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ABSTRACT

This paper extends the classical Chow (1960) test for structural change
in linear regression models to a wide variety of nonlinear models, estimated
by a variety of different procedures. Wald, Lagrange multiplier-like, and
likelihood ratio-like test statistics are introduced. The results allow for
heterogeneity and temporal dependence of the observations.

In the process of developing the above tests, the paper also provides a
compact presentation of general unifying results for estimation and testing

in nonlinear parametric econometric models.
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1. INTRODUCTION

This paper is concerned with testing for structural change in nonlinear
models. For the classical linear regression model the Chow (1960) test com-
monly is used, and for the linear simultaneous equations model the Lo and
Newey (1985) extension of the Chow test can be used. Somewhat surprisingly,
however, more general cases have not been considered in the literature. Ve
consider fairly wide classes of models, estimators, and test statistics in
this paper. We also cover the case where the structural change is only par-
tial, i.e., it pertains to only a subset of the coefficients in the model.
Some of the test statistics we present can be computed using the output from
standard software packages.

The models we consider may be dynamic, simultaneous, and nonlinear and
may include limited dependent variables. The error terms may show a very
general form of temporal dependence and heteroskedasticity. The estimators
include nonlinear least squares (LS), two stage least squares (25L5), three
stage least squares (3SLS), maximum likelihood (ML), and M-estimators. The
tests covered are the Wald (W) test, a Lagrange multiplier-like (IM) test,
and a likelihood ratio-like (LR) test. Under certain conditions, we show
that the test statistics are asymptotically chi-square under the null hypo-
thesis of no structural change and asymptotically noncentral chi-square
under sequences of local alternatives.

The paper is organized as follows. The general case is considered in
Section 2, with proofs in the Appendix. Three special cases then are con-
sidered in Sections 3, 4, and 5. The three cases are (1) the single equa-

tion nonlinear regression model, (2) the nonlinear simultaneous equations
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model, and (3) any model estimated by maximum likelihood. For those primar-
ily interested in the application of the tests, Section 2 can be skipped and
Sections 3, 4, and 5 can be skimmed up to the point where the formulae for
the test statistics are presented and the computational requirements are
discussed.

The general results of Section 2 have the added feature that in several
respects they provide the most general unifying results in the econometrics
literature for estimation and testing in dynamic and nondynamic, nonlinear,
finite dimensional parametric models. Also, they do so in a much more
economical fashion than is available elsewhere, such as in Gallant (1987) or
Gallant and White (1987).2 In contrast to Gallant (1987, Chs. 3 and 7},
least mean distance and method of moment estimators are treated simultane-
ously. In contrast to Gallant and White {1987), a more complete treatment
of multi-step procedures is given.

The approach taken in Section 2 is a variant of that of Gallant (1987,
Ch, 7)., In contrast to Gallant (1987), however, the results are stated such
that they can be applied with any uniform law of large numbers and any cen-
tral limit theorem. This allows developments in these areas--especially

with respect to temporal dependence-- to be adopted readily.
2. GENERAL RESULTS

This section gives general results for estimation and testing in models
with structural change. The basic approach that we adopt is one that has
evolved in a long series of papers on Inference in nonlinear models. Such
papers Include those of Wald (1949), Huber (1967), Jennrich (1969),

Burguete, Gallant, and Souza (1982) (denoted BGS (1982)), Domowitz and White



(1982), Bates and White (1985), Gallant (1987), and Gallant and White
(1987). The present approach most closely follows that of BGS (1982) and
Gallant (1987) and our notation is chosen to be as compatible as possible
with them.

This section is outlined as follows: We first consider a class of ex-
tremum estimators for models where structural change may or may not occur.
Consistency and asymptotic normality of these estimators are established.
Consistent estimators of their asymptotic covariance matrices are provided.
We then consider tests of general nonlinear restrictions. Wald, Lagrange
multiplier-like, and likelihood ratio-like tests are shown to be asymptot-
ically chi-square under the null hypothesis and asymptotically non-central

chi-square under local alternatives under certain conditions.

2.1. Consistency of Estimators
The data are given by a doubly infinite sequence of random vectors

(rv's) [Wt] = [Wt Tt .., =2, =1, 1, 2, ...) defined on some probability

1

space ({1, F, P). Probability statements made below refer to probabilities
calculated under P. The observed sample of size T = Tl + T2 is

(W, : t=-T ve., =1, 1, ..., T

e 1’ The point t = 0 1s the point of struec-

2t

tural change, if such change occurs. (For notatioral convenience, the se-
quence {Wt] is indexed such that no WO rv exists.) In most cases, the

asymptotics used below correspond to situations where

T € (0,1) and « = T2/T >, e (0,1 as T = =, (2.1

2T

= Tl/T Y

1T

Extremum estimators are defined as follows.

A A

DEFINITION: A sequence of extremum estimators {6) = ({8 : T =1, 2, ...} is

any sequence of rv's such that



d(m (8,7), 1) = inf d(m.(8,7), 7) (2.2)
T T
feo
- 15
with probability that goes to one as T + =, where mT(G,r) =7 z mt(G,r),
. t=—T1

. t 2 nY u

mt(ﬁ,r) = mt(Wt, 6, r), and mt(-,-,-) : R " x @8 x Tl R™ where Tl Cc R,

mo(e,r) = 0, 7 is a random u-vector (which depends on T in general), and

d(s,+) is a non-random real-valued function (which does not depend on T).

For notational simplicity, we let ET(B) abbreviate ET(H,?) and we let
b
Z: denote T for arbitrary integers a < b.
t=a
In the case of pure structural change, the parameter vector § can be

partitioned into two sub-vectors (f;, Bé) such that mt(ﬂ,r) does not de-

pend on 61 for €t > 0 or on 62 for t < 0. 1In the case of partial structural

change, the parameter vector # can be partitioned as (8:, §! ﬁé) , where 4

2’ 1

and 92 are as above and 93 is unrestricted,

We now describe briefly several common estimators in terms of the above
framework; more details are given in Sections 3-5. Consider the following
nonlinear regression model with partial structural change:

Yt - ft(Xt, ﬂj, 03) + Utf t =-T ., =1, 1, ..., T2, where j = 1 for £ < 0

1!

and j = 2 for t > 0. Let Wt - (Yt, Xé) . The nonlinear least squares esti-

mator of § = (8!, Hé, 93) can be defined either as one that minimizes the

sum of squared residuals or one that solves the first order conditions of

this minimizarion problem. Thus, we can take either

2

mt(ﬁ,r) e (Yt - ft(Xt, 4., 83)) and d(m,r) = m or mt(ﬁ,r)

J
3 '
(Yt - ft(Xt, Hj, 93))55 ft(xt’ Gj, 93) and d(m,7) = m'm/2
For the LS estimator, no nuisance parameter s appears in the func-

tions mt(ﬂ,f) and d(m,r). If an M-estimator is used, however, then mt(ﬂ,r)

is set equal to p{((Y¥_ - ft(xt’ 9j. 93))/T) or
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w((Yt -f (X_, #8., 93))/1)35ft(xt, .

tht ] ]

is a scale parameter, ¥(x) = %;B(X)' and d{+,+) is as above. Huber (1981)

, 93), where the nuisance parameter r

discusses different choices for the function ;(-).
Next, consider two stage least squares (25LS) estimation of a single,
nonlinear, simultaneous equation with pure structural change. The model 1is:

£ (Y _, X_, Gj) = Ut’ for t = =T

e c ., TZ’ where j = 1 for t < 0 and j = 2

1:

for £t > 0, Yt is a vector of endogenous variables, and Xt is a vector of

predetermined variables. Let Zt be a vector of instrumental variables that

TP | - f ' -
can be partitioned as Zt (th, ZZt) , where th 9 for £ > 0 and Z2t

for £t < 0. Let Wt - (Yé, Xé, Zé) . The 285LS estimator of # is defined by

-0

taking mt(ﬁ,r) - ft(Yt, Xt, Gj)Zt and d(m,r) = m'D(r)m/2, where r equals the
1.5 - 1.5
non-redundant elements of D(7) = |lim = = EZtZ£ and D(#) = [z .72 z!

T T —Tl T le £t

We now return to the general case. In what follows we avoid imposing

A

conditions that are used just to ensure measurability of # by stating re-
sults that hold for any sequence of rv's [;}. Such results have content
only if such a sequence exists. Clearly, sequences {;} that satisfy (2.2},
but are not necessarily measurable, always exist, since © is assumed below
to be compact. Further, we note that one set of sufficient conditions for
the existence of a measurable sequence {;} is that d(ﬁT(B), 7), viewed as a
function from Q@ x ® to R, is continuous in # for each w € {1 and is measur-
able for each fixed § € 8, and ® is a compact subset of some Euclidean space

(see Jennrich (1969), Lemma 2).

For consistency we assume the following.



ASSUMPTION 1: (a) € is compact.

P

(b) 7 isarvand - r, as T » = for some r, € T, ¢ R,

0 1

(¢) There exists a Borel measurable function m{s,*) : 8 XT=~> RY such that
ET(B,T) B m(d,r) uniformly over (8,7} € 8 X T as T » =, where T C Tl is
some compact neighborhood of Ty

(d) d(e,+) is uniformly continuous on m(8,T) x T and m(GO, r) is continuous
in r at Ty

()  Lim  dm(s,, ), 7,) = dm(dy, 7

6*46,1**70

O)’ ro) with equality iff 8 = 60.

