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The existence of equilibria is established in an overlapping generations ezchange economy, where each
generation lives for two periods and the commodity space is the positive cone of en tnfinite dimensional
Riesz space. In particular, we establish the ezistence of equilibria in the stochastic overiapping generations
model, i.e., we establish the enstence of egquilibria when the commodily space in each period 1s Lo
equipped with the Mackey topology 7(Lx. L1).

1. INTRODUCTION

P. Samuelson’s consumption loan model [41] and its various extensions, i.e., overlapping generations
models [7, 8, 22}, constitute one of the two major paradigms in general equilibrium analysis; the other
is, of course, the Arrow-Debreu model [6, 15]). For an insightful comparison of these two models see the
work of J. Geanakoplos [19].

* Resecarch supported in part by NSF grant DMS 83-195%4.
t Rescarch supporied in part by NSF grant SES 83-19611. This author wishes lo express his grotitude
to John Geanakoplos for his patient tutoring on the “paradores” of overlapping generations models.
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Apn essential feature of overlapping generations models is that each generation’s commodity space
is a subset of a finite dimensional vector space. Consequently, uncertainty can only be included in
these models if we posit a finite dimensional state space. This restrictive assumption precludes an
overlapping generations analysis of financial markets modeled on La-Hilbert spaces as ip the recent work
of 3. H. Barrizon and D. M. Kreps [24] or in the work of D. Duffie and C. F. Buang [17] or consideration
of a stochastic overlapping generations model with commodity space Leo.

In this paper, we shall prove ihe existence of equilibria in overlapping generations models where
each agent’s consumption set lies in the positive cone of an infinite dimensional Riesz space. As such, our
overlapping generations models are instances of exchange economies with a countable number of agents
and an infinite dimensional commodity space. The first explicit trestment of overlapping generations
models as special cases of economies with a “double infinity” of agents and commodities {or large square
economies as they are called by J. Ostroy [33]) is due to C. A. Wilson [44). Although Wilson's model
is a special case of our more general analysis, his work has been the seminal influence on the research
reported in this paper.

There has been a recent renaissance in the general equilibrium analysis of economies with infinite
dimensional commodity spaces, since T. F. Bewley’s path breaking work {10] in 1971. Most of this work
on existence of equilibria has assumed eitber s finite number of agents as in [2, 28, 31, 34, 37, 45, 46] or
a continuum of traders as in [48] ot a measure space of agents as in {25, 30] or a nonstandard number of
agents as in {12]. An exception is the recent paper by S. F. Richard and 5. Srivastava [38], where they
consider economies-with -a.countable number of agents.

Similarly, the recent explosion of papers on overlapping generations models has been, for the most
part, concerned with the issues of Pareto optimality [13, 14, 21] and indeterminancy {18, 20, 27). In
contrast, this paper is concerned with the existence of equilibria in exchange economies with a countable
number of agents and an infinite dimensional Riesz space of commodities, with particular attention to
the overlapping generations model.

Our method of proof derives from the arguments of T. F. Bewley [10], in that we consider a countable
family of subeconomies where the n*® subeconomy consists of the first n agents. Using A. Mas-Colell’s
recent equilibrium existence theorem for finite exchange economies with a Riesz space of commodities
[31], we construct a sequence of equilibria, one for each subeconomy. We must now take the “limit” of
these allocations and prices. At this point, we have a choice of price normalizations. We can normalize
prices such that the social endowment bas unit value (in which case, the limit price may be a non-zero
singular price that assigns zerc value to each agent’s initial endowment). Or we can normalize prices
according to C. A. Wilson [44] so that the first agent’s initial endowment has unit value (in which case,
the limit price may assign infinite value to the social endowment).

For the general case, we adopt the first approach and prove the existence of a very weak equilibrium
potion which we call a weak quasiequilibrium. In a weak quasiequilibrium, the limit price supports the
limit allocation but budget equality may not bold for any agent.

For the special case of overlapping generations models, we adopt the second pormalization. Qur
major innovation here is the explicit construction of the commodity space for the overlapping generations
models as the inductive limit of subspaces which contain the consumption sets of each generation. This
new space does not contain the social endowment. Moreover, the dual of this Riesz space is the space
of prices which contains our limit price. Our construction of the commodity and price spaces for the
overlapping generations models explicates the fundamental difference between these models and Arrow-
Debreu models, i.e., the failure of Walras® law in overlapping generations models. In fact, since the social
endowment does not lie in the commodity space of the agents, Walras’ law is not even defined in our
overlapping generations models. From this perspective, the surprising fact sbout overlapping generations
models is not the suboptimality or indeterminancy of equilibria but rather the existence of equilibria.
The construction of the commodity and price spaces as inductive and projective limits respectively, is
basic to our analysis and its mathematical foundation is discussed in detail in section 3.

The intended interpretation of Samuelson’s original Consumption Loan Model was an infinite hori-
zon version of Irving Fisher’s general equilibrium model of intertemporal exchange as exposited in Fisher's
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classic work *The Theory of Jnteresi®. It i fitting that impatience or myopia which played such ar im-
portant role in Fisher's analysis of capital markets should also be central to our study of intertemporal
exchange. In section £ of Lthis paper, we introduce a notion of myopic preferences which is 8 proper gen-
eralization of the notions of impatience introduced by D. J. Brown and L. M. Lewis {11] and subsequent
authors {32, 35}.

The major result of this paper is Theorem 8.1. It simply amserts that if in an ovetlapping generations
model each generation’s consumption set is the positive cone of a Riesz space E 80 that E together with
its dual E' constitute a symmetric Riess-dual system. then equilibria always exist.- Symrnetric-Riese -dua)
systems as models of the commodity-price duality were inmtroduced into general equilibrium analysis by
C. D. Aliprantis and D. J. Brown [I]. Special cases of symmetric Riesz dual systems are (1) Lo
paired with L, and (2) L paired with L. Hence, our existence theorem demonstrates the existence
of equilibria in stochastic overlapping generations models and in overlapping generations models with
financisl markets.

2. MATHEMATICAL PRELIMINARIES

This work will utilize the theory of Riesz spaces. For details and extensive treatments of the theory
of Riesz spaces we refer the reader to the books [4. 5, 28, 43, 47]. We review briefly below the basic
concepts needed for our study.

A Riesz space E is a partially ordered (real) vector space for which every finite set has a least upper
bound or supremum {and slsc a greatest Jower bound or infimum). The supremum and infimum of the
set {z,y} are denoted by z Vy and z Ay, respectively; ie, zVy = supiz,y) and 2 Ay =inf{z,y}.
If z is an element in & Riesz space, thep the eements

gt:=zv0, z7:=(-z)V0 and |z) =xVv(-2)
are called the positive part, the negative part and the abeolute value of z, respectively. We have
z=z* -2 ad jeizzt 4z
The cone of positive elements E* consists of all elements z € E with 2 > 0, ie.,
Et={z€E z20}).
The symbol z > 0 means z > 0 and z # 0.
For the rest of this section the letter E wil! denote a Riesz space. A subset Aof Fissaidtoben

solid set whenever |z} < |y| and y € A imply £ € A. The principal idea! A, generated by an element
z € E is the amallest ideal containing z, and i precisely the set

Ac={y€E 3)>0witly| < Mz}

A net {2, } of L is said to be non-decressing (in symbole. 2, 1) whenever o > fimplies 2z, > 25 in E.
The symbol 2z, | z means that z, { and = = sup{ 24 } both bold. The meanings of £, | and z, | z are
similar. A net {z, } is said to be order conrergent to z (in symbols, z, —+ 1) whenever there exists
another net { y, } with the same indexed set satisfving y, | 0 and jz, ~ 2| € yo for all a. A subset 4
of E is said to be order closed whenever {z,)} C A and z, —- z imply z € A. Ap order closed ideal is
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referred to as a band. A Riesz space is said to be Dedekind complete whenever z, 1< z implies that the
supremum of the set {2, ) exists in E.

Two elements £ and y of £ are said to be disjoint (in symbols, 2 .1 y) whenever lz[A |y} = 0 bolds.
The disjoint complement of a pon-empty subset D of E is the set

D'={z€E zlyVYyeD}={zeE: [z]Alyl=0¥ye D}

The disioint complement D¥ is always a band of £.
If z < y, then the wet
fz.yh={z€E:z2<2 <y}

is known as an onder intervel of E. The subsets of the order intervals are referred to as order bounded
seis. A linear fonctional f: E — R is said to be order bounded whenever it cazries order bounded
sets onto order bounded subsets of R. If f is positise (i.e., if 2 > O implies f(z) > 0), then f is order
bounded. The vector space of all order bounded linear functionals on E is called the order dusl of £,
and is denoted by E~ Remarkably, under the ordering f > g whenever f(z) > g(z) for all z € E*, th

order dual £ is a Dedekind complete Riesz space. Its lattice operations are given by )

fveg(e)=sup{fy)+9(z): y2€ EYand y+2z=2}, and
JAg(2)=i{f(y)+9(z): y2€E* mmdy+:=12)

for all z € E*.
An order bounded linear functional f: E —= R is said to be order continuous (or a normal infegral}

whenever 2, — 0 in £ implies f(z,) —= 0 in R. The vector subspace of all order continuous linear
finctionals s a band of £, and is denoted by E;. It is important to keep in mind that

E=E;®(E)

holds, i.e., each ¢ € E” bas a unique decomposition ¢ = éa + ¢,, where ¢, is order continuous and
¢, € (E;)%. The knear functioval ¢, is called the order continuous {or the normel) component of &,
and ¢, is called the singulor component of ¢. If ¢, =0 (ie, i $ € (E=)Y%), then ¢ is calied a singular
functional otherwise it is called non-singular. Riesz spates with an sbundance of nornal integrals will
play a erucial role in our study and for this reason we give them a vame.

Definition 2.1. A Riesz space E is is said to be a normal Riesz space, whenever
1. E is Dedekind complete;, and
2. E; separates the points of E, Le., if 2 # 0, then there exists some ¢ € E with ¢{z) # 0.

It should be poted that every ideal of a normal Riesz space is a normal Riesz space in its own right.
An ideal A of E is said to be order dense in E whenever for each z € E¥ there exists a net {z,} of A
with 0 € 2, 1z in E. An ideal 4 is order dense if and only if 4= {0}.

The pull ideal of an order bounded linear functional ¢ is defined by

Ny:={z € E: }él(iz)) =0},

and its carrier is the band C,:= (Ng)é. Clearly, ¢ is strictly positive on C, ie., 0 < z € C, implies
¢(z) > 0. By the above the null ideal Ny is order dense in F ifandonly if Cy = {0}.

It is important to note that on » normal Riesz space every singular functional has an order dense
null ideal. The details foliow.

Theorem 2.2. If E is a normal Riesz space and ¢ is » singular livear functional on E (i.e., ¢ € (Eq)2),
then its null ideal N, is order dense in £



Proof. Assume ¢ € (Ea), and let 2 € Cy. If ¥ € I, then ¥ L ¢, and s0 by |4, Theorem 3.9, p. 23} we
bave Cy C Ny. Thus, |¢(|z]) = 0, and in view of [¥(z)| < |¥|(|z]), we see that ¥(z) = 0 for all ¥ € E;.
Therefore, (Ny)¥ = Cy = {0}, and hence N, is order dense in £.8

Now we turn our attention to topological properties of Riesz spaces. All topologies will be assumed
to be Bausdorfl. A linear topology r on & Riesz space E is said to be locally convez-sobid (and (E, 1) is
called & locally convez-solid Ries: space) whenever it has s basis at zero consisting of convex and solid
neighborhoods. Every locally convexsolid topology on E is generated by a family of lattice seminorms; a
seminorm ¢ on E is said to be a lattice seminorm whenever |2 < |y implies ¢(z) < ¢{y). The topological
dual E' of a locally convex-solid Riesz space £ is always an ideal of £~

A Riesz dual system (E,E') is a Riesz space E together with an ideal EY of £ that separates the
points of E such that the duality is the natural one, ie., (z,2") = £/(2) holds for all 2 € Eand all ' € E".
If (E,E') is & Riesz dual system, then the absolute weak topology |o|(E,E') is the smallest locally
convex-solid topology on E consistent with (E, E’). It is generated by the family of lattice seminorms
{pr: 2' € E'}, where pe:(2) = |Z’|(|z]) foralz€ Eand 2’ € E.

A Riesz dual system (E, E’) is called symmetric whenever E (considered embedded naturally in
(E')) is an ideal of (E'); i.e., whenever (E',E) is akso 8 Riesz dual system. A Riesz dual system (E, E')
is symmetric if and only if every order interval of E is o(E, E')-compact; see [5, Theorem 11.13, p. 170].
For simplicity, the topology ¢(E,E’') will be denoted by w and it will be called the weak topology. If
E is a normal Riesz space, then (E, E;) is & symmetric Riesz dual system and so its order intervals
are o(E, E;)-compact. Ip addition, for a normal Riesz space E the Mackey topology r{E, E;) is locally
convex-solid, i.e., 7(E, Eq) = |r|(E, E,) holds; see [4, Corollary 20.12, p. 140]. The Mackey topology
7(E, Ey) was used by S. F. Ricbard and S. Srivastava in [38).

