotad,

respectively, by M(x_, n) and A(x, n) . If ae A(xt, n) and
r & 2=a
w € Q(xc, n) cthen f(xt, n, a, w) denotes the total reward. II
y v v , - m £(x_. a, a € A(x_, n)y) . 1If
x € I(x_, n) , cthen V (x_, n) ax(E_(x_ a)la g A( o )
T € H(xt, n) , then xT(-lx, a) denotes the corresponding veczor of trTans-

irion probabilities.

The pair (P(x_, n), ) , vwhere = € lI(x_, n) , is said to be satis-
[ 15

facrorv 1f it meets the fcllewing conditions.

. . . .
Condirion 8.3, For all x:+k € X(xt, n) with k<n, xr( [x:+k) belongs
to the interior of HT(xt+k)

Condirion 8.4. If ae€ é(xt, n) solves Vx(xt' n) = Eﬂf(xt. n, a) , then

there is z&(-[xt) € EI(xt) .such that xi(-]xt, E(xt)) - nT(-lx:, E(Xt))
-2.n
and Vﬁ(xt, n) - B(l-4) 74§

>r(x,, a)+§ I n.’r(xt+1ixt, a)vx(.‘xtﬂ)(xu_l. n-1l) , for all

xt:+1

a % a(x) , vhere B> sup{r(x,a)|(x,a) € graph A)

) - - . r - ‘
Lemma 8.2. Fix 7 ( Ixt) in the interior of HT(xc) . I (Blx_, m), m)
is such that ﬂT(-lxt) - ;i(-lxt) , then (P(xt. n), m) satisfies condi-

tion 8.4 for all n sufficiently large.

Proof. It is enocugh to show that if (P(xt, nk), nk) is any sequence such

that wkI(-ist) - wT(°|xt) , for all k , and tiz no=e, then there is

a subsequence, denoted (P(x:, nk), xk) again, such that (P(xc, nk), wk)

satisfies condition 8.4 for k sufficiently large. By the compactness of
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I{s_) , one may assume that lim = (-]x) - (-IX) » for all x e X(x)) ,
t Jevea kT T T

where =« € H(xt) . Therefore, lim VTr (xt+l' oo 1) = Vﬁ(x
k= "¢

X following X - Lec a [ é(xt, nk) satisfy Vx-(xt, nk)

y . for any

T+l

[
- Eﬂkr(xc, o, ék) and let a2 € é(xt) satisfy Vﬂ(xt) = Eﬂr(xt, i)
Since A(xc) is finice, one may assume that ak(xt) = a(x_) , for all k.
Aol -~ [

By assumption 8.2, V

w(-lxt+1)(XC+l) is not conszant om I(xt, a) ,

for all a e A(xc) . Since rT(- xt) - ;T(-lxt) belongs to the intarior of
HT(xt) , there is ﬂé("Xc) € HT(xt) such that xi(-]xt, E(xc))

- ;T(-[x_, a(x))) and for some ¢ >0

r

Vﬂ(xt) -~ > z wi(xt+llxt, a)Vﬂ(_Ixt l)(xt+l) , for zall z = g(x:)
t+l 0
Hence, for sufficiently large k , V_ (x_, nk) - B(l—&)-26 «
frk =
2 Domplx o, lx, AV Clxo ) Fesrr B =1 for all
X k e+l

ana(x) - gk(xt)

This completes the proof of lemma §.2.

The pair (P(xt, n’'), «') 1is said to extend (P(xt, n), ) if o >n
and m equals =’ <restricted to n(xt, n) . Assumption 8.1 and lemma 8.2
imply that one can find in finitely many steps a satisfactory extension of
any pair (P(xt, n), n) which satisfies condition §.3.

The procedure for calculating a maximal program is as follows. Choose

WT('

xo) in the interior of ET(xO) . By assumption 8.1, such a choice is

possible., Let (P(xo, n(xo)), L ) be a satisfactory extension of
0
(Blxg, 1), mp(+]xy))

One now constructs by induction on t satisfactory pairs

(P(xt, n(xt)). th) such that whenever xt+1 follows x
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(B(x n<xc+l)), T

t+l) extends (B(x_,,, n(x) - 1), = (-\xt+l)) . The

t+l’
induction step is as follows. Suppose the construction has been made for

xk with k=<t ., Let xt+l follow X, . Because :t satisfies condi-

i . ? (s
tion 8.3, zx:( xt+l) does so as well. ILet (P(x_ ., (1t+1)), L ) be

a satisfactory extension of (P(x n(x ) - 1), = (»Ixc+l))

t+l’ -
For each X, lec Ex c é(xt, n(xc)) be optizal with respecc to
T
LA Let E e A be defined by E(x:) -2 (x_)
T S