For notational simplicity, we often denote m(4, ro) by m(4§)
Assumption 1(a) is standard in the nonlinear econometrics literature.
Assumption 1(b) can be verified straightforwardly by application of a weak

law of large numbers (WLLN) in some cases and by the application of Thecrem

1 below to get consistency of 7 rather than ¢ in other cases. The function

T
m(d,7) of assumption 1l(c) generally is given by lim % §T2 Emt(ﬁ,r). Thus,
o 1

T

assumption 1(c) holds if these limits exist and if %— E;lmt(ﬁ,r) and
1 1
T
%— Elzmt(ﬁ,r) satisfy uniform WLLNs over & X T. The latter hold under
2

conditions that allow considerable heterogeneity and temporal dependence.

It is sufficient that {mt(ﬂ,r)} satisfy a smoothness condition in (#,7), a
moment condition, and a cendition of asymptotically weak temporal dependence
--see Andrews (1987b), Gallant (1987, Ch., 7, Thm. 1), Potscher and Prucha
(1986), or Bierens (1984, Lemma 2). Assumption 1(d) holds trivially in most
applications, since d(m,r) usually is continuous on R x RY and m{@,T) x T
is contained in a compact subset of R’ x R". Assumption 1(e) is the unique-

~

ness assumption that ensures that {#] converges to a point 90 rather than to



a multi-element subset @O of ® Assumption 1{e) is satisfied if m(-,+) is

continuous on 6 X T and 60 uniquely minimizes d(m(4, ro), ro) over 8.4

A

THEQREM 1: Under assumption 1, every sequence of extremum estimators (8)

satisfies @ =B, 60 as T -+ = under P.

The proofs of Theorem 1 and other results below are given in the Appendix.

2.2. Asymptotic Normality of Estimators
We now establish the asymptotic normality of sequences of extremum es-

timators {4} for models that may exhibit structural change. Their asymptot-

ic covariance matrix V is defined as follows. Let

T
. - 12 .8
S = lim VarP(JT m (8, 7)), M= lim 2 B.° E=gom (8., 7.),
T T+ 1
2 1 -1
D = ma‘;d(]‘ﬂ(ﬁo, TO), TO), J = M'DM s I = M'DSDM, and V = J IJ » where

mt(-,-) and d(+,+) need not be defined as in assumption 1 (see footnote 4).
For the LS estimator, M-estimators, and ML estimators, mt(-,-) and d(+,+)
must be chosen in this sub-section and the next to correspond to their first
order conditions definition. For the 2SLS estimator, mt(-,-) and d{+,+) are

defined as in Section 2.1.

denote the Euclidean norm and let %ad(-,o) denote the deriva-

Let

tive of d{.,+) with respect to its first argument. We assume:

A

ASSUMPTION 2: (a) 4 -2~ 9, € RP 45 T - .

(byi. JT(F - TO) = OP(l) as T » = for some i S Tl’

Y . -
11, Ead(EmT(HO’ TO)I To) = 9 vT large: ahd iii, T_a—d(m(g T ) - 9'

O)’ 0

(c) {mt(ﬂo, TO)} satisfy a central limit theorem (CLT) with covariance
. . — - d

matrix S. That is, JT(mT(HO, TO) EmT(BO, TO)) N(O, 8) as T .

(dy @ cC R? and @ contains a convex neighborhood @C of 80.



2 a2
5m3m —d{m,r) and < 379m

(m,7) € M x T, where M is some neighborhood of m(&o, ro).

(e) %ﬁd(m’r)’ ———d(m,r) exist and are continuous for

(£) mt(ﬂ,r) is once and twice continuocusly differentiable in 7 and f,

) a a_
respectively, on GC x T, Vt, Yw € {. {mt(B,r)], {aamt(ﬂ,f)}, {armt(ﬁ,r)},

2
and sup
(6%, r*)ee xT,

8 (8%, %)
a=1, ..,p

38 86'

} are sequences of F\Borel-measurable

rv's that satisfy uniform WLLNs over (4,7) € GC x T.

T T
m(f,r) = lim L = 2Em (¢,7), M(4,7) = lim l 2g 8
T =T Torco

T

o Ezzom (4,r), and
1 Tl ag’' 't

T
1 2
dm{4,r) = lim T T

g—m {8,7) exist uniformly for (8,1) € ec x T > and are
Tmeo

r t
continuous and dm(&o, ro) - 0.

(g) M'DM is nonsingular.

Assumption 2(a) can be established by Theorem 1 or some other consis-
tency proof. Assumption 2(b) can be verified by applying a CLT to 7 in some
cases and by applying the result of Theorem 2 below to 7 rather than ; in
other cases. Assumption 2(c¢c) can be verified by defining

ro) for t = ~T T, to get a triangular array

Bre = mt+Tl+1(BO’ 17 T2

{mTt i t=1, ..., T+l; T =1, 2, ...} to which any of a number of CLTs
apply. Thus, assumption 2(¢) holds under conditions that allow considerable
heterogeneity and temporal dependence. It is sufficient that

Emt(ﬁo, TO) = 0, vt, and that [mt(ﬂo, fO)} satisfy standard moment condi-
tions and a condition of asymptotically weak temporal dependence--see
Gallant (1987, Ch. 7, Thm. 2), McLeish (1975b, Thms 2.6, 3.8, and 4.2; 1977,

Thm 2.4 and Cor., 2.11), Herrndorf (1984, Thm. and Cor. 1-4), or Withers

(1981, Thms. 2.1-2.3).



Assumption 2(d) is standard. Assumption 2(e) often is satisfied
trivially, since d(m,7) often equals m or m'D(r)m, where D{r) 1is a square
matrix comprised of the elements of r. Assumption 2(f) is a standard re-
quirement of smoothness of mt(ﬁ,r) in 8 and 7, the existence of certain
limiting averages of expectations, and non-explosive non-trending behavior
of the summands {mt(ﬁ,r)} and their first two derivatives. The smoothness
conditions are stronger than necessary (cf., Huber (1967) and Pollard
(1985)), but are satisfied in a large fraction of the cases encountered in
practice. Assumption 2(g) is standard. For example, it reduces to

nonsingularity of the information matrix in iid ML contexts.

A

THEOREM 2: For any sequence of extremum estimators {4} that satisfies

assumption 2,
" d
JT(6 -6 — N, V) as Toew.

Next we consider estimation of the covariance matrix V. Let

M= T2 E 1 5§7mt(9,7), = 3ndm d(m (§,7), 7y, and J = M’'DM. Let S be an

estimator of 5. If {mt(BO, TO)} is a sequence of independent rv's, then we
» 1 Dy

can take S = T ETl mt(ﬁ,r)mt(ﬁ,r) . If {mt(BO, ro)] is a sequence of tem-

porally dependent rv's, however, a more complicated estimator is required.
The following choice is analogous to estimators suggested by Gallant (1987,

pp. 551, 556) and Newey and West (1987). Let

5 = Q(g), where §(8) = T l(a) * T 2(a)
(2.3)
= L AR P (8)"+m__ (8)m_(8)'1,
S (9) = o E m (G)m (8)'+ 2 w[ ] z [m (H)m v g +n B)m
Tl 1 vl E(T YT Tl+v t
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A T 2(T,) T
5,0 = 1z om e T is]i om0 v (0dm (),

2 v=1 )T,

1/5 1/5

mt(e) = mt(a,?), E(Tl) = [Tl i, E(Tz) - [T2 ], [t} denotes the largest

integer less than or equal to t, and w(+) yields the Parzen weights, i.e.,

1 - 6x + 6x° for 0 <x < 1/2

w(x) = , or the Bartlett weights, i.e.,

2(1—x)3 for 1l/2 <x =<1
w(x) = 1-x for 0 = x = 1.

Conditions under which this estimator is consistent can be found in the
references above. These conditions require {mt(ﬁo, ro)} to have more moments
finite than are required for [mt(ﬁo, fo)} to satisfy an LLN or a CLT. See
Gallant (1987) for conditions using near epoch dependence and Newey and West
(1987) for conditions using strong mixing. Given thg availability of such
conditions, it is straightforward to verify the following assumption.

ASSUMPTION 3: S L5 as To (where S is as in assumption 2)}.

~ AAAA - A AN

Let I = M'DSDM and V = J IJ, where (-)_ denotes some reflexive

g-inverse (such as the Moore-Penrose inverse).

THEOREM 3: Under assumptions 2 and 3, M B, M, D -B, D, and V “Euvoas T o .

Comment: When V simplifies, as occurs in many applications, then V simpli-

fies or simpler estimators than V can be comstructed.
2.3. Tests of Hypotheses Concerning Structural Change

We now consider tests of null hypotheses of the form HO : h(g) = 9. ot
particular interest are tests of pure and partial structural change. For
testing pure structural change, the null hypothesis is HO : 51 = 62, where

r

# = (8!, Hé) and 61 and 82 are parameters associated only with the observa-

tions indexed by £ < 0 and t > 0, respectively. In the case of partial
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structural change, the null hypothesis is HO : 01 - 52 where

[
8 = (87, 9&, Bé) s 01 and 62 are as above, and 93 is a parameter that may be

associated with the observations from all time periods. A third class of
hypotheses of interest are joint null hypotheses of no structural change

(pure or partial) plus certain nonlinear restrictions. In this case, the

L

null hypothesis is Hy : 8, = 8, and h%(6;) = 0 when § = (97, 83) or

[

GB) = 9 when 8 = (8!, #., 6!y . The present frame-

H. : 8. = 8, and h*(¥ 90 U3

0" 1 2

work also includes tests of nonlinear restrictions that do not involve test-

1:

ing for structural change. Results for such hypotheses, however, already are
available in the literature--see Gallant (1987, Ch. 7) and Gallant and White
(1987, Ch. 7).