Special and important examples of locally convex-solid Riesz spaces are provided by the Banach
lattices. Recall that a Riesz space equipped with a lattice norm is called a mormed Riesz space. A
complete normed Riesz space is known as a Benachk lattice. A Banach lattice is said tc be an AM-space
whenever for all 2,y > 0 we have [[z V yl| = max{{jz||, iy}l }. Az AM-space is said to bave & sxit ¢ > 0
whenever

Hzll =imf{A>0: |z| < Ae}
bolds for all . Every AM-space with unit is lattice isometrie to some C(Q) for a unique Bausdorff compact
topological space (2, where the unit corresponds to the constant function one on £; see [5, Theorem 12.28,
p. 194}

It is important to keep in mind that if E is » Dedekind complete Riesz space and z # 0, then the
principal ideal A, under the lattice norm

¥l = inf{2> 0: ly] < Alz|}, ¥ € A;,

is an AM-space having |z| as & unit; see [5, Theorem 12.20, p. 187). In addition, the locally convex-solid
topology generated by || - [l (Which will be dencted by 7., ) is the finest locally convex-solid topology that
A, admits.

Finally, we mention the symmetric Riesz dual systems associated with order continuous Fréchet
lattices. Recall that s linear topology = on a Riesz space is called order continvous whenever z, 0 implies
2o — 0. Keep in mind that for a Riesz dual system (E, E") the weak topology on E is order continuous
if and only if every locally convex-solid topology on E consistent with (E,E’) is order continuous; see
{5, Theorem 11.10, p. 168]. A Banach lattice whose norm induces an order continuous topology is called
a Banach Jattice with order continucus norm. The latter is, of course, equivalent to saying that z, [ 0
implies {|zall | 0. Unless A, is finite dimensional, the topology 7. on A, is never order continuous.

A Fréchet lattice is a complete metrizable locally convex-solid Riesz space. In a Fréchet lattice the
classical Eberlein-Smulian theorem (see [23, pp. 206-211]) guarantees that a subset is weakly compact if
and only if is weakly sequentially compact. An order continuous Frécket latlice is a Fréchet Jattice whose
locally convex-solid topology is order continuous. If E is an order continuous Fréchet lattice, then E is
Dedekind complete, its topological dual £’ coincides with E (i.e., E' = E. )}, and its order intervals are
weakly compact. Thus, for an order continuous Fréchet lattice E, the dual system (E, E') is a symmetric
Riesz dual system and the order intervals of E sre weakly sequentially compact.
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3. THE IDEAL GENERATED BY A COUNTABLE SET

As we have menptioped ip the introduction, the main purpose of this work is to study economies with
a countable pumber of agents. This naturally leads us to the study of ideals generated by a countable
pumber of elements. As far as we know, there is not a comprehensive study of these ideals available in the
. mathematical literature. For this paper and for future reference, we gather below some of the remarkatble
algebraic and topological properties of the ideals generated by a countable number of elements.

For ibe discussion in this section E will denote a fixed Dedekind complete Riesz space. Also, we
shall fix a sequence {8, ) of E and we shall let A denote the ideal generated by the sequence {46, }.
Clearly, A is the same as the ideal generated by the sequence {5,. }, where bp = T lBilin=1,2,....
Thus, replacing each @, by f,, we can assume without Joss of generality that 0 < 8, 1 holds in E. Note
that

A={z€E:32>0umd n€N with |z| € A8, }.

For each n we shall denote by A, the principal ideal generated by 4,,, ie.,
An={z€FE: 31>0with |z} < 26, }.

The ideal A, oquipped with the l2"tice norm
llzlla = inf{A>0: [z[< 2y}, 2 € An,

is a Banach lattice. In fact, A, under || - ||, is an AM-space having 6, as a unit. rom 0 <6, 1 in E,
we see that A, C A, holds for all n and A = {JIo, An. We shall denote by §n the norm topology
induced on A, by || - |in. Since [|zfln+1 < l{zlln bolds for all £ € A, it follows that {ny; € €n holds on
A,. To avoid trivialities we shall also assume that the inclusion A, € An4 is proper for all n.

Definition 3.1. The inductive limit topology £ is the finest Jocally convex topology on A for which
all the embeddings i,:(An, &) “ (A, §) are continuous.

The topology £ is uniquely determined in the following sense. If {z,} is another sequence that
generates A (we can suppose 0 < 2, 1 in E) and B, denotes the principal ideal generated by z,,, then
the inductive limit topology of the sequence { B, } on A is precisely £.

To see this, let B, be equipped with the lattice norm

izl = inf{A > 0: |z{ < Azn }, z € B,

and let 5, denote the topology induced by ||| - llln on Bn. Also, denote by 7 the finest locally convex
topology on A such that all embeddings jn:{Bn.f) < (A,7) are continuous. Now if k is fixed, then there
exists some n and some M > 0 satisfying #; < Mz;. This implies Ax C By, and |||zjl|n < M||z]|s for all
z € Ay. Thus, the embedding ini: (Ai, &) — (Bn,7n)} i continuous and since all jo: (Bn,m) — (A, 1)
are continuous we see that each iz = jn © iny:(Ar, &) — (A, ) i continuous. Therefore, 5 C £ must
hold. By the symmetry of the situation, we infer that £ C 7, and hence n = ¢§.

A basis at sero for the topology £ consists of the sets of the form

V= co(D Vo),

where V,, C A, is a £,-neighborhood of zero (and, of course, co X denotes the convex bull of the set X'
in A). An immediate consequence of the above observation is that a linear functional f: 4 — R is -
continuous if and only if f restricted to each A, is £, -continuous. The reader can find the general thecry
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of inductive limits in the books [23, 40, 42). Next, we shall list the basic properties of the inductive limit
topology €.

Theorem 3.2. The locally convex space (A,£) is a locally copvex-solid Riesz space whose topological
dual coincides with the order dual of A, i.e., (A, ) = A” boids.

In particular, £ is a Hausdorfl topology if and ouly if the order dual A separates the points of A
{and bence, in this case, (A, A’') is a Riesz dual system).

Proof. If V,, is a solid £,-neighborhood of A,, then (7, Va is a solid subset of A, and hence co (LJ72; Va)
is a solid £-neighborhood of A; see [4, Theorem 13, p. 4]. This implies that £ is also a locally solid
topology.

Next, note that a linear functional f: A — R is order bounded (i.e., f € A7) if and only if f-restricted
to each A, is order bounded. Since A, is a Banach Iattice, ita order dual coincides with its norm dual {5,
Corollary 12.5, p. 176], and so a linear functional f: A — R is order bounded if and only if f restricted
to each A, is £,-continuous (i.e., if and only if f € (4,£)’). Thus, (A4,§)' = A holds. ®

It should be kept in mind that if £ separates the points of E, then A” also separates the points of
A, and hence the inductive limit topology £ is always a Hausdorfl locally convex-solid topology on A.

For the rest of the discussion in this section we shall assume that A" separates the points of A so
that the inductive limit topology £ is a Hausdorff locally convex-solid topology. More properties of the
topology £ .are included io the next theorem.

Theorem 3.3. The inductive limit topology € on A is barrelled, Mackey (i.e., § = 7(A,A7)) and
bornological.

Proof. See [40, pp. 81-82].8
Remarkably, the strong order dual A"of A is a Fréchet Iattice.

Theorem 3.4. The order dual A” with the strong topology B(A™, A) is a Fréchet lattice.
Proof. Combine [23, Proposition 5, p. 171] with {23, Corollary 4, p. 166].8

Next, we shall discuss the case when § is a strict inductive limit. As we mentioned before, the
inductive limit topology £ on A is independent of the generating sequence {6y }.

Now assume that there exists a disjoint sequence {wy } of E* {i.e., wn Awm = 0 for n ¥ m) that
generates the ideal A; we can assume that w, > 0 bolds for alln. Put w, = E:-;, w; and let C, denote
the principal ideal generated by &y, Note that &g Awngy =0 holds foralln. Let z € Co. I A > 0
satisfies |£| < Adn, then clearly {z] € Adn4y holds. On the other hand, if A > 0 satisfies |z]| < Adnys,
then we bhave

|z] = fz] A Adngr = [2] A XGn + 2] A Awn gy
= |z A Ady < Ady.
Thus, a constant A > 0 satisfies 2| < Ay, if and only if [z} € Adns41. This shows that ||zl = llz{ln+1
holds for all £ € Cy, i.e., || - ||ns1 restricted to Cp, is precisely || - [[n. It is, therefore, immediate that C,

is €nqq-closed in Cpyq. In this case, £ is the strict inductive limit of the sequence {Cn} of AM-spaces.
I. Kawai 26, Theorem 6.6, p. 311) bas also proven the converse.

Theorem 3.5. {(Kawai) The inductive limit topology € ou A is a strict inductive limit topology if and
only if A is generated by a disjoint sequence of non-zero positive elements.

It is interesting to note that when £ is the strict inductive limit, the ideal A has a nice representation;
see [26, Theorem 6.6, p. 311} for details.

Theorem 3.6. (Kawai) If £ is a strict inductive imit, then there exists a locally compact and o-
compact Hausdorfl topological space Q such that A is Iattice isomorphic to C.(f) (the Riesz space of
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all continuous real-valued functions on 0 with compact support).
In addition, if H = { h € C(Q2): h(w) > 0 Vw € 1}, then the sets

Vi={f€C(): fW) <Mw)VweRN), heR,

form a basis at sero for the £-neighborboods.
When £ is the strict inductive limit, then it also has a pumber of extra properties.

Theorem 3.7. If £ is the strict inductive limit, thea:
1. The locally copvex-solid Riesz space (A, ) i topologically complete and non-metrizable.
2. The topology £ induces £, on each A, and each A, is §-closed in A.
3. A subset of A is £-bounded if and only if it & contaived in some A, and is £,-bounded there.

Recall that a topological vector space (X,7) is said to have the Dunford-Pettis properiy whenever
2, — z in X aod. f, — f in X’ (the topological dual of (X, 7)) imply fa(zn) — f(z). The reader
will notice here that the Dunford-Pettis property i nothing else but a joint sequential continuity of the
evaluation map (2,p) — p-z. The lack of joint continuity of the evaluation map is one of the major
differences between economies with finite and infinite dimensional commodity spaces. For more about
the Dunford-Pettis property see [5, Section 19].

Theorem 3.8. If £ is the strict inductive limit, then (A, £) bas the Dunford-Pettis property.

Proof. Assume z, — z in A and p, — pin A’. Then the set { z,2;,2,,...} is weakly bounded, and
bence é-bounded. By Theorem 3.7(3) there exists some k such that {z,2,,2z3,...} € 4.

Now consider each p, restricted to A;. Clearly, p, € A, for each n, and moreover, p, — p in

A’ implies p, > pin A,. By a theorem of A. Grothendieck {5, Theorem 13.13, p. 211), we see that

Pn — p also holds in A}. Since A, bas the Dunford-Pettis property [5, Theorem 1.6, p. 336], we infer
that p, - 2, — p- 2, a8 desired. B

By Theorem 3.4 we know that the strong dual of A is a Fréchet lattice. When § is the strict inductive
limit, then the strong dual of A is, in fact, an order continuous Fréchet lattice.

Theorem 3.9. If £ is the strict inductive limit, then A” with the strong topologj B(A", A) is an order
continuous Fréchet Iattice*.

Proof. Assume tbat £ is the strict inductive imit. Let f, | 0 hold in A” and let B be a {-bounded
subset of A. We have to show that { f, } converges to zero uniformly on 5.

By Theorem 3.7(3) there exists some n such that B C A,. If we consider each f, restricted to A,
then { fo } as a net of A/, satisfies f, | 0. Since A, is an AM-space, its norm dual A;, is an AL-space and
so A/, has order coptinuous norm. Therefore, {|fa]l | 0 holds, and from this we sec that { f, } converges
to zero uniformly on B.B

Now assume that A is generated by a disjoint sequence {w, } of non-zero positive elements, so
that £ is the strict inductive limit topology. We shall also assume ope extra condition; namely that
w=sup{wn: n=1,2,...} exists in E, i.e., we shall assume that

]
=Y witw
=1

bolds in E.

* /n this case, i furns out that (A", B(A", A)) is also the projective bmit of the sequence { A, }. For
detoils see [{0, Proposition 15, p. 85].



If A, denotes the principal idea) generated by w in E, then we have the following ideal inclusions
ACACE,

where the ideal A is order dense in A,,. We shall denote by 7o the locally convex-solid topology on A,
generated by the lattice norm

lzliec = inf{A > 0: |2} < A}, 2 € A,.