I next show that the calculable program a just defined is maximal,

For each x_ , let ﬂ%(-]xc) be a transicion probabilisy satisfying condi-
[

tion 8.4 for (P(xc, n(xt)), Ty ) . By the recursivicy of I , there is

t
# € I such that xr(-]xt) - ﬂT(-lxt) , for alil LI iz is sufficient to
show that E is optimal wich respect to x . By the standard theorem of

dynamic programming, a is opcimal with respect to = if

8.5 for all X and t , E;('|x )r(xc,g)
- max [r(x_,a) +§ I m.(x_.,ix_,a)E= t(x_.,a)]
aea(x,) £ %, TV e+l T T T r( lxc+l) e+l'=

In order to prove equation 8.5, T need the following lemma. Let =« &I

be such that nT(-Ixt) - rxtT(-lxt) , for all %, - Since NI is recur-

sive, = exists.

Lemma 8.3, For any X, and any xt+1 e X(xc, n(xt)) .

E‘]f(o ]x )r(xt"‘k' E-) Z vﬂ' (. lx )(xt{—k, n(x_t) - k) , and
t+k xt t+l )k
A - _2 c Y
E -v . n(s -k B(1~§
n(-]xt+k)r(xt+k- 2) “xt('lxt+k)(xt+k n(x ) - k) g B(2~6) 6
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Proof of lemma. For notational convenience, the proof is given for the case

k=0 . Let the increasing sequence Xé, Yi, ... of subtrees of X(x_) be
defined as follows by induction on ¢ . Xé - X(xc, n(xt)) . Given
Xpo X = XL VUG onlx oD Ry € X)L Lec a be the pro-
- [ £3 - - -
gram on Xn defined as follows. En(xt+k) E(xt+k) , 1f k <n . For
- i 1 -
k>n , En(xc+k) a, (xc+k) , Where X, 1is the element of Xt+n
t+n
preceding LI Notice that a, = Exc
It should be clear that Vﬂx (xt, n(xc)) - Ew(-[xc)r(xt' 50) , that
t
1( Ix ) o 8 ) < Ew(-[xt)r(xt’ 3n+1) , for all n , and that
ilm E (e lx ) En) - Ex(-]xt)r(xc’ a) . Also,
_ -1 n(xt)+n
E“(.]xc)r(xt, §n+1) - E,(. X a) < B{1-§) ¢ . Therefore,
. 2 n(xt)
En(-]xc)r(xt’ a) - VR (xt, n(xc)) < B(1-6) 7§

X
t

This completes the proof of lemma 8.3,

I may now prove equation 8.5 and hence the theorem. By condition 8.4

and lemma 8.3,

8.6) for all X, and t , “( |x )r(x , a)
>r(x,, a) +§ E xé(xt+!|xt, a)Ex(-|x )r(xt+l, a) ,
t+1
for a2 in é(xt) not equal to E(xt)
Recall that ;T(-Ixt) - xé(-|xt) and wT(-Ixt) - ﬂxtT(-lxt) , for all
®. . Since by condition 8.4, thT(-]xt, a(x.)) = xo(+|x,, alx)) , it
follows that E;(-Ixt)r(xc, a) = Eﬂ(. xt)r(xt, a) , for all %, and t© .
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Proof of lemma. For notational convenience, the proof is given for the case

k- 0 . Let the increasing sequence 6, ‘1. ... of subtrees of X(xt) be
defined as follows by induction on € . X6 - X(xc, n(xt)) . Given
X\ XK= XU VIR n(xt+n+l))]xt+n+l €X/) . Let a_ be the pro-
- ' : s
gram on Xn defined as follows. En( t+k) c&k) , 1if k <n . For
k>n , En(xc+k) -3, (xt+k) , Where Xein is the element of Xc+n
t+n

preceding Xk - Notice that a, - Exc

It should be clear that V“x (xt, n(xt)) - Ew(-|x )r(x:, 50) , that

t

Ew(-]xc)r(xt’ En) < E“(.[xc)r(xt, 5n+1) , for all n , and thac

ilm EN( lx ) an) - Ex(- xc)f:(xc. a) . Also,
_ ’ -1 n(x )+n
1( lx )r(x 5n+1) - E”(.lxt)r(xt, E) < B(1-§) ~& . There:o;e,
A ) -2 n(xt)
Eﬂ(. xt)r(xt, a) - Vﬂx (xt, n(xc)) < B(1-§) ~§

=
This completes the proof of lemma 8.3.