The function h(-) defining the restrictions is assumed to satisfy:

ASSUMPTION 4: (a) h(d) is continuously differentiable in a neighborhood of

3

§ . and H = h(GO) has full rank r ( = p).

0 ag’

(b) V is nonsingular (where V is as in assumption 2).

The Wald statistic is defined as

Wy = Th(4)' (HVH’) h(6) , (2.4)
where H = E%Th(g)- Since HVH' -2+ HVH' as T = = and HVH’ is nonsingular

under assumption &4, the g-inverse (+) equals the usual inverse (o)_l with
probability that goes to one as T + =.
In the case of testing for pure structural change, WT is given by

A

(V) /myp + Vo/myr) (8 = 65) (2.5)

WT - T(Bl - 92)

A

where V., and V2 are the estimators of the asymptotic covariance matrices of

1
Gl and 62, which are analogous to the estimator V of V and which use the
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observations indexed by t = —Tl, ee., =l and t=1, ..., T2, respectively.
This formula holds in the standard case where D is block diagonal with two
blocks (for some ordering of its rows and columns) and mt(ﬂ,?) has elements

A

corresponding to the first block of D that are non-zero only if t < 0 and
other elements that are non-zero only if t > 0.
The IM and LR statistics defined below make use of a restricted esti-

mator of 90:

DEFINITION: A sequence of restricted extremum estimators

(§y = {§ : T=1, 2, ...) is any sequence of rv's such that

d(m,(F), #) = inf(d(m (8), ) : 4 €8, h(d) = Q) (2.6)

with probability that goes to one as T + =.

Suppose the null hypothesis is true and h(+) is continuous on 8. 1f
assumption 1 holds for the parameter space © it also holds for the parameter

space §_ = {§ € 8 : h(f) = 9], since 8. is compact and 4, € €. Thus, assump-

0 0

tion 1, Theorem 1, and continuity of h{+) over & imply that 7 B 60 as T = «

under the null hypothesis. In consequence, the following assumption is

0 0

straightforward to verify:

ASSUMPTION 5: § -E+ By as T + = under the null hypothesis.

The IM statistic uses an estimator of V that is constructed with the

A T
restricted estimator § in place of 4 . Let M = 1 s 2 é—m (g.,7),
T —T1 ag c
2 A A
D e e
D= Eﬁgm'd(mT(B’r)’ ), J =M'DM, S = S(§), and H = EETh(H) (where mt(-,-)

and d(+,+) are as in assumption 2). Note that the estimator of the nuisance

parameter 7, still is denoted 7, even though it may be a restricted estimator
Fa

of Ty The same is true of the estimator S of §. With this notation, we do
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not need to adjust assumptions 2(b) or 3 when a restricted estimator of T is
used. Let I = M'DSDM and V = J IJ . As above with V, the estimator V can be

simplified when V simplifies, as often occurs in applications of interest.

The LM statistic is defined as

L, - ng—,d(ﬁ,r(?), YT T (FVEYTHT ggd(ET(ﬁ), ) (2.7)

(where mt(-,-) and d(+,+) are as in assumption 2). As shown below, this sta-
tistic often simplifies considerably.

The IR statistic (defined below) has the desired asymptotic chi-square
distribution under the null in two particular contexts contained within the
general framework considered thus far. Outside of these contexts, the LR
statistic generally is not asymptotically chi-square under the null. The

first context is defined by the following assumption.

ASSUMPTION 6a: Under the null hypothesis, I = bJ for some scalar constant
b % 0 and b P.borhb Py b as T + » for some sequence of non-zero rv's (b}

or (B} (where mt(-,-) and d(-,*) are as in assumption 2).

Assumption 6a is satisfied by 25LS and 3SLS estimators of nonlinear simultan-
eous eguations models under certain assumptions regarding the heterogeneity
and temporal dependence of the equation errors--see Section 4 below.

The second context is defined by the following assumption.

ASSUMPTION 6b: Let mt(-,-) and d(+,+) be as in assumption 2.
(i) d(m,r) = m'm/2. There exist functions pt(Wt, ¢, r) such that

m (W, 0, 1) =3

c (Wt, g, r), Yt. With probability that goes to one as

>
T + =, § solves ;T(G,?) = inf{ET(ﬁ,?) . 9 € 8) and § solves
T

2 A
T I pe(er 00 )

=

pT(B,r) - inf{pT(G,r) 8 €8, h(g) = 9}, where pT(Q,r) =
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(ii) Under the null hypothesis, § = cM for some scalar c = 0 and & -E+ ¢ or

< -B, c as T = = for some sequence of non-zero rv's (&} or {c).

Assumption 6b is satisfied by ML estimators for general parametric models.
Assumption 6b(i) is satisfied by the LS estimator and many M-estimators for
the nonlinear regression model. Assumption 6b(ii) is satisfied with these
estimators only under special conditions on the heterogeneity and temporal
dependence of the errors--see Section 3 below.

Note that assumption 6b(i) is compatible with the definitions of § and

~

f, because an estimator ¢ (8) that minimizes ;T(H,?) (subject to h(#)

0)
is in the interior of © with probability that goes to one as T - = under
assumption 2, and hence, also minimizes d(ET(S), ) (subject to h(f) = 9)
with probability that goes to one as T —+ =,
The LR statistic is defined as
2T(d(m (), #) — d(m (3), ?))/ﬁ when 6a holds
LRT = _ E . _ o T ~ (2.8)

2T(pT(H,r) - pT(B,r))/c when 6b holds.
where mt(-,-) and d(s,+*) are as in assumption 2.7 The nuisance parameter
estimator # may be a restricted or an unrestricted estimator of o It must
be the same in both criterien functions used to calculate LRT’ however, and
it must be such that both ; and § are consistent under the null hypothesis.
Otherwise, the LR statistic generally does not have the desired asymptotic
digtribution. That is, for use of the LR statistic, ; and § must be rv's

that minimize the same criterion function subject to no restrictions and to

the restrictions h{(d) = 0, respectively.

THEOREM 4: Suppose assumptions 2-4 hold under the null hypothesis,

h(ﬂo) = 0, and the null hypothesis is true. Then the following results hold:
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(a) WT B, xi as T » o, where r is the number of restrictions,
{(b) LMT -2, xi as T -+ = provided assumption 5 also holds, and
{c) LRT -2 Xi as T » « provided assumption 5 holds and either 6a or 6b

holds in place of assumption 3, where xi denotes the chi-square dis-

tribution with r degrees of freedon.

Comments: 1. When assumption 6a holds, as occurs with 25LS and 3SLS esti-
mators in nonlinear simultaneous equations models with independent identical-

ly distributed (iid) errors (see Section 4 below), then we usually have

I = bJ for some scalar rv b »= 0. In the latter case, V and W, simplify. We

get V = bJ and Wy = Th(a) (HJ H') h(8)/b.

Similarly, if T = b7 for some scalar rv 5 = 0, then V and LMT simplify.

We get V = BJ and 1M, = T-——d(mT(e), T = d(ET(E), #)/B (where

r T I35 denotes

equality that holds with probability that goes to one as T — @}, since

8 .= 7y 2
Sam (@, )

H') for some vector i of Lagrange multipliers.

2. When assumption 6b{i) heolds, both WT and LMT simplify. In this

1 T2 42 2
case, D = Ip’ M= 1im T §T E555§7p (Wt g, ry, J =M, I = MSM,
T-+eo 1

%Ed(a 8y, ) = ﬁﬁ (§), and by 2(g), M is nonsingular. We get

L AN A A A

Th(d) ' (HM SM H') h(e) and LM = Tm (8)'M H’ (HH SM H’') HM . 6.

A

E
o -

If, in addition, 8§ = cM or S — ¢M for some scalar rv's &, c = 0 (as

usually occurs when assumption &b(ii} holds), then WT and LMT gimplify to

W = Th(B) (HM H') h(a)/c and LM, = = T () 'H w (9)/C, respectively. The

latter holds because ﬁET(g) = H'n for some vector of Lagrange multipliers 7
under assumption 6b(i).

3. One would expect the small sample properties of WT, LMT, and LRT to

be improved by replacing the devisors T, Tl’ and T2 that arise in various

sample averages by their counterparts with the estimated number of parameters
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subtracted off. The relevant number of estimated parameters to subtract off
may or may not include the elements of 7 and may or may not include all of
the elements of ;, depending upon the context.

Next, we present asymptotic local power results for the three tests con-

sidered above. These results can be used to approximate the power functions

of the tests. We assume:

ASSUMPTION 7: There exists a sequence of distributions {PT] on (Q,F) such
that assumption 2 holds under (P} with ¢, replaced by 8, = 6, + n/JT in

parts 2(b)ii and 2(c) for some n € RP.