Notice that the lattice norm || - || Testricted to each A, (the principal ideal generated by &n ):satisfies
lzfle < lizlln for all 2 € A,., and 80 tbe inclusions iy:(An,§n) > (4,7, ) are all continuous. This
implies that on A we have 7o, C £, where the inclusion is proper by Theorem 3.7(1). Since any locally
convex-solid topology 7 on A satisfies ¥ C 7 [4, Theorem 16.7, p. 112, we see that

rTCTuCé

holds on A. In addition, it should be noted that £ cannot be extended to a Jocally convex-solid topology

on A, . (Indeed, if £ extends to a locally convex-solid topology on A, say £, then £ C To, must hold on

A,. Therefore, £ = 1., on A, which means that £ is metrizable on A, contrary to Theorem 3. 7(1).)
The following example illustrates all the preceding spaces and topologies.

Example 3.10. Let E = R*, the vector space of all real sequences, and denote by 7 the locally
convex-solid topology of pointwise convergence. For each n let wn = (0,...,0,1,0,0,...), where the 1
occupies the n*® position. Clearly, { w, } is a disjoint sequence of positive elements, such that

w=sup{ws: n=12,_..}=(1,1,1,...}

It i5 easily seen that
1. Ay = Lo
2. A=¢={(1.23,.. ) ER®: Lk withz,=0V¥n2k};
3 A=A =R"™ and
4. the topology £ is the locally convex-solid topology on ¢ having a basis at zero consisting of the sets
of the form
V={(z1,22,...) €& |&| Sy ViEN),
where (y:,¥2....) € R™ satisfies y; > 0 for each i. @

Finally, we close the section with the following remark. If {w, } is a disjoint sequence, then
wzsup{wn: n=1,2,...}

exists in the universal completion E¥ of E. This means that A, can be defined as the ideal geperated
by w in E¥, and 80 the || |l Dorm on A, always induces 7 on A. For the concept of the “umiversa!
completion” of a Riesz space see [29] and [4].

4., PREFERENCES AND UTILITY FUNCTIONS

In this section E will denote an Archimedean Riesz space and 7 a linear topology on E. For this
paper a preference is a binary relation on E* which is complete, reflexive and transitive. A preference
> is said to be:



. monotone, whenever z > y > 0 implies z > §;

strictly monotone, whenever z > y > 0 implies z > y;

convex, whenever the set {yy € E+: y > =} is convex for each z € E+; and

. T-continuous, whenever for each 2z € E* thesets {y € E*: y> 2} and {2 € E*: 2> 1) are
botk r-¢losed in E*.

A commodity bundle v is said to be strongly desirable for a preference > whenever for each
z€ E* and each @ > 0 we have z + av > z.
A. Mas-Colell [31] introduced the notion of uniform properness for preferences as follows.

o O3 A

Definition 4.1. (Mas-Colell) Let E be a Riesz space, 7 a linear topology on E and > a preference op E*.
Then » is said to be uniformly 7-proper whenever there.exists some v > 0 and some T-neighborhood
V of sero such that  —av+ z > z in E* with a@ > 0 implies z ¢ aV.

Anpy vector v that satisfies the preceding property will be referred to as a vector of uniform properness
for ».

Any vector v of uniform properness for a preference > is automatically a strongly desirable bundle.
Indeed, if 2 > z + av bolds for some = € E* and some o > 0, then from

z=(z+av)-av+0>z+av

and the uniform properness, it follows that 0 ¢ oV, whith is impossible. Hence, z + av > = holds for
alla>0and all £ € E*.
If  is a preference and z € E+, then (as usual) the set {y € E*+: y = z} will be denoted by P(z),
that is,
P(z)={yeE* y»=z}

Theorem 4.2. (Mas-Colell} Let 7 be a Jocally convex topology on a Riesz space E and Jet > be a
preference on E+. Then > is uniformly r-proper if and only if there exists a pon-empty T-open convex
cone I' such that

a) TN{-E*)# 9, and

B) (z+T)NP(z)=80forallz € E*.

Proof. Assume that > is uniformly r-proper, and let v > 0 be a vector of uniform properness corre-
sponding to some open convex and r-neighborhood V of zero. Consider the non-empty r-open convex
cone

I'={weE:Je>0andyeVwithw=a(y-v)}.

From ~v €T, we see that TN(—E*) # 8. Nowlet z € E*. If z € (z + T) N P(z), then pick o > 0 and
vy €V with
z=z+c(y-vi=z-avtay> 1,

and so by the uniform r-properness we have ay ¢ aV,ie., y € V, which is impossible. Consequently,
{(z+T)NP(z) = Bforall z e E*.

For the converse assume that there exists a non-empty 7-open cone I' satisfying (a) and (b). Pick
some w € I'N(—E") and some r-open convex neighborbood V of zero with w+V CT. Putv= —w > 0,
andlet z—av+sr>rzin EY witha> 0. Ifz€aV, then 2 =ay for some y € V, and so

r—av+zz=z+aly-v)€E(z+T)NP(z) =0,
which is a contradiction. Thus, z ~av + z > 2 in E* with o > 0 implies z ¢ aV. W

Recently, S. F. Richard [36] has shown that a uniformly proper preference can be extended to a
preference on a closed convex set with a non-empty interior containing E*¥; see also [39]. Op an AM-
space with unit a monotone preference with a strongly desirable commodity is automatically uniformly
porm proper. This was pointed out by A. Mas-Colell [31].
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Theorem 4.3. (Mas-Colell) If 2 monotone preference op the positive cone of an AM-space with unit
bas a strongly desirable commodity, then it is uniformly norm proper.

ProofL Let E be an AM-space with unit and let » be a monotone preference on E+ having a strongly
desirable commodity v > 0. Observe that if w € Int(E*), then 2+ w > z holds for all z € E+. Indeed,
if w € Int(E*), then pick some a > 0 with w — av € E* and note that for z € E* we have

z+wv=z+av+(w—av)>z+avz

Now consider the nop-empty open convex cone I' = ~Int(E+). Clearly, TN(—E*) # 8. On the
other hand, if z € E*, then we claim that (z+ )N {y € E*: y > z} = 0. Indeed, if this is not the
case, then there exists some w € Int(E*) with 2 — w > 0 and 2 — w > 2, and 50 we must have

z=(z-vw)twrz-wrz,

which is impoasible. Therefore,
z+D)Nn{yeEr:yrz}=¢8

holds for all z € Et, and hence by Theorem 4.2 the preference » is uniformly norm proper.

We pow turn our attention to utility functions. Recall that every function uw: E¥ — R defines a
preference by saying that z > y whenever u(z) > u(y). If > is a preference, then a function u: E+ —= R
that satisfies £ > y if and only if u(z) > u(y) is called & wtility function representing ».

The order continuous utility functions will play a crucial role in our study and for this reason we
give them a name,

Definition 4.4. An order continuous utiity function u:Et — R will be referred to as a myopic
utility function, i.e., & function u: E¥* — R s said to be myopic whenever 2, — z in Et implies
u(zs) — ulz) in R.

Myopia (i.e. order continuity) should be interpreied as a mathematical notion that captures the
economic intuition of impatience; see {11]. A different notion of impatience was also introduced recently
by R- A. Becker, 2. H. Boyd and C. Foias in [9).

Note that if a utility function u: E* -— R is continuous for an order continuous locally solid
topology T (i.e., 2o — z implies 2, — z), then u is automatically myopic. Also, if E is a Fréchet
lattice, then every myopic uotility function u: E¥ — R is continuous. This follows immediately from
the fact that in a Fréchet lattice every topologically convergent sequence to some point = bas an order
convergent subsequence to z; see [4. Exercise 8, p. 123].

A myopic utility function is pot pecessarily wopologically continuous and a topologically continuous
utility function need not be myopic. The next two examples clarify the situation.

Example 4.5. (A myopic wiility function which is not fopologically continyous) Let £ = £; and let 7
be the order continuous Jocally copvex-solid topology induced on E by the £;-norm. Now consider the
utility function u: E¥ — R defined by

u(x) = iz,», x=(2;,23,...) € E*.

=1

Clearly, u is strictly monotone and concave, and moreover, we claim that it is also myopic. To see the
latter, let x, — x in E*, where x, = (z%,28,...) and x = (z;,23,...). Pick a pet {y, } of £+ such
that |x — x| < y, for each o and y, | 0. From

lu(xa) - w(x)] € Y Ief — 2l < 3 8° = |yalh

1=} =]
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and {lya]li | 0, we see that w(x,)} — u(x), and 80 w is order continuous.
Now we claim that the utility function is not r-continucus. To see this, for each n pick some k, > n
with 3532+ > 1 and det

Xa= (b o 0.0,.), n=12,.. .

Then {x, } is a sequence of E* satisfying lim, .o JIXallz = 0 (i-¢., Xo — 0). On the other band, the
inequalities

o
u(x.)=2‘!->l>0=u(0),

i=n

show that u{x,) 7~ 0, and bence u is not r-continuous. @

Example 4.6. (A fopologicelly continvous sfility function whick is not myopic) Consider the Riesz
space C[0,1] and define u: (CI0,1))* — R by

1
u(t):j\/:(t)di.
9

Then u is || - [Jc-continuous, strictly monotone, strictly concave and it fails to be order continuous; see
[5, Exercise 15, p. 199, B

The myopic utility functions have the following interesting continuity property.

Theorem 4.7. If u: E* — R is a myopic utility function, then on every principal ideal of E the utility
function u is || - |l -continuous.

Proof. Let z € E*, and Jet {y, } be a sequence of A, such that lly — yn|lcc — 0. Put
€r = 6up{ljth = ¥llo: 12 n}

and note that £, | 0 and that lyn — y| < €nz for all n. Since €02 { 0 holds in E, it follows that y, — y
in E, and so by the order continuity of u, we see that u(y,) — u(y). B

Recall that a utility function u: E+ — R is said to be quasi-concave whenever
u(az + (1 - a)y) 2 min{ u(z), u(y) }

holds for all z,y € E* and all 0 < o < 1. Jt is well known that a utility function is quasi-concave if and
only if it represents a convex preference.
Qur pext result presents a useful continuity property of the myopic quasi-concave utility functions.

Theorem 4.8. Let E be a pormal Riesz space, Jet a € E* and let {2, } be a sequence of [0,a]. If z is
a o(E, E,;)-accupulation point of { z, } and a utility function u: E* —~ R is monotone, quasi-concave
and myopic, then

u(z) > liminf u(z,).

Proof. Assume that E, {z. }, 2 and u: E* — R satisfy the hypotheses of the theorem. Fix e > 0.
Next consider the idea!
c= 6.

$EE,
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and note that C is order dense in E. To see this, let 0 < 3 € C¥. Then 2 L Cy holds andwo z € C¢ = N,
for all ¢. Thus, ¢(z) = 0 for all ¢ € £, and since E; separates the points of F, weleethnt:—o
Therefore, C is order dense in E.

Now by the order continuity of u and an easy inductive argument, it foliows that there exist sequences
{yn} of E* and {$, )} of (Ez)* such that

a) ¥ €Cy, and 0 < yn < 2, for all n;
b) éi(zn—pa) <2 "for1 < k<n;and
¢) u(yn) > u(z,)—e.

Since z is & ¢(E, Ey }-accumulation point of the convex hull of the set {z3: £ > n), it is abo 2
lel(E, Eg)-accumulation point of the convex hull of {z,: & > n}. Thus, for each n there exists some
{n € co{zs: £ > n) satisfying

Sz —(al}< 2" for 1<k <n.

Write (, as a convex combination {n = 3 ro% AtZa,, where n; > n for 1 < i < my,, and then put

=1

My
In =E’"?%e-
=1
From (b) and
My
|z = 20} S {2 = Cal +Kn =~ zal = Iz = Gal + Y AP(2n; = m,),
el
we see that

#i(z—2z) <27 4+2" = 2!"" for 1<k<n. (1)
Taking into account that u is quasi-concave, it follows from (c) that

u(zn) > min{ u(gn,): 1< i < my)
2 min{u(za,): 1Si<ma} -,

and consequently
u(zp) 2 inf{u(z:): k2n}—¢ forall n {2)

Our pext goal is to establish that the sequence { z,, } is order convergent. For each n write £ = N,_&C,_,

and then let h, be the projection of z onto Cy,. Put h = sup{ hs } < z, and we claim that z, —— A.
To see this, note first that fom

0< du(z—h) < de(z—he) =0,
we have ¢;(z — h) = 0 for all k. Thus, from (1) and the inequality
h=zal= I =20~z = W) S |2~ zal + 2~ h,
it follows that

dullh—za}) < 2™ for 1<E<n. (3)

Put f, = sup{ lh—z;|: £ > n}, and note that [A— z,]| < f, holds for all n. Thus, in order to establish
that z, — h it suffices to show that f, | 0. To this end, let 0 < f < f, hold for all n. Then from (3),

we have

ém(f) < bm(fa) < ): ém{lh - 1)) < 2 g1-¥ = g2-n

k=n k=n
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for all n > m, and 80 ¢ {f) = 0 for all m, ie., f € Ny for all m. Therefore, f L Cy_ for all m. This

implies f 1 h and f L y, for all n, and hence f 1 2z, for ali n. In turn, the latter implies f L |h ~ 2,]|

foralln,andso f L f;. From 0 € f < fi, we infer that f = 0. Thus, /. | 0, and bence z, —— A holds.
Now by the order continuity of u, we see that u(h) = i u(z,). A glance at (2) reveals that

u(h) = limu{z,) 2 liminfu(z,) = €.
In view of 0 < A < z and the monotonicity of u, we have u(z) > u(h), and so
u(z) > iminfu(z,)-¢

holds. Since £ > 0 is arbitrary, the latter implies u{z} > liminfu(z,), and the proof of the theorem is
finished B

5. THE ECONOMIC MODEL

As the title of the paper indicates, we shall study equilibria for pure exchange economies. The
following six basic properties will characterize the economic model of our study.