I may now prove equation 8.5 and hence the theorem. By condition 8.4

and lemma 8.3,
8.8) for all X, and t , x( Ix )r(x a)

>r(x,, a) +6 T mpx,[x., 2)E X 10 3

r{*|x

B(
c+1)

for a in é(xt) not equal to E(xt)

Recall that ;T(-lxt) - «%(-[xt) and mo(e[x. ) = “xtr(°lxc) , for all

x. . Since by condition 8.4, "xtr('lxt' a(x.)) = mple]x, atx)) , it

follows that E- -l Y 8) = By YR, a) , for all x_ and ¢ .
T



Substituting = for m in inequality 8.6, one obtains equation 8.5.

This completes the proof of the thecrem. Q.

t"
o

The procedure just described for calculating a maximal program reminds
one of Simen's (1955, 1959) satisficing. A decision maker following the
procedure outlined would not be interested in refining his calculations once
he had achieved a satisfactory incomplete program. In this sense, he would

behave as if he had achieved a predetermined aspiration level.

9. Maximalicvy bv Apvproximacion in Problems of Tvpe IT

This section is devoted to an analogue of theorem 8.1 for type II prob-
lems. The main difference with the previous section is that the analegue of
assumption 8.2 must be stated in terms of derivatives rather than levels,
because type II problems have continuous state and action variables.

Assume that assumption 4.1 applies, sc that HT(S) is well-defined,
for all s . HT(S) is a subset of the set of all probability vectors on

. . I(s)
the immediates successors of s

, ecall it A The analogue of assump-

tion 8.1 is the following.

Assumption 9.1. For all s , HT(S) has non-empty interior in the usual
topology on AI(S)
If (s,w) € 83 xW, let P(s,w) be the decision subproblem defined at
the beginning of Section 5. If x € H(s) , let ‘Vw(s,w) be the value of
P(s,w) according to =« , as defined in Section 6. If n is a positive
integer, let S(st, n) = {st+k € S(st)IO < k < n} . If welW , let
P(s

e Vs n) be the decision subproblem corresponding to S(St’ n) wich

initial stare (St’ w) . The problem P(st, w, n) 1is defined in the
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obvious way. Let é(s:, w, n) , Q(st, n) and E(St. n) be, respectively,
the sets of programs, probability states and personal probabilicies for

P(st, w, n . If ae é(st, w, n) and w € ﬂ(st, n) , let

~

r(st, w, n, a, w) be the total return. Similarly, if = € H(st, n} , then

V.(s_, w, n) = max(E E(s_, v, m, a)la e A(s_, w, n)) . If 7 €I(s)

V (s, v, n) is defined tobde V (s . W '

o W n) , where =

e is the restric-

tion of = to Q(st, n) . In order to be able to deal with derivactives,

the following assumptions are made,

Assumption 9.2. For all s , the functcions r : graph A(s,-} = [0,=) and

h : ¥{s) - W ares continuously differentiable and there is Bl > 0 such

that |[Dh(s,w,a)] < B for all s, w and a .

l r

The derivatives of r and h are denoted Dr and Dh , respectively.

Assumption 9.3, For every (s,w) and n and every n € H(s) , the func-
tions Vﬂ(s,w) and V“(s,w,n) are continuously differenciable with resgect
to w . There are B2 >0 and n >0 such that n <1 and

n
IIDVﬂ_(s,w,n)]] < B, and [DV (s,%,n) - DV (s, < By, forall s, ¥,

and n .

1t is important that Bl , 82 , and n Dbe known to the decision

maker. Otherwise, he would not know how to calculate a maximal program.
Many economic programming problems satisfy assumption 9.3, though gen-
eral conditions om r , h

., A, W and 0O guaranteeing these assumptions

are awkward to state.

The analogue of assumption 8.2 is the following.
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Assumption 9.4, For any (s,w) € S x W and =x € Ii(s) , if a is any pro-
gram for P(s,w) which is optimal with respect to =x , then the convex

bull of (DV . |g,y(s", h(s", v, a(s)))Dh(s’', w, a(s))[s’ € I(s)} has non-

. co: N+K
empty interior in the affine subspace of R spanned by

{p(s’)Dh(s’, w, E(s))]s' € I{s), p(s’') € RN, for all s}
The following assumption is also neeced.