The distributions {PT} usually are determined quite easily in applica-
tions. For example, in the monlinear regression model, the sequence of
10 e T2, for T=1, 2, ..., and PT is
Ut) = ..., -1, 1, ...} for

models is YTt - ft(GT) + Ut' t = -T

just the distribution [(YTt, Xt’
T=1, 2,
Verification that assumption 2(a) holds under [PT} can be made by show-

ing that assumption 1 holds under {PT}.

We define the following analogues of assumptions 3, 5, 6a, and 6b:

ASSUMPTION 8: Assumption 3 holds under {PT].

ASSUMPTION 9: § —B g, under (Pj) as T - o.
ASSUMPTION 10a: Assumption 6a holds and b 2, b or b -B+ b under {PT} as

T » =,

ASSUMPTICN 10b: Assumption 6b holds and c 2. b or ¢ B+ b under [PT] as

T > =,

Note that assumption 9 holds if ©_, is compact and assumption 1 holds

0
under {PT}.
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THEOREM 5: Under assumptions 4, 7, and 8,

(a) Wy A, Xi(az), where §% = n'Hf(HVH') THn,
(b) LMT —éﬁ X§(52) provided assumption 9 also holds, and
(c) LRT —§+ xi(&z) provided assumption 9 holds and either 10a or 10b holds

in place of assumption 8, where xi(éz) denotes the noncentral chi-square

. ; . . . 2
distribution with noncentrality parameter § and r degrees of freedom.

COMMENTS: 1. Since JTh(GT) + Hn as T » =, power approximations can be based
on & xi(sg) distribution, where 5% - Th(ST)’(HVH’)_lh(GT). In particular, to
approximate the power of a test against an alternative # when the sample size
is T, we set § = 6. and take 63 = Th() (HVH') 'h(s).

2. Due to the local nature of the alternatives in Theorem 5, the approx-
imations described in Comment 1 usually are more accurate for close alterna-

tives to the null hypothesis than for distant alternatives.
3. NONLINEAR REGRESSION

Here we consider structural change in the nonlinear regression model

Yt - ft(Xt, 00) + Ut , Lt = _Tl’ R T2 , (3.1

where Yt € R1 and Xt € RK are observed, Ut = Rl is unobserved, ft(-,-) S5 Rl

is a known function, and 80 € ® ¢ RP is unknown. The vector Xt may include
lagged values of Yt' For brevity, we only consider the LS estimator and
tests based on it in this section. Using the results of Section 2, one can

treat the more general class of M-estimators analogously.
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3.1 Least Squares Estimation

A sequence of least squares estimators of 90 for T=1, 2, ... is de-

fined to be any sequence of rv’'s (#) such that

T A T
Lz 2y, - £ 0007 - inf £ 5 20v, - £.000)° (3.2)
1 pee T 11

with probability that goes to one as T + =.

The following assumption Rl guarantees the existence of a sequence of LS

estimators {§}. Also, it implies assumption 1 of Section 2 with

2

mt(ﬁ,r) - (Yt - ft(B))2 - Ut and d(m,r) = m for m € R1 {see the Appendix).

Hence, using Theorem 1, assumption Rl guarantees the consistency of any such
sequence. We note that each variable and vector that appears in this assump-

tion and the others below is assumed (implicitly) to be F\Borel-measurable.

ASSUMPTION Rl: <(a) © is a compact subset of rP.

(b) EU £ (X, 8) =0, V6 €8, ve.

T
2E(ft(G) - ft(ﬂo))2 exists uniformly for 4§ € © and is positive

(¢) lim x %

Tow T

unless & = 6,.

0
(d) [(Xt’ Ut)} is strong mixing with strong mixing numbers {a(s)} that
satisfy a(s) = o(s_a/(a_l)) for some a > 1.8
2
(e) sup Esup{lft(ﬂ) - ft(90)| £ |Ut(ft(9) - ft(ﬂo))|g} < o for some £ > a.

t dee
(£) ft(ﬁ) is defined and differentiable in ¢, VYt, for all realizations of

Xt' ¥4 € @%, where ©+% is some convex or open set that contains ® and

T
lim % §T2E sup [ +
T+ 1 deo*

5 d
(£.0) = £.ONF7E (0] + U, azft“”H] =

Assumptions R1l(a), (b), and (c) are standard compactness, orthogonality,

and identification assumptions, respectively. The strong mixing assumption
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R1(d) is used to ensure that a law of large numbers {LLN) holds for certain
rv's. This condition is quite convenient and fairly general, but is not all
encompassing (see Andrews (1984, 1985)). For cases where this assumption
fails, one can substitute an alternative condition of asymptotic weak depen-
dence (see references in Section 2} and use the results of Section 2 to
establish consistency and asymptotic normality.

Note that assumption Rl(e) does not require the errors to have finite
variances. Assumption R1(f) is used to convert an LLN into a uniform LLN.
It could be replaced by a weaker continuity or Lipschitz condition (see
Andrews (1987b, Cor. 2 and 3)) and assumption 1 still would follow. This
assumption is convenient, however, simnce differentiability of ft(G) is used
below for asymptotic normality anyway.

For the case of a model with no structural change, assumption Rl is
quite similar to the consistency assumptions of White and Domowitz (1984).9

Next, we introduce an assumption R2 such that assumptions Rl and R2
imply assumption 2 of Section 2 with mt(ﬁ,r) = (Y - £ (9))35ft<9) and
d(m,r) = m'm/2 (see the Appendix). Hence, by Theorem 2, under assumptions R1
and R2, JT(; - BO) has an asymptotic normal distribution as T - = with mean

. -1_.-1
vector 0 and covariance matrix V = M "SM 7, where

2 d
M= M(BO) - %1m T TlEaaft(ﬁo)aa,f (B ) and § is as in R2(c).
ASSUMPTICN R2: (a) © contains a convex compact neighborhood @c of 30'
1 Tz 3
(b) m(d) = lim 5 Z MY - £ ())Y==£ (8) and
T =T t dgt
T+ 1
l 2 3 \ .
M{8) = lim 7= E———[(Y f (9)) f (8)] exist uniformly for § € © and
T T l g’ ae c

are continuous on ec and M(GO) is nonsingular.
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1 2 d .
{(c) § = lim Var[JT —T t66f (60)] exists.

T—e0

(d) ft(ﬂ) is three times continuously differentiable with respect to f§ on ec

for all realizations of Xt, vt, and

2 ¢ e Ik ¢
sup E sup umt(ao)u + |m _8)] ”aa t(e)“ 33 agm ()| | <=, for
t aeec
some £ >a, Ya=1, ..., p, where mt(ﬁ) = (Y f (9)) f (5)

We now define a consistent estimator of the covariance matrix V. Let

V=M SM , (3.3
-~ AA A 1 T2 FaY AN
where M = M{4), M({4) = f (3)89,f (8), and § = 5(8) for S(ﬂ) as de-

_Tl
fined in equation (2.3) with mt(G,r) = (Yt - ft(B))%gft(B) and w(+) corres-
ponding to the Parzen or Bartlett weights. (Gallant (1987, p. 533) recom-

mends the Parzen weights.)

For consistency of S, we use the additional assumption:

£ (9 )”46 < = for some £ > a.

ASSUMPTION R3: s:p E||Ut 37

A

The estimator S can be replaced by a simpler estimator in certain cases.

If EUtUs g f (0 —f (48 ) = 0 V¥t = g, one can take E(Tl) - ﬁ(Tz) = (O in the

0)39'
definition of S. This yields

1.2
S =% 1(Y - (a)) ot (a)ag,ft(a) . (3.4)
. . 2 2
1f, in addition, E(U_|X ) = ¢” a.s., Vt, then
w2 2 f (532 FE.(8,) = 268 ¢ (9 )=0—£ (9 d k
Ve 3550 aa' 7 557t 39' ¢(#g), VE, and we can take
A A A ~ T
) 1.2 ~ 9
S =¢M , where g = T ET (Yt - ft(ﬁ)) . (3.5)

1
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A A LS

The following consistency results for §, M, and V make use of Theorem 3

and a result of Newey and West (1987):

THEOREM 6: (a) Under assumptions R1-R3, § £, 5, M -2, M, and V £ v as

T - = for S as defined in equation (3.3). (b) Under assumptions Rl and R2,

s 2, 5, M -2 M, and V P vas T o fors as defined in equation (3.4) or

A

(3.5), provided the additional conditions outlined above (3.4) or (3.5) are

satisfied, respectively.

3.2. Tests of Structural Change

We now consider tests of HO : h{(g) = 9, where h(+*) satisfies assumption

4 of Section 2, The LM and LR test statistics make use of a restricted LS

estimator §. By definition, a sequence of restricted LS estimators of EO is

any sequence of rv's (6y ={3 : T = 1, 2, ...} such that equation (3.2) holds

(with probability that goes to one as T -+ =) with 4 in place of ¢, where the

infimum is taken over @, = {(§ € & : h(d) = 9}. We assume:

0

ASSUMPTION RS. 60 is coempact.