1. The commodity-price duality is described by a Riesz dual system (E, E'); E is the commodity space
and E’ is the price space. In accordance with the economic tradition, the value of the bundie z € £
at prices p € £’ will be denoted by p-2,ie., p-z = (z,p).

9. There is an at most countable number of consumers indexed by i; the set of consumers will be
denoted by V.

3. Each consumer has E+ as his consumption set.

4. Each consumer i has an initial endowment w; > 0. If F denotes the set of all finite subsets of A,
then the total endowment w is defined by

w =sup{2w.-: Fer},
iE€F

where the supremum is assumed to exist in E.

5. Each consumer i has a convex and monotone preference relation »,.

6. The total endowment w is strongly desirable by each consumer i, i.e.,
4 audr; T

holds for each i € A, each £ € E* and each a > 0.

Definition 5.1. A pure exchange economy (or simply an economy) £ is a triplet
£=({EE){w: i€ N} {x: i€ N},
where the components of £ satisfly properties (1} through (6) above.

14



From now on we shall asume that £ is a fixed economy. An sllocstion for the economy £ (or simply
an sllocation) is an assignment { 2,: § € M} such that z; > 0 for each i and

sup{Zz.—: FeFl=w
i€F

Note that if A is finite, sy A = {1,...,n}, then an allocation is a vector (z1,....24) such that

z, € Et for each i and
n »
z:.- = Ew; =)
iz} =l
If ¥ is countable, say A" = {1,2,...}, then an allocation is a sequence (zy,23,...) such that z; € E*
for each i and

n
sup{Z:.': n=12..}=w
f=l
We now come to the defmitions of the various equilibria concepts for our economy.
Definition 5.2. An allocation {z;: i € N} is said to be:

1. A Walrasian (or a competitive) equilibrium; whenever there exists some nop-zero price p € E'
such that each z; is a maximal element in the i™consumer’s budget set B;(p), where as usual
Bilp)={z€E*: p-z<p-u;}.

2. A quasiequilibrium; whenever there exists a non-sero price p € E' such that

a)p zi=p-w foreachi€ N; and
b)z>,2, m E* implisp-22>p-w;.

3. A weak quasiequilibrium; whenever there exists a nop-zero price p € E' such that z >; 2, in
Et implisp-22> p-w;.

Any noop-zero price p for which z »; z; in E* implies p- 2 2> p-w; is said to be a price supporting
the allocation {z;: i € \"}. Supporting prices are necessarily positive prices. To see this, let a price p
support an allocation {z,: i€ M}, and let 2 > 0. Then 2, + ¢z >, z; holds for all ¢ > 0, and 50
p(zi+e'z)2p-wy. Thatis, p-z > ep-(wy = 2;) bolds for all £ > 0, from which it follows that
p-z20,ie, pis s positive price.

Also, it should be clear that in our model the following implications hold:

Walrasian Egquilibriurmn = Quasiequilibrium = Weak Quasiequilibrium.

I the ecobomy has a finite number of consumers, then it should be obvious that the notions of
weak quasiequilibrium and quasiequilibrium coincide. As a matter of fact, if A is finite, then any price
supporting an allocatior as a weak quasiequilibrium it also supports it as a quasiequilibriumn. However,
when we have a countable pumber of consumers the situation is quite different. It may very well happen
that some non-sero price satisfies p-w; = 0 for all i (i.e., every consumer has zero wealth) and p-w > 0. In
this case, of course, the price p is not order continuous, and every allocation is a weak quasiequilibrium,
and, in particular, {wy,ws,...) B itself a quasiequilibrium.

The following result gives some connections between weak quasiequilibria and quasiequilibria. We
shall discuss these conne<tions ib more detail in the next section.

Theorem 5.3. For an allocation (2;,2,,...) in an economy with a countable number of consurners the
following statemepts hold.

1. If the allocation is & weak quasiequilibrium supported by an order continuous price, then the allo-
cation is a quasiequilibrium.
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2. If & price p supports the allveation as a quasiequilibrium and for some i we bave p-w; > 0 and the
preference »; is either myopic or continuous for some linear topology on E, then 2, is & maximal
element io the budget set Bi(p) of the i** consumer.

Proof (1) Assume that (z;,z3,...) is a weak quasiequilibrium which is supported by an order contin-
uous price p. From =z; >, z,, we see that p-2;- > p-w,; holds for all i. On the other hand, the order

continuity of p implies

o0 n o0

ZP"-‘ = nﬁ_’&?'zti Lpw= EP‘Ui:

(T3] izl iz}
and so the inequaklity p-; > p-w; for some i is impoesible: Thus, p-z; = p-w; must hold for all . In
other words, p supports (z1,z2,...) as a quasiequilibrium.
(2) To see this, assume by way of contradiction that there exists some = € B;(p) satisfying z »; z,. Then
P T > p-w; must also hold, and in view of £ € B;(p), we have p-z = p- w;. Since > is either myopic
or continuous for spme linear topology on E, there exists some 0 < § < 1 such that éz »; z;. In view of
p-w; > 0, the latter implies

pwisp(dz)=8p-z=8p-w;<p-w,
which is impossible. Bence, z; is a maximal element in B;(p), and the proof of the theorem is finished. B

For the rest of this section we shall also consider economies with a finite pumber of consumers. For
simplicity we shall refer to these economies as finite economies.

According to A. Mas-Colell [31] a finite economy with set of consumers A = {1,...,m} is said to
satisfy the closedpess condition whenever for every sequence of allocations {(zn,1,...,2n,m)} which
satisfies 2,4, >; Zo, forall nand all i = 1,..., m there exists another allocation (z;,...,2.;,) satisfying
T t.' Zn,i foralinandall i = l,...,m.

It is interesting to know that when the preferences are represented by myopic utility functions, the
closedness condition is always satisfied.

Lemma 5.4. If the commodity space E is a normal Riesz space, then every finite economy whose
preferences are represented by myopic utility functions satisfies the closedness condition.

Procf. Assume that E is & normal Riesz space, that the set of consumers is ' = {1,...,m} and that
the preference of each consumer is represented by a myopic utility function u;. Let {(2n1,...,Za,m)} be
a sequence of allocations such that z,41,i i Zn,¢ bolds for all n and all i. We have to show that there
exists an allocation (z1,...,2m) satisfying z; >i 2, ; for all n and all 5.

To this end, consider the order interval [0, w] equipped with the topology o(E, E7) and let 7 denote
the product topology on [0,w]™. Since {0,w] is o E, E,)-compact, it follows that [0,w]™ is T-compact.
Now the sequence {(Zn,1.---+Zn,m)} is & sequence of [0,w]™, and so it bas a 7-accumulation point, say
(21,...,%m). Clearly, (z1,...,2m) is an allocation, and each z; is a 0(E, E)-accumulation point of the
sequence { 2, }. By Theorem 4.8 we bave

w(z) > ].iﬂ%:;fu,-(:..,.-) =sup{u(zni):n=12...},

and 80 z; >; 2, bolds for all n and all i, as desired. B

For finite economies A. Mas-Colell [31] established the following basic existence theorem of quasiequi-
libria.

Theorem 5.5. {Mas-Colell) Assume that in a finite economy each copsumer has a convex, monotone,
r-continuous and uniformly T-proper preference with respect to a corsistent locally copvex-solid topology
r on E. If the economy satisfies the closedness condition and the total endowment w is strongly desirable
by each consumer, then the economy has quasiequilibria.
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And now we come to a remarkable apphcation of the preceding theorem to finite economies whose
consurners’ preferences are represented by myopic utility functions. Recall that for eacha > 0 in &
Dedekind complete Riesz space the principal ideal A, under the lattice norm

izl = inf{A > 0: |z] < Xa}, z € A,

is an AM-space with unit a. The porm dual of (A., [} - ||} will be denoted by A;, and so (A4, A) is &
Riesz dual system.

Theorem 5.6. Assume that the commodity space of a finite economy is a normal Riesz space and that
consumers’ preferences are represented by myopic utility functions. If @ > w and-the total endowment
w is strongly desirable by each copsumer on A,, then the finite economy bas a quasiequilibrium with
respect to the Riesz dual system (A,, A}).

Proof Let a > w be fixed and consider the finite economy with respect to the Riesz dual system
(Aq, ALY and with the original agents’ characteristics restricted to A,. By Theorem 4.7 we know that
every utility function is || - [loc-continuous on A, and Theorem 4.3 guarantees that all preferences are
upiformly || - |Jec+proper on Ag. In addition, by Lemma 5.4 the finite economy satisfies the closedness
condition with respect to the Riesz dual system (A4, A.), and our conclusion follows from Theorem 5.5.

It should be noted that the supporting prices can be normalized with respect to a, i.e., if p € A
supports an allocation with respect to (A4,, A,}, then we can choose p to satisfy p-ra=1.10

The preceding result will play a crucial role in our existence proofs of equilibris in the next sections.

6. EQUILIBRIA IN INFINITE ECONOMIES

Here we shall consider economies with a countable number of consumers N = {1,2,...}. For
brevity, we shall call these economies infinite economies. Two extra hypotheses will be assumed through-
out this section.

1. The commodity space E is a normal Riesz space; and
2. Each consumer's preference is represented by a monotone, quasi-corcave and myopic utility function.
We shall say that the income distribution is positive (resp. strictly positive) at prices 0 < p € E’
whenever p - w; > 0 bolds for at least one i (resp. p-w; > 0 holds for all §). The income distribution
is zero of prices p > 0 whenever p-w; = 0 for all i (in which case, of course, every allocation is a weak
quasiequilibrium supported by p).
Note that (by Theorem 5.3(2)) if a quasiequilibrium is supported by a price whose income distribu-
tiop is strictly positive, then the quasiequilibrium is, in fact, a Walrasian equilibrium.
The next example illustrates the above definitions.

Example 6.1. Consider the Riesz dual dual system {ly, £, ), where £, is the norm dual of £,,. Clearly,
£, is a normal Riesz space.
Consider now a countable number of consumers with initial endowments

wi=1(0,...,0,1,0,0,..),i=1,2,...,
where the 1 occupies the #** position, and utility functions given by the formulas

ui(zy,22,..)=2;, i=1,2,....
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Note that w = (1,1,1,...), and that this infinite economy satisfies our hypotheses.

Now take any Banach limit 0 < p € £, (see [5, Theorem 14.18, p. 233]) and note that p-w; = 0
holds for all i, i.e., the income distribution is sero at prices p.

On the other hand, if we change the initial endowments to

wy =(1, ;-, *,*,. h

and
w = (0,...,0,},0.0,...) for i=2,3,...,

then it is not difficult to see that the income distribution is positive for any price 0 < p€ £,.. 8

The importance of supportability by prices whose income distribution is positive is demonstrated
in the next result, which for the (L (), L1{u)) case was also proven by $. F. Richard and S. Srivastava
in [38).

Theorem 6.2. If an allocation (21,22,...) is & weak quasiequilibrium supported by a price p € E’
whose income distribution is positive, then the allocation is a quasiequilibrium supporied by the normal
component of p.

Proof. Let (z;,z3,...) be an allocation supported by a price 0 < p € E' whose income distribution is
positive. Fix some & with p-w; > 0. Also, write p = ¢ + ¢ with p order continuous and ¢ a singular
price. The proof will be completed in three steps.

1. The order continuous component ¢ of p is nos-zev0.

Since ¢ is singular and E; separates the points of £, it bllows from Theoremn 2.2 that the null ideal
of ¢,
N={zekE: ¢-|z|=0},

is order dense in E. Thus there exists anet {z,} of N with 0< 2, T2 +w. In viewof 23 + w >4 24,
it follows from the order contiouity of the utility functions that there exists some 8 such that z, »; 2,
for all @ > £. Since p supports (z;,22,...), we see that

0 26 =9 2o+ ¢ -Zag=p-Zo2p-wp >0

for all @ > £, and hence ¢ > 0 holds.
2. Ifz >, z;, then ¢-z 2> q - w; kolds.

Let £ »; z; for some i, and assume by way of contradiction that ¢-z < ¢ - w;. Since N is order
dense in E, there exists a net {y, ) of N with 0 < gy, 1 z. Clearly,

PYa=q Yot ¢ Y= VSqr<g S w ()

holds for all @. On the other hand, the order continuity of the utility functions implies y, », z; for all
sufficiently large a. In view of the supportability of (z1,23,...) by p. the latter implies p-y, > p-w, for
all sufficiently large a, contrary to {%), Hence, z > z; implies ¢ - 2 2> ¢ - w;.