Assumption % 5. For any program a and any wx € I ,

lim & E:w:(é' sc) -0 .
bl

A program a € A is said to caleulable if at each state (s_, %)
arrived at, there is a finite procedure for choosing z positive intagar

1 if 3 -
n(st) and a program gst for P(St’ wt, n(st)) and if E(st) Es_(st) ,
for all s

t

Theorem 9.1. If assumptions 8.1-9.5 apply and if I is recursive in rhe

sense of definition 4.2, then there exists a calculable maximal program a .

Progf. The proof is much like that of theorem 8.1. In a pair
(P(st’ w, n), ®) , it is understood that r € H(st) . Also,

(P(st, w, n'), ') extends (P(st, w, n), #) if n’' >n and = equals

n' vrestricted to n(st, n} . The pair (P(St’ w, 1), ®} 1is satisfactorv

if it meets the following conditionms.

Condition 9.6. For all Seix € S(st, n}) with k<n, wT(-|5t+k) belongs

to the interior of nT(st+k)
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Condition 9.7. Suppose that ae€ é(sc, w) solves the equation
- - - i
v”(st’ w, n) = Ewr(st’ w, n, a) . If for each s:+l € ;(sc) , p(st+l) € R

P . n-1
satisfies Hp(st+1) - DV"(‘|SC+1)\St+1' h(st+l' W, E(sc), n)" < Zan ,

then there is r%(- St) & HT(SC) such that

z ﬂ"i‘(st:-f-llSc)p('e't+l)m'l(st4.~l’ v, 2(s )

Se+l
- = “T(Sc+1|5:)nv«(-[s y(Seapr Blspye w0 2(s )y mdh(s 1, W, als))
S t+l
t+l
3 x - y i ?“; £ T;
Lemma 9.2. Fix xT( |s:) in the interior of HT(SE) . If
(P(St’ w, n), ) 1is such that ﬂT(-]st) - ﬂT('[St) , Chen

(P(s:, w, n), 7) satisfies condition 9.7, for all a sufficiently large.

Progf. It is enough to show that if (P(sc, w, nk). xk) is any sequence

such that xkr(-]st) - wT(-Ist) , for all k , and iif n o=

there is a subsequence, denoted (P(St' w, nk), ﬂk) again, such that

, then

(P(st, w, nk), xk) satisfies condition 9.7 for k sufficiently large. Let

a3, € é(st, w, nk) solve ka(st, v, nk) - Eﬂkf(sc, v, o, Ek) . By compacs-

ness, one may assume that lim wkI(-Is) - wT(- s} and 1lim gk(s) = a(s) ,
ke k-~ -
for all s e S(st) , Where x € H(st) and a € é(st) . Then,

Vw(st, W) = Ewr(st, w, a) , lim DVTr (st, w, nk) - DVﬂ(sc, w) and
ke k
lim DVﬂ (St+l’ h(st+1, w, Ek(st))) - Dvﬂ(st+1, h(st+l' w, E(st))) , for all
ke k
See1 € I(st)
By assumption 9.4, there is ¢ > 0 such that if for each

N . s
St+1 € I(st), p(st+l) € R° satisfies

Ip¢s ., q) = DY h(

' Ser1r B84 W §(St)))" < ¢ , then there is
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mi(e]s) € L(s)) such that T ar(-]s)p(s IDh(s ., ¥, a(s)))

T+l
Seel
- . z mp (e st)Dv«(-Ist)(5t+l' his .y, ¥ E(St)))nh(st+l’ w, a(s_}) . By
t+1 1
o, -1
assumption 9.3, it now follows that if n, 1s so large that 4B,n o<,

then (P(st, w, nk), zk) satisfies condition 9.7. This ccmpletes the proof

of the lemms.

The procedure for calculating a maximal program is as follows. Choose
WT(°[SO) in the interior of HT(SO) . By assumption 9.1, such a choice is

possible. By assumption 9.1 and lemma 2.2, one may find in finitely many

steps a satisfactory extension of (P(so, wo, 1y, HI(-ESOJ) , call it

(P(so, ¥y n(so)), rSO) . Let Eso be a program for ?(so, L n(so))

which is optimal with respect to =« . Let E(s Y =a_ (s5.) . Then
Sg =70 =54 0

w.(a, s - h(s,, w., a(s is well-defined.
One now continues by induction em t to construct a sequence of satis-

factory pairs (P(sc, “5(5' St)' n(st)), wst) and the actions

E(st) -2 (s.) . These are such that if s

. e+l follows S. then

(P(st+l' wt+1(§‘ st+l), n(st+l)), g ) extends

t+l
(P(st+l, wt+l(§' st+l)’ n(st) -1, wst(-[sc+i)) . Thus, suppose by induc-
tion that g(sk) and (P(sk, wk(g, sk), n(sk), xsk) are defined for
k=t . Then wt+l(§' st+1) is well-defined. By assumption 9.1 and lemma