Assumption R5 holds if h(+) is continuous on ©, as is usually the case.
Assumptions Rl and R3 puarantee that a sequence of restricted LS esti-
mators exists and that any such sequence is consistent for 90 when 90 satis-
fies the null hypothesis h{§) = 0 (see the Appendix).
When the restrictions h{(d) = 0 correspond to a test of pure or partial
structural change, § generally is easy to compute. It equals (8', 5i)' or

L} L

(Ei, Ei, gé) , where 51 or (3!, ?é) are just the estimators obtained from
the whole sample under the assumption of no structural change.

The LM test statistic defined in equation (2.7) uses a consistent esti-

mator of the covariance matrix V that is based on the restricted estimator
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9. In the present context, we take

—

T =835 M, where M = M(F) and § = S(8) (3.6)

~ A

and M(#) and S(§) are given in equation (3.3). As in equations (3.4) and

{(3.5), S can be replaced by the simpler estimator

T
= 1 2 ~. 2 8 =~ 8 -  _ ~2=
S = 7 ng(Yt - ft(B)) Eﬁft(e)5§7ft(9) or S =0 M, (3.7)
2 1T -2
where o° = T ET (Yt - ft(ﬁ)) , when the conditions outlined above (3.4) or
1

or (3.5) hold, respectively. By the proof of Theorem 6, S, M, and V are con-
sistent for S, M, and V, respectively, when the null hypothesis is true under
the conditions of Theorem 6 and assumption R5.

The following assumption Réb implies assumption 6b of Section 2, which
is used to ensure that the LR statistic has an asymptotic chi-square null
distribution. This assumption is not needed for the W and LM test statis-

tics.

ASSUMPTION Réb: Under the null hypothesis,

, , o2 B2f (605575, (8,) when € = s
EUU_ $2E (60)50rf (6,) =

to

when £ = s

for all t, where 02 = EUi for all t.

Assumption Réb holds if Ut and US are independent conditional on Xt and
XS a.s,, ¥t =% s, and Ut has homoskedastic variance 02 conditional on Xt a.s.
¥t . These conditions restrict the temporal dependence and heterogeneity of

the errors considerably. It often is possible, however, to transform a model

with temporally dependent or heteroskedastic errors into a model with iid
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errors. A prime example is when the original model has stationary, autore-
gressive errors (e.g., see Fair {1970) and Gallant and Geebel (1976)).

We now have assumptions RL-R3, 4, R5, and Réb for LS estimation of the
nonlinear regression model that imply assumptions 1-5 and 6b of Section 2.
In consequence, Theorem 4 holds and the W, LM, and LR statistics defined in
equations (2.4), (2.7), and (2.3) {(with mt(a,r) = (Yt - ft(ﬁ))ggft(ﬁ)) are
asymptotically chi-square with r degrees of freedom under the null hypothe-
sis,

Next, we introduce assumptions that guarantee that the W, LM, and LR
test statistics have noncentral chi-square distributions under sequences of

local alternatives (using Theorem 5 of Section 2y,

. i p - -
ASSUMPTION R7: Given n € R™, let BT 90 + n/JT and YTt ft(ﬁT) + Ut. Let

PT denote the distribution of {( X Ut)} for T=1, 2, ... . Suppose

YTt' t’
assumption Rl holds with 90 replaced by BT in Rl(e), R1(f), and the first
time it appears in Rl(c). Suppose assumption R2 holds with Yt given by YTt

in R2(b), with 8, replaced by GT in R2(c), with sup replaced by

0
t
. . 3
sup in R2(d), and with m_(8) defined by (Y. - f _(8))z7zf (8) in
t<T,T=1,2,... t Tt t 8t
R2(d).
il 48

ASSUMPTION RS8: sup E”Ut ngt(GT)“ < o for some £ > a.

t<T,T=1,2,...

ASSUMPTION 10b: Assumption R6b holds with 60 replaced by GT.

It is straightforward to show that assumption R7 implies assumption 7 of
Section 2. Assumption R7 is not much stronger than RZ because

3
ft(GT) = ft(ﬁo) + ==

aﬂ'ft(g*)ﬂ/JT and so the replacement of £ _(8,) by £ ()

only causes a change of order Op(l/JT). If desired, assumption RZ plus a
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d 32
moment assumption on ngt(ﬂ) and EFEFTft(g) can be used in place of assump-
tion R7.
Assumptions R7 and R8 imply assumption 8 of Sectiom 2. This follows by
the proof of Newey and West (1987) applied to a triangular array of strong
mixing rv's rather than to a sequence of strong mixing rv's. Also, assump-

tions R5 and R7 imply assumption 9 of Section 2 by Theorem 1 with the param-

eter © replaced by 60. Assumptions R7 and R10b imply assumption 10b of

T T

. . a 1 2 “l 2 - 1 2 _ - 2
Section 2 with ¢ = T ETl(YTt - ft(B)) or c T §T1(YTt ft(s)) ]

In sum, assumptions 4, 7, 8, 9, and 10b of Section 2 are implied by as-
sumptions 4, R7, R7 and R8, R5 and R7, and R7 and R10b, respectively. 1In
consequence, Theorem 5 holds and the W, LM, and LR statistics have non-cen-
tral chi-square distributions under sequences of local alternatives.

We now provide some simplified formulae for the W, 1M, and LR statistics
in the nonlinear regression context and in particular for the special case of
testing for pure structural change. The general formula for the W statistic
is given in (2.4) and its covariance matrix estimator G is given for the non-
linear regression context by equations (3.3)-(3.5). For the case of pure
structural change, the W statistic is given in (2.5).

When assumption R6b holds, the W statistic simplifies considerably by

taking § as in (3.5). 1In this case, W, is given by the formula in Comment 2

T

- N 2 -
to Theorem 4 with & = §°, For example, when testing for pure structural

change under assumption Réb, WT becomes

A

WT = T(Gl - 52) [Ml/ﬂlT + Mz/ﬂzTJ (91 - 92) . (3.8)

For general null hypotheses, the LM statistic is given by
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LMT = Tm (9) M H (HVH ) HM m (9) , (3.9
I
where m.(8) = = ( - f (8) ——f (6). Note that LM is a quadratic form
T T = 1 a8t T

in the first order conditions for the unrestricted problem of minimizing the
sum of squared residuals, evaluated at the restricted estimator §.

When testing for pure structural change, LMT becomes

LM, = T[Ml mlT(a)—ﬁ; EZT(E)] ' [V1/W1T+\72/H2T]_[ﬁ; am(e) M2 sz(s)] , (3.10)

M. and S, are de-

- - 1 -1 M. S
where mlT(ﬂ) = TI Z; X, - £ (9)) e <9) 1 MyS 1 l' 1 1

1 1

fined analogously to M and § using only the observations indexed by

t = —Tl, ..., =1, and mZT(ﬁ), V2, MZ’ and 82 are defined analogously.
When assumption Réb holds, LMT simplifies by taking 5 = Ezﬁ:
LMT T Tm (G)y'M m (9)/a . (3.11)

For example, when testing for pure structural change under assumption R6b,
(@) i, m, (F) . (3.12)

In the nonlinear regression context, the LR statistic is defined as

T T R
2 ~ .2 2 2] .2
IRy = ETl(Yt - £.000)° - le(Yt - £ (67 |78° . (3.13)

Recall from Section 2 that LRT has the desired asymptotic null distribution
only if assumption R6b holds. In the case of testing for pure structural
change, the first term above equals the sum of squared residuals (SSR) from

T, (and no structural

the regression of Yt on ft(-) with t = —Tl, e T,

change), while the second term equals the SSR from the regression of Yt on
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ft(-) with t = -T ~1 plus the SSR from the same regression with

ls voee
t=1, ..., T,.
Computationally, the relative attributes of the W, 1M, and LR statistics

can be summarized as follows: The Wald statistic W only requires calculation

of the unrestricted estimator 4§ and not the restricted estimator 4. Once one

.y

has calculated 8 and a consistent estimator of its covariance matrix, the
Wald statistic can be computed by simple matrix manipulations,

The IM statistic only requires calculation of the restricted estimator
# and not ;, Thus, if the latter is difficult to compute, which may occur in
some models of partial structural change, the LM statistic is the easiest of
the three test statistics to compute.

The LR statistic requires computation of both ; and §. Once these esti-
mators have been computed, however, the LR statistic can be calculated
directly from information provided by standard software packages.

The small sample properties of WT, LMT, and LRT may be improved if the
divisors T, Tl, and T2 of the various sample averages that arise in the sta-

tistics' definitions are replaced by their counterparts with the estimated

number of parameters subtracted off.

4. NONLINEAR SIMULTANEQUS EQUATIONS

In this section we consider structural change in the nonlinear simultan-

eous equations model

£, (Y _, X_, 8 =Uu,,, i-1, ..., n, t=-T .., T, , (4.1)

2

where Yt € RG and Xt € RK are observed endogenous and predetermined vari-

ables, respectively, Uit 1= Rl is an unobserved error, fit(-,-,-) =S Rl is a
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known function, 90 € 6 ¢ RP is an unknown parameter, and n { = 1) is the num-

ber of equations. As above, in the cases of pure and partial structural

change the parameter vector #, can be partitioned as (4!, 4)) and

0 2

(4!, 8, 8%) , respectively.

4.1, Three Stage Least Squares Estimation

We consider a class of nonlinear three stage least squares (35LS) esti-
mators introduced by Amemiya (1977) and generalized to the structural change
problem considered here. A special case of the 3SLS estimator is the two

stage least squares (2SLS) estimator.