Now let z =, ;. Then z 4+ ew =; z; bolds for all £ > 0, and so0 by the above ¢ -z +e¢-w > ¢ -w;.
Since ¢ > 0 is arbitrary, we infer that ¢ -z > ¢ - w; holds.

3. 92, =g w; holds for all 1.
From the order continuity of ¢, we infer that

oo

2 9= g ()
i=1

izl
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On the other band z; >; z; implies ¢-2; > ¢-w; Sor all i. Now form (»x), it easily follows that ¢-2; = ¢-w,
must hold for each i. The proof of the theorem is now complete. B

Recall that an allocation {2, 2,...) is said to be weakly Pareto optimel whenever there is no other
allocation (yy,p4,...) such that y; > z; holds for all i.

The quasiequilibria exhibit the following interesting property, which for the {Loa(p), L1 (p)} case
was also established in [38).

Theorem 6.3. Every quasiequilibrium which is supported by a price with positive income distribution
is weakly Pareto optimnal,

Proof. Let (2;,z3,...) be an allocation supported by a price p > 0 whose income distribution is positive.
By Theorem 6.2, we can suppose without loss of generality that pis an order continucus price. Also, we
can suppose that p-w = 1.

Now assume by way of contradiction that there exists an allocation (31, 42,...) such that y; »; =;
holds for each i. Since p is order continuous, it follows that

Zp-y;:Zp-u.-:p-w:I. (% %)

i=1 =1

In view of the supportability of (z,,z2,...) by p, we see that p-y; > p-w, for all i, and from (> » ) it
follows that in fact p-y; = p - w; holds for all i.

Next, fix some k with p-w;i > 0. From (1 - 1)y; 1a yi and the order continuity of u;, we see that
(¥~ %)yk >4 zx holds for all sufficiently large n, and so0

pwiz=pu>(1-pn=pll-Ynl2p wu

for all sufficiently large n, which is a contradiction. Therefore, {z;,23,...) it a weak Pareto optimal
allocation, as claimed. B

‘We now come to the major result of this section. Namely, we shall establish next that every infinite
economy bas always a weak quasiequilibrium with respect to the Riesz dual system (A,, AL).

Theorem 6.4. Every infinite economy has 8 weak quasiequilibrium with respect to the Riesz dual
system {A,, A,) for eacha > w.

Proof. Fix a > w. Let &, denote the finite economy with Riesz dual system {A4,,A,) and {1,...,n}
consumers (and, of course, with the original consumers’ characteristics). Then, according to Theorem 5.6,
each economy £, has a quasiequilibrium with respect to {(A,, A%) . Let (z7,...,25) be a quasiequilibrium
for £, supported by a price 0 < p, € A,. We can assume that p, -a = 1.

The set B= {p€ A,: p> 0 and p-a = 1} equipped with the topology o(A},A,} is a compact
topological space. Also, the order interval [0, a] equipped with the topology ¢(E, E) is compact. Thus,
by Tychonofl’s classical compactness theorem, the product topological space X = B x [0, al (with the
product topology) is a compact space. Now for each n let

X = (pn,2},...,25:0,0,.. ) € X.

Since X is compact, the sequence {x, } has an accumulation point, say (p,2;,z2,...). Clearly, each z,
3

is & ¢{ E, En)-accumulation point of the sequence (z},2?,27,...). The existence of the weak quasiequi-
librium will be established by steps.
1. We have p-a=1, and hence p> 0.

This follows immediately from p, - a = 1 and the fact that p is a o(A,, Ag)-accunulation point of

{Pn}'
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2. If0<z €A, sctisfiesz % z;, thenp-22> p-w;.

Let 0 < z € A, satisfy = >, 2, i.e, ui(2) > ui(2;). Since 2; is a ¢(E, E;)-accumulation point of
{20}, it follows from Theorem 4.8 that

wi(z) 2 liminf u(s]).

Thus, for each m > i there exists some k£ > m with wi(z) > ui(z}) (ie., z »; z}), and 8o (since p;
supports (:1, :k)) we see that p; - £ > p; - w;. The latter property easily tmphes PET2>pwi
Now kt0< T € A, satisfy z »; ;. Then z + cw »; z; holds for all £ > 0, and so by the above
P-2+ep w2 p-w. Since € > 0is arbitrary, we infer that p. 2 > p- w;.
- 3. For each k we hove 2‘;1 2 Sw.
If n > k, then

] L n
d Y A= wsg,
=] i=1 i=]
and so 38 z,<wmusthold{oreac.hk.
Now let z=sup{} ., 2i: n=12,...} €w Consider (y;,12,...), where y; = z; + w -z and
yi = z; for i > 2, and pote that (v1.33,-.-) is an allocation.
4. If0<z €A, sotisfleaz >y, thenp -2 > p-uwy holds.
Since y; 2 =z, holds for all 4, it follows from the monotonicity of preferences that y, »; z, holds for
all {, and this easily implies that (y;,y2,...) is 8 weak quasiequilibrium. B

We now turn our attention to replication properties of our infinite economy £. By the r-replica £7
of £ we shall mean a new economy having the bllowing characteristics.

1. Its Riesz dual system is {E, E').

2. There are A x {1,...,r} consumers indexed by (i, j}.

3. Each consumer (4, j) has ap initial endowment w;, ie, wjj =wifori=1,2,... and j=1,...,r
4. Fach consumer (i.§) bas u; as his utility function, i.e., u;; = y;.

The consumers {i,5)(j = 1,...,r) are referred to as consumers of fype i. Clearly, the total en-
dowment of £7 is rw. Every allocation (z;,2;,...) of £ defines an allocation on each £ by assigning
zij = z, for each (1,j) € N x {1,...,r}. Such an allocation of £" is called an egual treatment allocation.
Thus, every allocation of £ can be considered as an (equal treatment) allocation of every replica £7.

An allocation (z,,23,...) is said to be blocked by a finite coalition F (i.e., by a finite non-empty
subset F of A") whenever there exists another allocation (y1,y2,...) satisfying

Zy,-zz:w.- and y; >; z; for each i€ F.
i€F ieF

The finite core (or simply the f-core) of £ consists of all allocations that cannot be blocked by any
finite coalition of N.

Definition 6.5. Ap allocation (z,,23,...) of £ is said to be an Edgeworth equilibrium whenever it
belongs to the f-core of every replica of the economy £.

The properties of Edgeworth equilibria for finite economies were studied extensively by the authors
in {2, 3). The next theorem presents a relation between Edgeworth equilibria and weak quasiequilibria
for infinite economies.

Theorem 6.6. Every Edgeworth equilibrium is 8 weak quasiequilibrium with respect to the Riesz dual
systemn (A, AL}
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Proof. Let (zy,23,...) be an Edgeworth equilibrium. For each consumer i, let F; = {y € A}: y >, 2;}
and G; = F;, — w,;. In view of z; + w »; z;, we see that both F; and G; are non-empty convex sets for
each . Since (by Theorem 4.7) the utility functions are || - ||c-continuous on A, it follows that the F;
and G; are also || - [jc-open subsets of A,. Now put

G = CO(D G.‘),

and pote that G as a subset of A, bas || - || -interior points. We claim that 0 ¢ G.
To see this, assume by way of contradiction that 0 € G. Then there exists some k, y; € F (i.e.,

¥ >i ;) and constants 0 € A; S 1 (1 € i< k) suchthat 1, X =1 and % My —wi) = 0. Let
S={i: A>0]}. Clearly, §# 0 and
Yo dwi=Y d. (=)

VES €5
Now if i € S, then let n; denote the smallest integer greater or equal than nl; (ie., 0 < n; —n); < 1).

Since limp .o % =1, we se that 32iy; "y, and s0 by the order continuity of the utility functions
we can choose n large enough so that

.="_';‘_';y,.,.,-=.- forall i € 5. (o)
From (») we get
Z:n.-z.- = En,\;m = znl.-u.- < Eniwi.
€S i€Ss €S €5

The preceding inequality, coupled with (wx), shows that (z;,2;,...) can be blocked by an allocation
in some replication of the economy, which is impossible. Bence, 0 ¢ G must hold, as claimed. (The
preceding argument is essentially due to G. Debreu and H. Scarf [16].)

The proof can be completed now by s separation argument. Since G has ||- || -interior points, there
exists some noon-zero price p € A. such that g € G implies p-g > 0. It follows that z »; z; in A} implies
p-T 2 p-w;, and from this we see that p is a price supporting (z,,22,...)on A_. 0

In the pext section we shall use the preceding theorem to show that every equilibrium in our over-
lapping generations model is a weak quasiequilibrium with respect to the Riesz dual system (A, AL).

7. THE OVERLAPPING GENERATIONS MODEL

In our overlapping generations model the index t will denote the time period. The commodity-price
duality at period t will be represented by a symmetric Riesz dual system (E,, E;} (and so E, is a normal
Riesz space). Consequently, we bave a sequence ({E;, E), {E3, E3), ...} of symmetric Riesz dual systems
each member of which designates the commodity-price duality at the corresponding time period. Note
that we allow a (possibly) different commodity space at each time period in order to capture the economic
intuition, according to which, as we progress into the future new commodities enter the market and old
ones cease to exist. We shall write

E=E xE;x-- and EF=FE{xEjx--- .
Here are some examples of symmetric Riesz dual systems

{Lp(p) Ly(p)) (1 <p<oo,1<g<on, %""%: 1),
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(R™R"), (alR),ca'())) (R™.4) ($,R™), and (L.4).

If the measure p is o-finite, then

{Li(n), Lo (p)) and  (Leo(p), La{n))

are also symmetric Ries: dual systems.

We shall assume that each consumer bas a two-period lifetime. Thus, consumer 1 is born at period
t and lives all his Life in periods t and ¢ + 1. Each consumer trades and has tastes for commodities only
during his life-time period. We suppose that consumer ¢ gets an initial endowment 0 < w} € Ex at period
tand 0 < wit! € Eq1 at period 1+ 1 {and, of course, nothing else in any other periods). Consequently,
his initial endowment w; can be represented by the vector

W = (0,....O,w:,u:"'l.o.o,...) €E,

where o} and uit? t.:-ccupy the positions t and t+ 1, respectively. Also, we shall assumne that the “father”

of consumer 1 (i.e., consumer 0) is present in the model at period 1. He will be designated as consumer
0 and his endowment will be taken to be of the form

wp = (0§,0,0,...)

_with 0 < w} € E;. Thus, the total endowment is represented by the vector

Q0
w:Zu; =(wj+u}, i +ud Wd+ud, . )€E.
L 1=0

The vectors of the form
X = (0) ..,0,2:,=:+1,0,0,. ")l

where z! € E and 2i*' € EY,, represent the commodity bundles for consumer ¢ during his life time.
Each consumer t maximizes a utility fupction u; defined on his commodity space, i.e., u, is 8 function
from E} x E},; into R. The value of u, at the commodity bundle x; = ,...,0,2%,2;*,0,0,...) will
be denoted by u(z},2!*}). When needed to simplify notation, we shall consider u; defined everywhere
on E}f x E} x --- by the formula

ui(z’,:’,.. )= u;(z'.z"“l).

The utdity functions will be assumed to satisfy the following properties.
1. Each u; & quasi-concave;
2. Each u, is strictly monotone on E; x E},, that is, (z,¥) > (z1,%) in E x Eff, implies

uz,y) > sz, 3n) and
3. Each u is weakly continuous on the order bounded subsets of E;" x E,'f,,l, i.e., if an order bounded

net {(z5,z+1)) satisfies (z%,2%F}) = (2,y) in Ef x EY,,, then lim, ui(2}, 25H) = ui(z, 9).
The case ¢ = 0 is a special case. The utility function ug is a function of one variable defined on E}.
It is also assumed to satisfy properties (1), (2) and (3) above.

Remark. Since the locally convex-solid topology |o{(E;, E}) on each E, is order continuous, it is easy to
see that order convergence in E, x E,4 implies |o|( Ey, E})-convergence (and hence, weak convergence).
Therefore, since each order convergent net is eventually order bounded, it follows from property (3) that
the utility furctions for our overlapping generations model are all myopic.

Next, we present examples of utility functions that satisfy properties (1}, (2) and (3) above.
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Example 7.1. Here are two utility functions that satisfy our properties {whose straightforward verifi-
cations are Jeft for the reader).

1. Consider two symmetric Riesz dua) systems of the form {4,,£,) and (&, £,), where 1 < p,r € o
and 1 < ¢, < oo satisfy }+ i- = 14 1=1. Then the utility function u: 4} x & — R defined by

o0
° n + n
U(!,y)=2'"=—n§—""'. :=(=l!:,!"')e¢i Y=(!h:h,---)5¢v
nxl

satisfies our properties.
2. Consider the symmetric Riesz dual systems {4, £,) and (L,[0,1), L,[0,1]), where 1 < p,r € oo and

1€ q,5 < cosatisfy }+ } = L4+ 1 =1. Fix some strictly positive function h € L,[0, 1] (for instance

let h(z) = z?). Then the utility function u: & x L}[0,1] — R defined by

1 o
wnf)= [ fohds+ LR x= (e de g, feLtl)

Axl

satisfies our properties. M
For our discussion, we shall employ the notation
& =w}_, +of, t=1,2,... .