8.2, (P(St+l’ wt+1(§' st+1), n(st) - 1), L (-|st+l)) has a satisfactory

C
extension, call 1t <P(st+l’ wt+l(§‘ St+1)' n(st+l)), g ) . Let a
_ t+1 t+l
be a program for P(St+1' wt+1(§, st+l)’ n(st+1)) optimal with respect to

wst+l and let wt+1(5' St+l) - h(5c+l, Wc(f. St). E(St))
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It remains to be shown that the calculable program a is maximal. Bv

condition 9.7 and assumption 9.3, for each s_ , there is
wT(-Ist) € I (s.) such that
3.8) z ’f(sc+1|st)nvws (Spppr Year(2r Sgpg)s Rl 40
Sesl t+l
*Dh(s_, ;. ¥ (2, s), a(s.))

= T (s lsDV Cols. (et Year (@ Spup)y A(s) - 1)
S .1 s, t+l
Da(s_ 10 w.(3, s ), als)))
: - \ ; L
For each s, and t , let p(st) DIrr (st, wt(_, st), 1(st))
Se
Because a is optimal with respect to x_ in P(s_, w_(a, s, nls )

T t -

ok follows that the pair (wc(g, sc)' E(st)) solves the problem

max [r(s_, w, a) +6§ S x_.(s_.ls_)
(w,a)egraph A(s_,*) € sgToerlle

st+l

thrs (‘|Sc+1)(st+l' Wesn (3 Spqgde nls) = (s, W, a) = p(s)ew]
t
Therefore,
2.9) (Wt(g, ) E(st)) solves the problem
max [z(s.,w,a) + 6§ 2 mls_ s )pls Oh(s_,w.a) = p(s )v],

(w,a)€graph A(st,-) s':+1
for by equation 9.8, the first order optimality conditions are the same in

. these two problenms.

By the recursivity of I , there exists =z € I such that

ET(-

st) - x%(-

st) , Ffor all s, - Conditions 9.9 are one form of the

first order conditions for the problem maz{E;%(g)]g € &) . This problem is
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concave and by assumpcion 9.5, the tranmsversality condicions are satisfiled,

so that =z 1is optimal with respect to r and hence Is maximal. Q.E.D.

The fellowing example shows that the conditions of theorem 9.1 are not

Example. Consider an investment problem with sbjective Ifunctions

-1
E £ §"u(a_) , where u is differenciable, concave and inmcTeasing and
ﬂ't'o [ .
d .
Q<§ <1 . Assume that EEu(O) < = . The variable a_ represents con-
[

sumption in period t and is the action variable. The endogenous state

variable is wealth, w . If wealth is w , the set of possible actions is
[0,4] . The set of exogenous states is the tree § , and [ is a set of
probability distributions over paths in S5 . Assume that [ satisfies

assumptions 4.1 and 9.1 and is recursive. If the curreat state is (st, w)

and the action is a € [0,w] , then the succeeding state is

(st+l' h(st+1, w, a)} = (st+1’ b(st+l)(w—a) + y(5t+l)) , whers b(st+1) >0
and y(st+1) > 0 . Assume that there is <+ such that 0 <y <1l and for

every s, D<é§ I rT(st+1|sc)b(st+l) <~y , for all
Se+l

“T(Sc+1[st) € I(s.) . Assume also that for every s there is

t ¥

€ I(st) such that b(s ) =0 .

Seel t+1

This example satisfies the assumptions of theorem 9.1. In particular,

if V (s,w) 1is the value function, V_ is differentiable and %V“(S,W)

d
is positive, Notice that for every (s,w,a) , g;h(s’, w, a) =0, for
some s’ € I(s) and %;h(s', w, a) > 0 for some other s’ € I(s) . Also,

dh(s’, w, a)/dw = ={dh(s', w, a)/da] , for every (s’', w, a) . It follows

that the set of derivatives appearing in assumption 9.4 is a non-trivial
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. 2 . ;
interval of the line {(xl, x2)|x2 = —xl} in R” , so that this assumption

is satisfied.
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