Let fit(a) abbreviate fit(Yt’ Xt’ §) and take
£,(8) = [fl,—T @), £ _1(8), £, o (B, .., fn'_1<e>] L 42)
1 1 nTlxl
Let Zit be a column vi-vector of instrumental wvariables (IVs) for the ith
equation and the tth time period. For i = 1, ..., n, let Zi be a T1 X v
matrix whose rows are given by Zit for t = —Tl, ..., =1, Define
7. = diag{z} z" where v g (4.3)
1 81215 -+ Ly bt xv ere R .
1 i=1

Define f2(8) and 22 analogously with the time periods t = —Tl’ e, —1
replaced by t = 1, ..., T2.

Let Ql and 02 denote n X n nuisance parameter estimators. Either Ql

. 1 -1 . 1 D
and 02 are estimators of Ql = 1lim T §T EUtUt and 92 = 1lim T El EUtUé ,

T,=» 1 1 T.-o 2
1 2
respectively, where Ut = (Ult, R Unt) or Ql - 02 and 01 and 02 are esti-
1 .0
mators of O, =0, = lim = £ _"EU U'! . The former case corresponds to the
1 2 Toseo T --'13l £t

comment situation where one believes that structural change may affect both 90
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and the distribution of Ut' The latter case corresponds to the less likely

situation where one believes that structural change may affect 90 but not the

distribution of Ut.ll

A

let A, =0, &1 and A, = 0, & 1 for j =1, 2.
i ] T,

j b T,
3 J
A sequence of 3SLS estimators of 80 for T=1, 2, ... is defined to be

any sequence of rv's (f#) such that § minimizes

[fl(e))'Alz1 + fz(e)'AZZZ] [ZiAlzl + ZéAzzz] [z'lAlfl(a) + ZéAzfz(s)] (4.4)

over § € 8 with probability that goes to one as T -+ =,

In the special case where one takes ﬁl = 62 = In’ the estimator § de-
fined by equation (4.4) is the 25LS estimator of 90. In this case, the
objective function can be written as the sum of n terms, each involving a
separate equation. If the parameter space © does not impose any cross equa-
tion restrictions, then the 2SLS estimators of the n sub-vectors of 80 can be
estimated one at a time.

When only one equation is estimated (n = 1), equation (4.4) simplifies.
In particular, in the case of pure structural change, it can be written as
the sum of two terms, the first of which corresponds to the ordinary 2SLS es-
timator using the t < 0 data and the second to the 2SLS estimator using the

A A

t > 0 data., The scalars Dl and 92 become redundant in this case and need not

be calculated.

The following assumption S1 guarantees the existence of a sequence of

1SLS estimaters {¢#)}. Also, it implies assumption 1 of Section 2 with

Wwo=(Y , X, Zt), mt(B,r) = Ztﬂjft(ﬂ), where Zt = dlag{Zit, Cey

t t t )

7! ,
nt’'nxv
ft(ﬁ) = (flt(ﬁ), PPN fnt(e))nxl’ j=1for t <0, and j = 2 for £t > 0, and

d(m,7) = m'Dm/2, where



29

~ A ~ - T A -
v AT 1 21—-
D = T[ZlAlzl + 22A222] [T Zr ztnjzt] (4.5)
1 VXV
and 7 is a u-vector comprised of the non-redundant elements of Ql, 92, and

A

D. Using Theorem 1, assumption S1 guarantees the consistency of every se-
quence of 3SLS estimators. We note that each wvariable and vector that
appears in this assumption and the others below is assumed implicitly to be

F\Borel-measurable.

ASSUMPTION S51: (a) 6 is a compact subset of Rp.

{(b) @ 2.0 and g, B+, as T + = for some n X n nonsingular matrices (

1 1 2 2 1
and 02.
(e¢) =m, =11 lim l— E_lEf (8)Z and 1i E— ZTzEf YA i
¢ m m T T Zp BEy ()2, and lim 7= 2 EL, (62, exist
T Tl*m 1 1 T24m 2
uniformly for § € © and are continuous in § for all § € 8 for
1 T2 1

i, r=1, ..., n. lim T 5. EZ2!'G.°f (8) = 0 if and only if 6§ = 4.

T —T1 7] Tt - 0

1 T |
D = lim|z 2 "EZ'Gi. "2 exists and is positive definite.
T —Tl LN IR PO

T—eo

(d) {(Yt, X Zt)} is strong mixing with strong mixing numbers {a(s)} that

t’

satisfy a(s) = o(s_a/(a_l)) for some o > 1.

3 ' § : -
{e) sup E[sup”fit(ﬁ)zrt" + lzrtzrt| ] <w, ¥i, r=1, ..., n, for some
t 1=
£ > a.
() fit(e) is defined and differentiable in 8, Vi =1, ..., n, vt, for all

realizations of {(Yt, Xt)}, Y8 € 8%, where 0% is some convex or open set that

—1 0
contains @, and lim T Z.E sup
T-reo 1 fdeB%

<ew ¥Yi, r=1, ..., n

3atec(f) 2 e :

A

Nulsance parameter estimators 01 and 02 that satisfy assumption S1(b)

can be obtained as follows: Let § be some consistent preliminary estimator
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of 90’ such as the 2SL$ estimator. Then, for the case where Ql and 02 are

allowed to differ, take

. T
e 1 2, mee 7
- 1f (B)f (F)' and 0, = T 2 E DE D) . (4.6)

For the case where ﬂl and 02 are constrained to be equal, take

O
Q =0, =3 §T1ft(a)ft(a)' : 4.7)

Next, we introduce an assumption §2 such that assumptions S1 and §2
imply assumption 2 of Section 2 with mt(ﬂ,?) and d(m,7) as above. Hence, by

Theorem 2, under assumptions 81 and 52, JT(Q - 90) has an asymptotic N(Q,V)

distribution as T - =, where V = (M'DM)_lM'DSDM(M'DM)”l,
T
1 2 -1 &
= lim = Z."E2'Q, —=f _(8.) , (4.8)
Toreo T T1 t] 48' "t 0'vxp
D is as in Sl(c), and § is as in S2(c¢) below.
ASSUMPTION S2: (a) © contains a convex compact neighborhood @c of 00.
(b) EUitZrt =0, Vi, r = 1, ..., n.
15,
(¢) § = lim Var J" 2 z! Q U exists where U_ = (Ul R D
Taseo T, t] t t nt
(d) JTl(nl - Q) = Op(l) as Ty + =, JTz(nz -0, - Op(l) as T, =+ =,
Ty
and lim Var J_ E Z' 't exists for all i =1, ..., n.
T l N
(&) 1lim i- = lEl- £,.(8)2:_ and lin 15 2Ef’—— ()21 exist uniformly
T, =T. 34 rt T 1 a3
T l—’°° 1 1 Tz-m 2

for 8 € @ and are continuous for § € @, vi, r =1, ..., n, and M is non-

singular.
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() fit(ﬂ) is twice differentiable in §, V8 € ec, Vi=1, ..., n, ¥t, for

all realizations of {Yt, Xt} and

¢ a° 2¢ 2¢
sup E sup "80 Tl N FY) a8 B ()2 + log 2™+ 2L 2,07 <=
t 669
vi, r=1, ..., n, Ya=1, ..., p, for some § > a.
In cases where S = D_l, the covariance matrix V simplifies to
V = (M'DM)_l. This occurs when
E(U U’lZ ) - j a.s., ¥t , and
{4.9)
EZ;U U 2, =0, Vo, Vk=1,2,
A consistent estimator of the covariance matrix V is given by
V - (M’DM) M’'DSDM(M'DM) , where M = M(8),
l a a A A A
M(ﬂ) [zlAl Egrf (8) + 22 2 Bﬁ'f (9)], and § = 5(8) for S(G) as defined in

equation (2.3) with mt(-,-) defined just above equation (4.5) and w{e«) cor-

responding to the Parzen or Bartlett weights. If the second condition of

~

equation (4.9) holds, then S can be simplified by taking E(Tl) = £(T2) =0 in
its definition. This yields

A 1 T2 A_ A A A_

5 T ETIZtﬂjft(ﬂ)ft(ﬂ) Qth . (4.10)
1f bath of the conditions of (4.9) hold, then take

S =D and V- (M'DM) . (4.11)

A

To establish consistency of V we assume:

ASSUMPTION S3: sup E||z;:Ut||l‘6 < = for some £ > a.
t
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THEOREM 7: (a) Under assumptions S1-83, S —B+ s, M -E5 M, and v B> v as

T - o for 5 as defined just below equation (4.10)}.
(b) Under assumptions Sl and 52, S 2, S, M -B, M, and V 2y v as T + = for

S as defined in (4.10) or (4.ll1), provided the additional conditions outlined

above (4:10) or (4.11) are satisfied, respectively.

4.2. Tests of Structural Change

We now consider tests of nonlinear restrictions H0 : h(¢) = 0. For
brevity we omit many comments of Section 3.2 that apply here as well.

A sequence of restricted 3SLS estimators of 90 is any sequence of rv's
{7} such that @ minimizes equation (4.4) over § € 90 = (# € ® : h{(§) = 9}.
Assumptions S1 and S5 (below) guarantee the existence and consistency of se-
quences of restricted 3SLS estimators, since they imply that assumption 1 of
Section 2 holds with parameter space 60.