Clearly, the bundle 8, € E;* represents the total endowment present at period f. In paricular, we have
o =_(91,'92, e )

The ideal generated by #; in E; will be denoted by ©;. That i,
©;={z€E;: 3)>0 with |2] < A8, }.

The ideal 8, under the norm [jz|lec = inf{A > 0: |2] € X8, } & an AM-space with unit. As usual, the
norm dual of &, will be denoted by 8;.

We shall denote the ideal generated by {wy: t=0,1,...,n} in E by A,. Clearly,
An=0; xB0;%x - - xB, xQnx0x0x---,

where 0 = {0} and Q, denotes the ideal generated by w2*? in E,4;. Obviously, each A, is an AM-space
having (8;,...,6,u2%1,0,0,...) as unit. Note that for each n we bave the proper inclusion A, C Ansa.
Finally, we shall denote by A the ideal generated in E by the sequence {w,: n =0,1,2,...}. It follows
that

A= UA,,
ax=l

Let £ denote the inductive limit topology generated by the sequence { A, } on A. Since the ideal
A is also generated by the disjoint sequence {(0,...,0,6,,0,0,... n=1,2,...], we see that £ is also
the strict inductive limit topology.

Theorem 7.2. The topological dual of (A,§) is
A'=8]x6)x--,
where the duality between A and A' is given by
[- -]
px= Z P Iy,

t=1
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for all x = (2;,23,...) and p = (P1, P2, --.)-

Proof. By Theorem 3.2 we know that A’ = A", So, it suffices to show that A"= ©] x ©; x ---. Note
first that if p = (py,p2,...) € € x ©% x - -+, then the formula

o
Pp-x= zh -2, X={21,22,...) EA,
=1

clearly defines an order bounded linear functional on A.
Now let p € A”. For each t define p, € O; by

p-z=p(0,...,0,2,0,0,...), € 6,,

where z occupies position t. i x = (21,23,...) € A, then z, € ©, for each t and z; = 0 for all but 2
finite number of ¢. Thus,

p-X= ip—(O,...,O,z,,0,0,...) = f:p; Y

t=1 =1
and 80 p can be indentified with the sequence (py, p2, ...}, and our conclusion follows &

Unless otherwise stated to the contrary, by a price for the overlapping generations model we shall
simply mean a positive element of A’. Thus, according to Theorem 7.2, a price is any sequence of the
form

P=(p.p2-..)
where 0 < p; € ©; for each t.

A sequence x = (Xp,X;.%3,...}, Where
0 <xp=(2},00,..)€A

and
0<x =(0,...,0,2f,2*1,0,0,..) € A for 121,

is said to be an allocation whenever 3 i x; = w (or equivalently, whenever z;_, + z = 6, holds for
all t = 1,2,...). A non-zero price p = (p1,ps....) is said to support an allocation x = (X0, X3, X3, o)
whepever

a) 2 >¢z} in E] implies p; -z 2 p; - wj; and

b) (z,v) = (2f, 21" in B x E7Y, implies

PoZHPr Y2 Powit gy

forallt=1,2,....

It should be noted that if & price p = (p1, P2, .- .) supports an allocation (xg.X),Xz,.. .}, then we
have p; -z} > p1 - w) and

Pzl par o2t 2wl pan W

forallt=12....

Definition 7.3. An allocation x = (Xo,X;,X2,...) is said to be an equilibrium for the overlapping
generations model if it can be supported by a pon-zero price p = (p1, p2, - .-) such that

a) pr-zy=p - wy; and

b)po-zitpar ot = powl 4 pr ! for 121

24



The alert reader should recognize immediately that an equilibrium for our overlapping generations
mode] is & quasiequilibrium for the infinite economy having Riesz dual system (A, A’) and consumers’
characteristics {(w;,>:): t=0,1,2,...}. In fact, it is a Walrasian equilibrium since we claim that an
equilibrium x = (xp,X;,X3,...) for the overlapping generations model satisfies p - w, > 0 for all 1. To see
this, pick a price 0 < p = (p1,p2,-..) € A’ that supports the allocation and note that p -w; > ( must
hold for some t. Now if p - w, = 0 holds for at least one 1, then there exist two consecutive non-negative
integers r and s such that p -w, > 0 and p -w, = 0. Clearly, X, is 2 maximal element in the budget set
of consumer r. On the other band, x, + w, >, X, and p-{X, +w,) = p- X, = p - w, show that x, is not
a maximal element in the budget set of consumer r, a contradiction.

Therefore, we have the following connection between equilibria for the overlapping generations model
and Walrasian equilibria.

Theorem 7.4. An allocation is an equilibrium for the overlapping generations model if and only if
it is & Walrasian equilibrium for the infinite economy with Riesz dual system (A, A’} and consumers’
characteristics {(wy,>:): 1=10,1,2,...}.

Since a Walrasian equilibrium is an Edgeworth equilibrium, it follows from Theorem 6.6 that every
equilibrium for our overlapping generations model is & weak quasiequilibrium with respect to the Riesz
dual system (A, AL).

8. EXISTENCE OF EQUILIBRIA IN THE OVERLAPPING GENERATIONS MODEL

The purpose of this section is to prove the main result of this work. It can be stated as follows.

Theorem 8.1. Every overlapping generations model has an equilibrium with respect to the Riesz dual
system (A, A’} that can be supported by an order continuous price.

The proof of Theorem 8.1 is quite involved and it will be accompliced by a series of lemmas. We
start with a basic definition.

Definition 8.2. For each n we shall denote by £,, the finite economy having Riesz dual system (An, A})
and set of agents {0,1,...,n} with their original characteristics.

Intuitively speaking our overlapping generations model must be in some sense the “limit” of the
sequence { &, } of finite economies. This intuitive idea (which is the byproduct of the pioneering classical
work of T. F. Bewley [10]) is the driving force behind our mathematically delicate proof of Theorem 8.1.
Before passing to a “limit” of the sequence { £, } we have to study its properties.

Qur first important result is that each finite economy &, has & Walrasian equilibrium.

Lemma 8.3. Every finite economy &, has a Walrasian equilibrium (xo,X1,...,Xn) of the form
xo = (25,0,0,...) and == (0,...,0,::,::*’,0.0,...), 1<t<n.
Moreover, every non-zero price p that supports (Xg,X1,...,Xn) satisfies
pw >0 foresch 0<t<n.

Proof. From our previous discussion, we know that A, coincides with the ideal generated in A
by (61,62....,6n.w*1,0,0,...), and so A, is an AM-space with unit. Since (by the remark before

2



Lemma 7.1) all utility fanctions are myopic, it follows from Theorem 5.6 that there is a quasiequilibrium
(X0, X1, . . .,Xn) supported by a price 0 < p € A/, wuch that p(3 7, ) = 1. By the special nature of
the utility functions, we see that

x; =(0,...,0,z},2%1,0,0,...) for 1<t<n and xo = (£3.0,0,...) .

Next, we claim that p-wy > 0 holds. To see this, assume by way of contradiction that p -wp = 0.
Then p - wy, = 0 must also bold. Otherwise, p - w, > 0 and x; +wn >, x; imply that x; is not a maximal
element in the budget set of consumer 1. Repeating the argument, we see that p-w, =0for0<t <1,

and 0 n n
0= p-w=pQ w)=1,
=0 =0

which is impossible. Hence, p-wy > 0 bolds, and so X i & maximal element in the budget set of
consumer 0.

Now we claim that p-w, > 0 holds. Indeed, if p - w; = 0, then X +w; >¢ Xo implies that x; is not
& maximal bundle in the budget set of consumer @, s contradiction. Hence, p -w; > 0. Repeating the
argument, we see that p-wy; > 0,...,pws > 0, andso (%0, %, .. ,%n) & indeed a Walrasian equilibrium.

Also, it should be noted that the price p abowe is of the form

P=(Pl:P?p----Pman'l-ooo----)'
where 0 < p, €0, (1 <t<n)and 0 £ pny1 €. W

In the sequel a2 Walrasian equilibrium (xg,%;,...,%Xa) for the finite economy &, supported by a
price 0 < p € A/, will be denoted by (x0,X1,.-.,%n; P). Also, it should be noted that every Walrasian
equilibrium (Xq, X1, - -+ Xa;P) for the economy &, is necessarlly of the form

xs = (3,0,0,...) and x, = (0,...,0,2},2;%1,0,0,..)) for 1 <1< n.

1t will be useful to know that supporting prices of Walrasian equilibria for the economies £, are
order continuous linear functionals on A,. The pext lemma takes care of this property.

Lernma 8.4. If (X0, X3,-...Xa; p) is 2 Walrasian equilibrium for the finite economy £, then p is order
contipuous on Aq.

Proof. We can assume that p(Fp_ wi) = 1. Let y, | 0 ip A, and let £ > 0 be fixed.

-Without loss of generality we can suppose that 0 < y, £ Yoo oX bolds for all a. Thus. by the
Riesz Decomposition Property, we can write y, = 2:=o yhwith0 < yL<x fort=10,1,2,...,n. From
X+ Euy g X1y Yo —*.. 0 and the weak continuity of the utility functions on the order bounded sets, we
see that there exists some 5 such that x; + €w; =¥, »1 x, forall o > Sand 2ll 1= 0,1,...,n. By the
supportability of p, we infer that

P X +EP w—P Yo 2P W =P X
and 8o 0 < p ¥yl <ep -y, brall a > fand all 0 < t < n. Thus, for a > § we have
n L]
0SP Yo= I P VLS Pruwy =t
=0 t=C
as desired. B

We continue our discussion with an important property of nets. Recall that a net {y.}aea is said
to be a subnef of another et {Zo)oc4 Whenever there exists a function ¢: A — A such that
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8) y» = z,, bolds for all A € A; and
b) given ag € A there exists some Ay € A 80 that A > X, implies 05 > ay.
Now if {yo} is & subnet of a sequence {z,}, then for any ag, we see that the set § = {y,: a > oy}
coptains infinitely many terms of the sequence {z.} (i.e., z, € § bolds for infinitely many n), and so0

there exists a subsequence {yn} of {z.} satisfying pn € S for each n. This observation will be employed
quite often in our proofs.

The next lemma presents a “growth” estimate for a sequence of Walrasian equilibria for the finite
economies £,. It is the analogue of C. A. Wilson's Lemma 3 in [44].

Lemma 8.5. If {(x3,xT,...,x},Pn) } is & sequence of Walrasian equilibria for the finite economies £,,
then for each pair m, £ there exists a constani M > 0 (depending upon m and £) such that

0 < pPawt € Mpgwe

bolds for all n > max{m,¢}.

Proof. Fix m and suppose by way of contradiction that there exists some natural number £ satisfying

Eminfnye %:-'_‘-:’-:- = 0, where £ = max{{,m}. Thus, the sets
{i € N: liminf B2 5 0} and {i € N: lminf B2=% = )
A= Pp-/g A=+G0 Dy Wy

are both non-empty. It follows that there exist two consecutive integers r and s such that

liminf P27 5 0 and liminf 2%t = g,
R0 DPp-ule A= Dq g

By passing to a subsequence, we can assume that

minf 222 5 0 and lim Bo¥2 — g, (1)
O pn“t’t = 000 pﬂ'“‘

In view of x» € [0,8,] x [0,8,41] (n > r) and the weak compactpess of the order order intervals, we
see that the sequence {x?: n = 1,2,...} has a weakly convergent subnet {y,}, say yo — ¥ holds in
E}xE},.

From y + w, >, y and the weak continuity of the utility function u, on the order bounded sets,
there exists some 0 < § < 1 such that &(y + w,) >, y. Using the weak continuity of u, once again,
we see that there exists some ap satisfying 6(ys + w,) >+ Yo for all @ > ag. Therefore, there exists
a strictly icreasing sequence k, of natural numbers satisfying §(x** + w,) », x*=; see the discussion
preceding the lemma. Since (1) remains true if we replace p, by pi_, we can assume without loss of
generality that §(x? + w,)} >, x7 holds for all n > r. Therefore, by the suportability of p., we have
Epn-(wr + w,) = pPn-fb(X? + w,)} 2 pn-w, for all n > r. Now note that

§liminf Bntr _ anminf("-——-"“' + p—-——-"“")

n=oo Ppwy A= \Pnws Pawy

6Pn '(f-l"r + Ul)

= lim inf
n—e Pnwe
> liminf 2227 5

n—o Pp-wi
which is impossible, and our ¢onclusion follows. B
Now consider each order interval [0,8,] equipped with the weak topology and let
Ap=[0#]x0x0x-.. |
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and
Xe=0x---x0x[0,8)x[0,04;]x0x0x... foreach t=1,2,...,

where 0 = {0] and the order intervals [0,6;]) and [0,8,4,] occupy the t and ¢+ 1 factors. Clearly, each
X, is a compact topological space, and so by Tychonof’s classical compactness theorem the product
topological space
X - ngoxg

is & compact space.