ASSUMPTION S5: GO is compact.

The IM test statistic of equation (2.7) uses a restricted covariance
matrix estimator given by T - (ﬁ'ﬁﬁ)'ﬁ'ﬁ§5ﬁ(ﬁfﬁﬁ)', where M = &(5), S = g(ﬁ),
and ﬁ(ﬂ) and g(ﬁ) are as defined just below equation (4.9). The estimator B
is a preliminary estimator that does not depend on ; or §. 1If desired, the
preliminary estimator of 90 that is used in forming B can be chosen to be a

A~

restricted estimator of 60. As in equations (4.10) and (4.11), S can be re-

placed by the simpler estimator
S -L5 207 (H)E(5)aZ or § =D (4.12)

when the conditions outlined above (4.10) or (4.11), respectively, hold under

the null hypothesis. By the same argument as in the proof of Theorem 6, s

1
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M, and V are consistent for S, M, and V, respectively, under the null hypo-
thesis under the conditions of Theorem 7 and assumption S55.
The following assumption $6a implies assumption 6a of Section 2. It is

used to obtain the asymptotic null distribution of the LR statistic.

ASSUMPTION S6a: Under the null hypothesis,

-1
EZ'G.Z. if t = s
gz 0T U vraTtz - ty ot for all t, s = ... -1, 1, 2, ...,
£l ts]) s 0 if £ = s

where ] = 1 for t < 0 and j = 2 for t > 0.

Agsumption $6a implies that S = D_l and I = J. 56a holds under (4.9).

Assumptions S§1-S3, 4, S§5, and S6a for the 35LS estimator imply assump-
tions 1-5 and 6a of Section 2. Thus, Theorem 4 holds and the W, IM, and LR
statistics of equations (2.4), (2.7), and (2.8) are asymptotically chi-square
with r degrees of freedom under the null hypothesis (where assumption S6a is
needed only for the LR statistic).

The next assumption is used to obtain local power results:
. : P - -
ASSUMPTION S7: Given n € RY, let BT 90 + 5n/JT and fit(YTt’ Xt’ 8T) Uit'
Let PT denote the distribution of {(YTt, Xt’ Ut’ Zt)} for T =1, 2,

Suppose assumptions 81 and 82 hold with Yt and fit(ﬁ) replaced by YTt and

fit(YTt’ Xt’ 8) throughout, with S1(b) and 51(d) holding under [PT}, with the
sequence [(Yt, Xt, Zt)} replaced by the triangular array
{(YTt, Xt, Zt) : —Tl <=t = T2, T=1, 2, ...} in 81(d), and with sip replaced
by sup in S1l{(e) and S2(f).

t<T,T=1,2,...

Assumptions 7, 8, 9, and 10a (with b = b = 1) of Section 2 are implied
by assumptions S7, S3 and S$7, S5 and S7, and S6a, respectively. Thus,

Thecreém 5 of Section 2 applies and the W, IM, and LR statistics have noncent-
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ral chi-square distributions under local alternatives. Their large sample
power functions can be approximated accordingly.

We now provide some simplified formulae for the W, LM, and IR test sta-
tisties in the nonlinear simultaneous equations context. The general form
for the Wald statistic is given in equation (2.4). TIf assumption S6a holds,
then ; can be taken as in equation (4.11), g = B-, 2 = J, and WT is given by

A A A

the simplified formulae of Comment 1 to Theorem 4 with J = M'DM.

Fal

When testing for pure structural change, we assume that the IVs are

taken such that each IV is non-zero only for observations with t < 0 or only

for observations with t > 0. This condition ensures that the matrix D is

block diagonal (after appropriate permutation of its rows and columns) and

that mt(B,?) satisfles the condition following equation (2.5). Hence, the

Wald statistic for testing pure structural change is given by (2.5). VWhen

assumption S6a holds, V., and V2 of (2.5) can be simplified as in (4.10) or

1
(4.11).

The 1M statistic corresponding to 35LS estimation is given by

L, = TﬁT(E)'Dﬁj'ﬁ'(ﬁ?H')'ﬁj‘ﬁ'DET(E) , (4.13)

A
P

where J = M’DM. Note that the LM statistic is a quadratic form in the vector

of orthogonality conditions between the IVs and the model evaluated at the

restricted estimator §.
When testing for pure structural change (with IVs as in the second para-

graph above), the LM statistic becomes

L, = T[mlT(B)'DlMlJI - mZT(B)'DzMsz][Vl/wlT + vz/ﬂZT]
(4.14)
'{JlMiDlmlT(g) = JoMP, 2T(9)] '
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- - 1 e ~ ~ 1 ~ B - - -
where m,, (f) = =— Z!A_£.(8), M, = 52— Z'A, =—=£.(8), J, = M'D M.,
ere myp(f) T, 7303 5 37T Aty gty @)

I ] 37373

v, =J.1,7,, I, =-H:D,5.D.M,, and §, = §,(§) for $,(4) defined in equation
i 373735373 ] ] i

(2.3) for j =1, 2.

When assumption S56a holds, LMT simplifies by taking S = D :

M, = m (%) DHI H'Dm(¥) . (4.15)

In particular, when testing for pure structural change under assumption S$6a,

e, - TlmlT(a)'DlmljlminlmlT(a) + Tomyn (8) "D M, T MID, m, 1 (6) (4.16)

The LR statistic in the 35LS case is given by
LRT = 2T[d(mT(9), T) - d(mT(ﬂ), r)] ) (4.17)

where d(ﬁT(G), 7) is the expression given in (4.4), i.e., the objective func-
tion for the 3SLS estimator. When testing for pure structural change (with

IVs as above), the objective function factors as follows:

d(m (8), %) = d (m 0 (), #) + d,(myp(8), #), where

(4.18)
d, (m, L, F) = £.(8)'AZ.|Z/A.Z.| Z'ALF.(8) =1, )
3 (myp (), 7Y = £,06)7A, J[ i3 J] jAyEy (8 for ] 2

Thus, LR, is obtained quite simply by performing 3SLS estimation on the ob-

T
servations indexed by {—Tl, ., =1y, (L, ..., T2}, and {—Tl, - T2}.
When carrying out 25LS estimation by setting Q. =0, =0, =0, = 1 _, the

1 2 1 2 n
simplifying assumption S6a generally will not hold because it requires

EZt’:Zt Yt = 8
EZ'U U 2 = . The latter holds if the errors have variance
ttss 0 ¥t = s

one and are uncorrelated across time periods and equations conditional on the

IVs--unrealistic assumptions in most applications. This problem can be
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avoided by calculating the 2SLS estimator one equation at a time and by de-

A

fining the scalars Ql and 02 as in (4.6) and (4.7). With these definitions,

assumption S6a only requires the errors to be homoskedastic and uncorrelated
conditional on the IV's. In the case of testing for pure structural change,
~

the ?SLS estimator is the same regardless of the values of the scalars ﬂl and

A

02. Thus, the latter can be defined using the 2S5LS estimator itself in (4.8)
and (4.7) (i.e., with 4 = 8) for the purposes of generating the W, LM, and LR

test statistics.
5. MAXIMUM LIKELIHOCD ESTIMATION

This section considers ML estimators and corresponding tests for dynamic
heterogeneous models that may exhibit structural change. For brevity, we do
not give formal assumptions that imply assumptions 1-5 and 6b of Section 2.
Such assumptions can be obtained in the same manner as is done in Sections 3
and 4.

G K ;
Let Yt € R~ and Xt € R~ denote endogenous and exogenous variables,

respectively. Let

(£,08) : 6€0) = (£ (V| 0y ooy Y g5 X gy ooy B3 8) 18 €0) (5.1

1 1

denote a parametric family of conditional densities (with respect to some

measure u} of Yt given Y_Tl, c e Yt—l and X_Tl, c ey Xt, evaluated at the

rv's Y T, ., Y and X , ..., X . The conditional log-likelihood
- t -T t

1 1

T

function of {Yt} given {Xt} is ET log ft(ﬂ). The analysis can be carried

1

out conditionally on {Xt} or uncenditionally. In the latter case, the mar-
ginal distribution of {Xt} is assumed not to depend on #. The RP -valued

parameter ¢ may reflect pure or partial structural change, as described in
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Section 2.

To apply the consistency result of Theorem 1 Section 2, let

mt(B,r) = =log ft(ﬂ) and d(m,7) =m for me R1 or (5.2}

m (8,7) = - 9 1op £ ((8) and d(m,r) =m'm/2 for m e RP 12

73 (5.3)

A

Define a sequence of ML estimators {4} to be any sequence of extremum esti-

mators that satisfies the definition of Section 2.1 with mt(-,-) and d(s,s)
as above. The "first-order conditions" definition of (5.3) is preferred to
that of (5.2), since it must be used in the application of Theorems 2-3 any-
way. In some contexts, however, the limit of the expectation of the normal-
ized likelihood equations is not solved uniquely by ¢ = 00, whereas the limit
of the expectation of the normalized log-likelihood function is maximized
uniquely at § = 60. In such cases, the definition of (5.2) needs to be used
to establish consistency of the ML estimator ; {(via Theorem 1) and the defi-
nition of (5.3) needs to be used to.establish various asymptotic distribu-
tional results (via Theorems 2-5).