The topological space-X will play an impartant role in our proofs.- At this point, let us illustrate
briefly its role. By Lemma 8.3 we know that every finite economy £, has a Walrasian equilibrium. For
each n, let (x3,x7,...,x7) be s Walrasian equilibrium for &, where

x) = (25,,0,0,...) and x7 =(0,....0,2},, 2%, 0,0,..) for t2>1.
1f we let
fn = (x3,x} ---,x5.0,0,...),

then {f,} is a sequence of X', and so since A’ is compact, it has an accumulation point x = (%, X;,...).
It will turn out that the accumulation point x i an equilibrium for our overlapping generations model.
The objective of our next goal is the establishment of this claim.

Definition 8.6. A sequence {(x],x%,...,X";pa}} of Walrasian equilibria for the finite economies £, is
said to be a fundamental sequence for the overlapping generations mode! whenever p, wo = 1 bolds
for all n.

The reader should notice that (by Lemma 8.3} every overlapping generations model admits a fun-
damental sequence. As mentioned before, our next objective is to show that an appropriate “limit” of a
fundamental sequence yields an equilibrium for the overlapping generations model.

Lemms 8.7. If {(x2,x},...,X%;Pn)} is a fundamental sequence and y.. | O halds in some A, then
the sequence {ym } converges uniformly to seroon {pa: 82 k}.

Proof. Let {(x},x],....X;pn)} be a fundamental sequence and let a sequence {ym]} € A, satisfy
¥m } 0. We have to show that given ¢ > 0 there exists some mq such that
0 EPa¥m <E

holds for all n > k and all m > my.

Suppose by way of contradiction that for some 0 < £ < 1 the above conclusion is false. Then using
Lemma 8.4 and an easy inductive argument, we see that there exist two strictly increasing sequences
{n;} end {m,} of natural numbers such that

Pu;¥m, > €
holds for all £ Thus, by passing to an appropriate subsequence (and relabelling) we can assume that
Pn¥m>¢ forall n>k andal m. (*)
Next, note that without loss of geperality we can also suppose that 0 < ym < 2:;0 wy = &y holds for
each m. Lemma 8.5 applied with m = 0 and £=i for 0 € i < k + 1 guarantees the existence of some

M > 1 such that
0<pnwi < M

holds foralln> k+ landalli=0,1,....&k Put = mwthat€=q(‘:+2)M.
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Now put
£, = (x3,x},...,x3,0,0,..), n=1,2,...,

and note that {f,} is a sequence of the compact topological space X'. Thus, there exists a subnet {g.},
where g, = (gF. g5 ...) € X, of the sequence {f,} such that

limg, = x = (xq,X1,-- ).

Clearly, gF —— x; holds in E; x E;,, for each i.
From x; 4+ nw; =; x;, we see Lthat there exists some & > 0 satisfying

i (X + i) > wi(xi) + 26

foralli = 0.1....,5-}—1. Put v; = x; + nw; and note that since each w; (i = 0,1,... ,k + 1) is weakly
continuous on [0,244,7) (where &y o = 2::: wt ), there exists a weakly convex neighborhood V of zero
for Ey % -+ % Ep41 X Epgz such that:

X € [0,20442) with x—v,; €V forsome 0<i<k+1 implies fu;(x) — ui(v;}| <é.

Next, fix a solid neighborbood W of zerc for E; x --- x Ey43 with W C 1V, (Here we use the fact
that each |¢|(E;, E!/) is an order continuous locally convex-solid topology.) Since yn, | 0, there exists
some mg such that y,, € W holds for all m > m,.

In view of g7 = x; (i =0,1,...,k + 1), and the weak continuity of the utility functions on the
order bounded sets, there exists some ag such that

ui{x; + nw;) > ui(g)+8 end x.-—g.'-'E%V

hold for all @ > ag and all i = 0,1,...,k + 1. By the discussion preceding Lemma 8.5, we see that for
eachi=0,1,...,k+ 1 and infinitely many n we have

wixi + nwi) > w(x?)+6 and x;—x7 €3V ()

Now define 2 € [0,2844,) by 20, = XP + muw; — X7 Ay, a0d note that for all m 2 m, all
i=0,1,...,&+ 1 and infinitely many n we have

Vi =X -X X AYm EVHWC VLIV =V

Thus, |ui{zl,) ~ w(vi)| < & bolds for allm > mg, all i =0,1,...,k+1 and infinitely many n. The
latter, combined with (), yieids

ui(27,) > wi(v)) = 6> fuilx?) + 8] - § = w(x7),
and so
B X - X AYm i X

holds for all m > mg, all i = 0.1,....k + 1 and infinitely many n. Invoking the supportability of pn, we
obtain
pn'x? + NPn W = pn'(x: AYm) 2 Pnwi =Pn ‘x?v

and so
0 € pn(x7 A¥m) € MPn-wi < nM
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holds for all m > mg, sll 0 < i < £ + 1 and infinitely many n. Therefore, for infinitely many n and all
m > my we have
k41

Prn¥m = pn[(zxr) Ay,..]
- D
< zph(x:‘ A¥m)
s=0
b+l
< oM =nk+ DM =c¢,
=t

which contradicts (x), and the proof of the lemma is finished. N

The next result is the heart of our arguments. It asserts that the sequence of prices in 2 fundamental
sequence is sequentially w*~compact on every ideal A;.

Lemma 8.8. Let {{x?,x7,...,x2;p.) )} be a fundamental sequence and let {r, } be a subsequence of
{Pn). Then for each k there exists a subsequence { g, } of {ra } which converges pointwise on Ay (i.e.,
lim q,-y exists i R for each y € A ).

Proof. Let k be fixed.We shall show that the set {pn: n > k} as a subset of Af is relatively weakly
compact, and from this our conclusion will foliow. To establish this, by Grothendieck’s classical com-
pactness theorem [5, Theorem 13.10, p. 208] it suffices to show that the set {pn: n 2 k) is vorm
bounded and that every disjoint sequence of [0,8%] converges to zero uniformly on {ps: n > &} (where,
as usual, oy = Efﬂu,).

To see that {pn: n > k) is norm bounded, note first that [|pa}] = pn-d: holds for all n > k. If
{pa: 7 2 k} is not norm bounded, then there exists an increasing sequence of patural pumbers {1, }
satisfying py,-&p 2 n° for all n. Let y, = 14, Then y, | 0 holds ip A; and from Lemma 8.7, we
see that {y. } converges to zero uniformly on {pn: n 2 k}, contrary to p, ¥, 2 n for all n. Hence
{pn: n > k} is 2 norm bounded subset of A}.

Now let {vn } be a disjoint sequence of [0,&4]. For each n put 8 = L1, vi = Vi) Vi € Or . Since
each E; is Dedekind complete, there exists some z € [0,&4] with 2. 1 2. Next note that

0L vy =2 —~%n-1 Sz-ln-:=Cn10-

By Lemma 8.7 the sequence {(n» } converges to zero uniformly on {pn: n > Lk}, and from the relation
0 € pi-Vn < P1(, (t 2 k), we infer that {vn} likewise converges to zero uniformly on {prn:n 2k}
"The proof of the lemma is now complete. B

Observe that if { (x},x7,....X%; Pn) ) it a fundamental sequence, then for each y € A the value
pn-y is well defined for all but a finite number of n. Thus, for example, liminf pn-y exists in R for each
y € At

The pext lerma asserts that the sequence of prices in a fundamental sequence has always a weak*
convergent subsequence on A.

Lemma 8.9. If { (x},x7,...,XP:Pn) } is a fundamental sequence, then there exists a subsequence { gn }
of {pn } which is w¥-convergent to a pon-zero price in A’, i.e., there exists some 0 < q € A’ satisfying

q-y= lim q,y
n-—00

for eachy € A.

Proof. The desired subsequence will be constructed by a diagonal process using induction. To do this.
we shall construct subsequences {rf }, £=0.1,2,._., of {pn } such that:
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8) ¥ = p, for each n;
b) For each £ = 1,2,... the sequence {r’} converges pointwise on A;,_,, where k,_, is chosen to
utufy r:-l = p.l-l'
Start by letting £l = p, for each n and kp = 1. By Lemma 8.8 there exists a subsequence {r} }
of {x} } such that limr} -y exists in R for each y € A;,. Now for the inductive step, assume that a
subsequence {rf } of {ri~!} bas been chosen such that imr! -y exists in R for each y € A;,_,, where
ri! = pi,_,. Pick k¢ oo that rf = py,, and then use Lemms 8.8 to extract a subsequence {r’*!} of
{r} } such that limr/*!.y exists in R for each y € Aa,. The induction is now complete.
Next, considez the subsequence {qn } of {rn}, where g, = #0:-An easy argument shows that
lim gn-y exists in R for each y € A. Therefore, if for each y € A we put

q-y= im gy,

then q defines a positive linear functional on A. From q,wp = 1 for all n, we infer that q - we=1, and
80 q > 0. The proof of the Jemma is now complete. B

For our next discussion we shall employ the compact topological space X that was introduced before
Definition 8.6. If (x0,X1,...,%X,) is 8 Walrasian equilibrium for some economy &,, then by indentifying
(%0.x1,...,Xn) with (X0,%;,...,%4,0,0,...), we can consider (xo,xX;,... »Xn) as an element of X',

We now come to the concept of a “limit” for » fundamental sequence.

Definition 8.10. A pair (x,p), where x = (xg,X1,X2,...} is an allocation for the overlapping gen-
erations mode! and 0 < p = (py,p2,...) € A’, Is said to be an asymptotic limit for a fundamental
sequence { (xg,xT,...,X0;pn)} whenever there exists a subsequence {(x:‘,x:‘,...,x::;pt_)} such
that

1. x is an accumuiation point of the sequence {(xo',x:‘,...,x::)} in X; and

2. p-y=limps,y boldsin R foreachy € A.
Asymptotic limits always exist.

Lemma 8.11. Every fundamental sequence has an asymptotic lirnit.

Proof Let {(x3,x?,...,x};pn)} be a fundamental sequence. By Lemma 8.9 there exists a subsequence
{p+.} of {pn} such that limp, -y exists in R foreach y € A.

Now consider the sequence {(xg*,x}",... ,x:: }} of the compact topological space X' and note that

any accumulation point x = (xg,X;,X3,.-.) of {(xg‘,x;",...,x:‘)} is an allocation for the overlapping

LY

generations model. Therefore, (x,p) is an asymptotic limit for { (x5,x7,...,x2;ps)]. 0
Prices associated with asymptotic limits are necessarily order continuous.

Lemma 8.12, If {x,p) is an asymptotic limit, then the price p is order continuous on A.

Proof. Let (x,p) be an asymptotic limit for a fundamental sequence { (x3,x7,...,x2;pn) }. It suffices
to show that p is order continuous on each A;.

By Lemnma 8.4 we know that each p, (n > k) is order continuous on A;. Since p is a pointwise
limit of a subsequence of {pn} on A, it follows from a classical theorem of H. Nakano that p is order
continuous on Ay; see {5, Theorem 20.23, p. 145) or {6, Corollary 13.15, p. 212 and Exercise 14, p. 214). 8

The next lemma tells us that if (x,p) is ap asymptotic limit, then the price p supports x.

Lemma 8.13. If (x,p) is an asymptotic Imit for a fundamental sequence, then the price p supports
the allocation x on A.
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Proof Let (x,p) be an asymptotic kmit of a fundamental sequence { (x3,xT,...,x3;pn) }. By passing
to a subsequence (and relabelling), we can assume without Joss of generality that

a) x = (xp,X;,X3,...) is ap accurmalation point of the sequence {(x},x7,...,x%)} in X; and
b) p-y=limp,yboldsin R foreach y € A.
To see that p supports x, et y >, x; hold in A*. Fix ¢ > 0 and pote that y + ¢#w; >; x;. Since x;
is a weak accumulation point of the sequence {x?: n=1,2,...} in E; x E;4; and the utility function vy,
is weakly continuous on the order bounded sets, it follows that

Y+ £y = xP

holds for infinitely many n > i; see the discussion preceding Lemma 8.5. Thus, by the supportability of
Pn, We see that

Pn'Y + EPnwi 2 Pn'X] = Pnwi
holds for infinitely many n > i. By (b) above, it easily follows that p -y + £p - w; 2 p - w; bolds for all
£>0, and 50
PY2P W
as desired. B
We shall complete the proof of Theorem 8.1 by establishing that if (x,p) is an asymptotic limit of

a fundamental sequence, then budget equality holds for each consumer, i.e., we shall show that for each
t=0,1,2... we have

PX=p fi+ps - =p-wf+pn vt =p-w,.

To do this, we shall fix a fundamental sequence {(x3,x7,...,x0;pn) }, where

x} = (23,.0,0,...), xF=(0,...,0,2f,,2%.,0,0,..) for t=1,...,n; and

Pn=(Ph:- - PmPa?1,0,0,..).

As usual, for an asymptotic Limit (x,p) of a fundamental sequence { (x§,xT,...,x7;ps) }, we shall
write

x=(xo'x1!x21---)| P=(P1:P2=---)» xO=(:510:01---)) and xi=(0)'-':01211::+1|030s---)~

We can assume (by passing to a subsequence if necessary) that
a) x = (X0,X1,Xz,...) 15 an accumalation point of the sequence { (x3,x7,...,x7;pn)} in &; and
b)) p-y=Iimp,yforeachy €A.

Lemma 8.14. If {{x?,x7,...,x";pn) } is a fundamental sequence, then for each n we have
1 9 -zé.n =pl -w}; and
2. ph -z, =ph-wl and gttt =pit! Wit for t=1,...,n

Proof. Since (x§,xT,...,X]:pn) is 8 Walrasian equilibrium, for each t = 0,1,...,n we have

f41 t+1 141 t4

Paxy = ph-zi, 4 i 2t = ph w4 Wt = pawn (»)

From 37 o xP = 1w, we see that 204! = w2*! bolds, and so pi*! - zn%! = ppt? - upt! . Using (#)
and letting t = n, we infer that

n o.n  _ N n
Prn Tan = Pn  wn,
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i.e., the identities are true for t = n.’
homzn‘_ln*‘z,”;—Un_z""”:n'em"h.tpﬂ n-ln+p‘ nu'-"P:'w:-l"'p:'“:lmdso

PrZn-1n = Wp_y-
Letting t = n — 1 in () and taking ibto account the above equality, we see that

P ARF ot JAED b Y% i B

and hence our identities are also true for t=n -~ 1.
Now the validity of the desired identities can be established by repeating the preceding arguments
witht=n-2,n-3,...,1,0.0

Our final objective is to “take” the limit as n -+ oo in the identities of the preceding lemma. This
will be done in the pext lemma.

Lemma 8.15. If (x,p) is an asymptotic limit of a fundamental sequence, then

t 1 41 _ 141
Poowy=p-2; and pyy - w —P8+1'=1+

bold for all t = 0,1,2,... . In particular,

P x=pw>l

holds*for allt=10,1,2,....

Proof. Let (x,p) be an asymptotic limit for a fundamental sequence { (x§,x7,...,x%;pa}}. Fix t > 1
and let £ > 0. Lemma 8.5 applied with m = 0 and £ = ¢ guarantees the existence of a constant M > {
such that

0<pr-sn <M ()

holds for all k > 1.
Now ffom

(21, 207) + e(w] i) > (21 2),

the fact that each x; is a weak accumulation point of the sequence {x?*: n=1,2,...} in [0,6,] x [0,8,.41]
and the weak continuity of the utility functions on the order bounded sets, we see that for infinitely
many k > t we have

(2,2 IH)""‘:(“‘:: +1) bt (z:t,z:tl , and

(244 ) + elwi, with) - (zli’zttl

Thus, in view of the supportability of p;, we see that

pios+pt a depcw 29 s, a2}, and
1 1 1 1
Pz a2 vep w2 s+ Y

and so from (**) and Lemma 8.13, we infer that
piowi=pi-zti <ol ozi+eM and PP =gt gt <t r e
hold for infinitely many k > {. In view of p -y = imp,,-y for each'y € A, the latter inequalities imply
po-wiSpozi+eM snd puywt Spua -2 oM,
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for all £ > 0. Hence,

po-wl <p-z; and IR ALY S SRY At

hold for all ¢ == 1,2, ... . A similar argument also shows ibat po ‘Wi S po-gl
Finally, from the relations

powh_y Wl S prTi +pr- T
= pi (2 + 2)
=p (Wi +w)) Sp-wig+Pr -

it is easy to see that
powi=p-z; d powio =Pz
hold for all t = 1,2,... . Hence,
P X =P w
also holds for eack £=10,1,2,..., a8 desired.

Finally, we close the discussion in this section with an interesting observation. Let {x,p) be an
asymptotic imit. Then

y:=(0,...,0,2£,0,0,..) and 2, = (0,...,0,21%1,0,0,...)
represent the allocations that consumer { is receiving at periods ¢ and ¢ + 1, while
e =(0,...,0,&!,0,0,...) sad € ={(0,...,0,u{*,0,0,...),
are his initial endowments at periods t and t + 1, respectively. Lemma 8.14 tells us that
p-Y,=p-e sad p-3=p-e,

which means that the values at prices p of the initial endowment and the allocation bundle are the same
for a given consumer at each time period.

6. THE OVERLAPPING GENERATIONS MODEL AND PROPER PREFERENCES

We start our discussion by defining the Riesz space
¢g = {(z1,22,..) €E: 3 } with ;=0 V i>k}.

Under the duality
-4
p X = E a - 7

the dua! system (ég,E’) is clearly a symmetric Riesz dual system. The purpose of this section is o
present a condition which guarantees the existence of equilibria for the overlapping generations model
with respect to the Riesz dual system (¢ .E'}). We shall say that the overlapping generations mode!
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bas an equilibrium with respect to the Riesz dual system (¢g,E’} whenever there exists an allocation
x = (Xp,X;,X3,...) and some poo-zero price p = (Py,p2,...) € E' such that

i) 202} in E} implies py-2 2 p1 - 2}

i) (z,) 2 (2},2§*!) in EY x E,, implies pr -z 4+ pras -y 2 oy -l + prar -t and

ili) p-x,=p-w, bolds for t=10,1,2,....

In our overlapping generations model each consumer ¢ > 1 lives in periods ¢ and ¢+ 1 and his utility
function u; is defined on E} x E/;. Let us say that the preference > induced by u, is sniformly
proper whenever there exist Jocally convex-solid topologies on E; and E,,, consistent with the dualities
(Ex, E}) and {E;41,E},,) such that each > is uniformly proper with respect to the product topology
on E; x E,,;:. Equivalently, u; is uniformly propet if and only if it is uniformly proper for the Mackey
topology T(E: X Eq41,Ey x E;,,). The preference > is uniformly proper whenever it is uniformly proper
on Ej. Also, let us say that the overlapping generations model is proper whenever

a) Each preference >, (t = 0,1,2,...) is uniformly proper; sad
b) Each 8; = w}., + w! is a strictly positive element of E; for each t > 1. (Recall that &, is strictly

positive whenever ¢ -6, > 0 holds for all 0 < ¢ € E].)

It should be clear that A is an ideal of ¢g which is also dense in ¢p with respect to the product
of the Mackey topologies. In addition, it should be noted that our notion of equilibrium with respect to
the Riesz dual system {¢g. E’) is an extension of the equilibrium notion of Definition 7.3.

The objective of this section is to prove the following result.

Theorem 9.1. Every proper overlapping generations model has an equilibrium with respect to the
symmetric Riesz dual system (¢p,E’).

The proof of this theorem will be accomplished with the belp of a theorem which is of some inde-
pendent interest in its own right. So far, we bave seen that quite often ac allocation can be supported by
a price on an ideal of the original commodity space. It is, therefore, natural to ask whether or not such
a supporting price can be extended to the whole commodity space. N. C. Yannelis and W. R. Zame {46]
proved that if in 8 finite economy w is strictly positive and all preferences are uniformly proper, then a
supporting price on A, extends to a supporting price on E. Next, we shall state and present a different
proof of this result.

Theorem 9.2. (Yannelis-Zame) Consider a finite economy with set of consumers N = {1,...,n} and
n positive vectors z,,...,2,. Leta = }::;1 z; and Jet p be a positive linear functional on E such that
z»;z;in E* impliesp-z > p 2,.

If for some locally convex-solid topology t on E the preferences are uniformly r-proper, then p is
r-continuous on the ideal A,. '

Proof Assume that the price 0 € p € E~ and the positive vectors z;,...,2, satisfy the hypotheses
of the theorem. For each i fix some v; > 0 and some convex solid r-neighborhood V; of zero such that
z—av+z>;zin E* witha> 0implies z¢ aV;. Putv=3_ v and V=00, V..
Next, consider the Minkowski functional pof V, i.e.,
Ay)=inf{A>0: y€ AV}, ye E.

Clearly, p is & 7-continuous seminorm on E. Now let 0 € z € e = J_7, z;. By the Riesz Decomposition
Property we can write z = 3 v, 2 with 0 € z; < x; for each i. Let a; = p(z), and let € > 0 be fixed.
Put g = z;+ (@i +€)y;— 2, 2 0, and that z; = i = (@i +€)vi + 2 > 0. My = (o + €)vi + 2 =i yi holds,
then by the uniform r-properness of »-;, we see that z; ¢ {o; + €)V, contrary to p(z;) = a;. Therefore,
% >i Ui — (& + €)v; + z; = z; holds, and so by the supportability of p, we obtain that

puwzp ri=pln-(oitehi+al=p-n-(ai+e)p-utp 5
Hence, p- z; < (a; + £)p - v; holds for each i and all ¢ > 0, and s0

p-zi<ao;p-vi =(p -w)e{n) <(p-u)p(2).
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This implies . .
p-z=2p-z¢ s(}:;p-w)p(z)=(p-=)p(z)
for all z with 0 € 2 < a. Ap easy argument now shows that
Ip 21 < (p-t)(z)
holds for all z € A,, sud 50 p is T<continuous on A,. W

We continue our discussion with one more lemma dealing with proper preferences.

Lemma 8.3. Assume that
a) (E.E’) is a Riesz dual system;
b) 7 is a Jocally convex-solid topology on E consistent with (E, E*);
c) A is a r-dense ideal of E; and
d) > is a preference relation on E+.

Then the preference > is uniformly r-proper if and only if there exists a r-neighborhood V of zero
and some 0 < v € A such that

z—av+z> 2z in EY with o >0 implies z ¢ V.

Proof Assume that > is uniformly 7-proper. Pick a r-neighborhood W of zero and some 0 < u € E
such that
z—au+tz>z in EY with >0 implies 2 ¢ aW. (%)

Choose a convex solid r-neighborhood V of zero with V 4+ V € W. Since A is v-dense in E, there
exists some v € A with u~ v € V. Replacing v by u A v+ (and taking intc account the inequality
|u = uAvt] < Ju-rt]), we can assume that 0 < v < u bolds. Now we claim that

z—av+zr2z in E* with o >0 implies 2 ¢ aV.
Indeed, if 2 — ar + £ > z holds in E* with a > 0, then from (%) and the relation
z-au+|z—alv-u)]=z-av+z> =,
we pee that z — a(r - u) ¢ aW. On the other band, if z € aV, then
z—aflu-v)€aV+aV=a(V+V)CaW,
which is impossible. Hence, 2z € oV, and the proof of the lemma is finished. B

Rezall that an element 0 < z € E is said o be strictly positive or a quasi-inferior point (in symbols,
z % 0) whenever p-z2 > 0 holds for all 0 < p € E’. It is well known that an element 0 < £ € E is strictly
positive if and only if its principal ideal A, is weakly dense in E; see [5, pp. 259-260].

Now let us complete the proof of Theorem 9.1. To this end, assume that the overlapping generations
mode! is proper. By Theorem 8.1, we know that there exists an equilibrium (x, p), where

x = (xg,X3,%3,...) and p={(p1,p2....}-

Let t be fixed Observe that the price p = (p;,p2....) € A’ supports the vectors xo,X),..., X413 on A.
Since the preferences are uniformly proper on E with respect to the product of the Mackey topologies
r and A is r-dense in E, it follows from Lemma 9.3 that the preferences are also uniformly r-proper on
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A. Thus, by Theorem 9.2, we infer that the price p is r-contiouous on A,, where s = 311 x,. Since
©:x6;x---x0; x0x0--- is an ideal of A,, we see that the individual price py is o E,, E)<continuous
on 8,.

Since ©; is dense in E;, the price p;:@; — R bas s unique continuous extension p; on E,. We
claim that the price p* = (p},53,...) € F’ supports x on éx. To see this, let y > x; in E¥ x E,,. Fix
§ > 0 and then pick anet {y, } C @} x 8}, withy, — y+5uwy. Replacing {ya ) by {yo Ay +6wi) }.
we can assume that {y, } is order bounded. In view of yo —+ y + wy, ¥ + Swy >; X; and the weak
continuity of the utility functions on the order bonnded sets, we can also assume that y, > x, holds for
all a. Thus, by the supportability of pon A, we get p-y, 2 p-wx for all o, and by the weak continuity
ofpon Ey x Eyyy, wescethat p-y+6p-wy 2 p-wy brall § > 0. Thus, y >, x; in E} x E,, implies
P Y 2 P wy, and the proof of Theorem 8.1 is complete.

Finally, we close the paper with a few remarks concerning the general overlapping generations model.
That is, the overlapping generations model where we allow

) k persons to be born in each time period; and
b) each person to live n periods.

It is not difficult to see that (with some appropriate modifications) the arguments up to Lemms 8.14
are valid in this case too. That is, it can be shown that if (x,p) is an asymptotic limit, then x is an
allocation supported by the price p. Bowever, the proofs about the budget equalities (Lemmas 8.14
and 8.15) cannot be replicated because they depend upon the two-time period assumption and the fact
that each generstion consists of a single individual. In special cases (for instance, when the symmetric
Riesz dual systems are of the form (R",R"} or (&,4)) Theorem 8.1 is true. We copjecture that
Theorem 8.1 is true for the general overlapping generations model.
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