A

The asymptotic covariance matrix of {#) simplifies as follows:

v = (M'DM)_IM’DSDM(M'DM)-l = M_l, because D = Ip,
1 Mo 5° 1 T2
M= 1im - ET Eaeag,log il (90) = lim 7 §T aglog £ (00)68,105 f (00) , and
T T 1
(5.4)
123 112
§ = %i: Var J_ Tl aglog £ (8) = %iﬁ T —T a6log f (60)89'l°g a (9 ) =M,

provided the conditional information matrix inequality holds, using the fact
that {gglog ft(ﬂ)} is a martingale difference triangular array with respect

to the triangular array of o-fields generated by the conditioning variables
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in ft(ﬂ). Note that M is the limiting average of the conditional information
matrices for each observation evaluated at the true parameter 90.

Assumption 6b of Section 2 holds with p(Wt, g, v) = =log ft(ﬁ) and

¢ = 1. In consequence, the LR statistic for testing H0 : h(8) =0, viz.,

T, _ T, R
LR, = -2 ng log £ _(8) - 2 log £.(6)] . (5.5)

has the desired xi asymptotic distribution (under assumptions 1, 2, 4, 5, and
6b), where r is the number of restrictions and § is the restricted ML esti-
mator of 00. Furthermore, the Wald and LM statistics are given by the sim-

plified formulae of Comment 2 to Theorem &4:

A A A

- Th(ﬂ) (HM H') h(ﬂ) and

(5.6)
1 %25 | lL o2 8
LMT - T[T PN 1 37 log ft(&)] M [T T aal°g f (8)] ,
- 1 Yo 52 o Lg2a 3
where M is defined to be - 7 ET 5?66’ g £ (6), T Tlaﬂ g f (9)39'105 £ (G),
1 T2 a2 A
or - % §T EagaG'IOg f (#) and M is defined analogously with 9 replaced by 7.
1

In the case of testing for pure structural change, the LR statistic is
chtained quite simply by calculating the ML estimators for the data indexed
by [—Tl, e, =1), LY, L., T2} and {—Tl, c ey Tzl. The W and 1M statistics

are given in this case by

L

WT = T(Bl - 02) (Ml/ﬂ1T + Mz/ﬂZT) (81 - 52) and

(5.7
LMT l lT(H) M lT(19) + T m (9) M m2T(9) .
] Fa -~ ~ ] FaY —l 62 ~
where § = (4!, 62) , 8 = (4!, 92) . Ml equals - T ET 37 39'1°g £ (8),

1 1
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2 A
-5l so-log £ (9)39,1og £.(), r- 2= 5; Espsarlog £, (8), M, is defined
1 1 1 1 1 1 1771
analogously m,(§) = 1 E_l 2 —log £ (9) and ¥ and m,, (§) are defined
N ¥ T, 2T. 34 ! 1’ 2’ 2T

1 1771
analogously with ¢ replaced by [



APPENDIX

PROOF OF THEOREM 1: We show that d(ﬁT(§,$), 3y B d(m(8,, 7)., 74) as

T » », In view of assumption l(e), a standard argument (using a Skorokhod
representation, e.g., see Serfling (1980, Sec. 1.6.3), and a subsequence
argument) then gives the desired result.

Since d(ﬁT(ﬂ,?), #) = d(ET(ﬂ ), ?), we get

Ol

d(m(;,?), £y — d(m(8y, 14), 74) S d(m(8,7), 1) - d(ﬁT(e,?), #)
+ d(mp(8,, F), F) - dm(8y, F), F) + A8y, P, F) - dmBy, 7o), 7o) (A1)

2 sup |d(mp(6,7),7) - d(m(,7), )| + dm(8y, ), ) = dm(G,, r4), 7p)
(§,7)eexT

_E—»O as T =+ =
using assumptions 1l(b)-1(e) (where the inequalities hold with probability
that tends to one as T - ).

Next, let [ri] be any non-random sequence such that T; ® Tg as i =,
Suppose there exists a non-random sequence {Bi} such that Hi € 8, Vi, and

for some ¢ > Q,

d(m(ﬂi,ri), Ti) - d(m(ﬂo,ro), TO) = —¢ (A.2)

for infinitely many i. This is impossible, because there exists a subse-

quence {4, ) of {#.} such that (A.2) holds for all i = i, and #, - ¢ as
i, i 2 i, +

2+ = for some 6+ € © by compactness of ©. By assumption l(e),

iiz d(m(ﬁiﬂ, Tiﬂ), Tiﬂ) = d(m(@o, ro), TO), which yields a contradiction.

Thus, for any fixed sequences {ri] and {Gi} as above,

d(m(&i, Ti), ri) - d(m(ﬂo, T TO) = —¢ for all i large, for any ¢« > 0. By

0)’



standard arguments (using a Skorokhod representation), this implies

A A A

d(m(f,r), ) - d(m(ﬁo, TO), TO) = VT (4.3

for some sequence of rv's {vT} such that v, = oP(l) as T - =, 0O

T

The proofs of Theorems 2 and 4 are similar to proofs in Gallant (1987).

PROOF OF THEOREM 2: Element by element mean value expansions of

JT é—d(ﬁ (4), 7) about ¢, give: Va =1, ..., p,
aé T 0

~ fal A 2 al M
0 (1) = Jigg-a(p(9),1) = [Egg=dap(80),7) + g7g7a Ry (6%), 1) /T(I=8 ), (A.4)
a a a

~

where % 1s a rv on the line segment joining ¢ and § and hence, §%* 2.9

0:

(See Jennrich (1969) Lemma 3 for the mean value theorem for random func-

0

tions.) The first equality holds because § minimizes d(aT(G), ) and 4 is
in the interior of © with prcbability that goes to one as T - « by assump-

tions 2{a) and (d).

Below we show that

2 2

3 - A 3
[ * = e,
32
where -éﬁETd(m(Go) . TO) = M'DM and

3 - A d I -
JT 379(m(85), 7) —— N(O, M'DSDM) as T - = . (&.6)
These results, equation (A.4), and the nonsingularity of M'DM give
ﬁ:(E -8, = --(M'DM)'1 é_d(a (8.3, #) + o (1) 4. N(O, V) as T -+ = ., (A.7)
0 a8 T 0"’ P ~' ’

To show (A.5), we proceed as follows:
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3 A _ 38 ,6 A
5755, M) = 5 7, —m(0%) ' g=d(m, (8%), #)
(A.8)
4 = 82
* g5 () g (i (0, P)ga-mp (4%)
By assumptions 2(a), (b), and (),
Iy (6%) - m(8 )] =< ”ET(a*,$) - EET(a,r)|9#B*,T_T* (A.9)

+ + |m(8*,7) — m(8 | B+ 0

0: 0”

iEmT(B,r)|9=e*,T_T* — m(@%, 7%)

tiruity of gad(m,r) over M X T (assumption 2(e)), the assumption 2(b) that

P Bar

as T = =, where denotes the Euclidean morm. Using this result, the con-

and the continuous mapping theorem, we get

9 m P ._E-.-é_ = > o
Eﬁd(mT(B*)’ T) 6md(m(90), TO) 9 as T , (A.10)

where the equality holds by 2(b), (e), and (f). Using assumption 2(fy,

2
it is straightforward to show that ——é———a (8% = 0 (1) as T - =, This
393362 T P

result and (a.10) imply that the first term of (A.8) is o (ly as T =+ =,
a2
dmém

Similarly, the continuity of - —d{m,r) over M X T (assumption 2(e)),

equation (A.9), 7 -2, Ty and the continuous mapping thecrem give

2 2

8% .= sy B, .9
gagaTd(mT(e*): T) - amamrd(m(go)’

i
o

TO) = as T - o . {(A.11)

It follews from assumptions 2{a), (b), and (f) that

B0 a1

~m.{§+*) — H =< “ag,m 8%y — M{8*%,7)| + HM(G*,?) - M(#

2 ool

as T -+ »., Equations (A.ll) and (A.12) imply that the second term of (A.8)

equals [M'DM]}

al + op(l), and hence, (A.5) is established.



To establish equation (A.6), we write
Flam 8,),8) = fom (6. )-a(m.(8,),7) = W' /Td(@.(8,.),7) + o (1) (A.13)
af T 077 g8 T 0’am T ' 0/? am T "0°° P :

using 2(f) provided Jfgad(ﬁT(ﬁo),?) = Op(l), as we now demonstrate.
By the mean value theorem, the ath element of Jfgﬁd(ﬁT(ﬂo,?), 7) can be

expanded about (EmT(BO, TO), ro) to get:

a - Ay A a =
ﬁga;d(m,r(ﬁo,f) 7)) = ﬁmd(EmT(eo;TO) : TO)

(A.14)
62 - 62
+ aa‘”"d(m* ) T(mp(8,.7) — Emn(84,70)) + g;fga;d(m*,r*>JT<r - 1y)
where (m*,r*) is on the line segment joining (ET(HO,?), 7) and
(EET(BO,TO), ro), and hence, m* N m(ﬁo) and r* B> Ty as T -+ =, (More

precisely, (A.l4) holds with probability that goes to one as T -+ =.)
The first term of the right-hand-side of (A.14) is zero for T large by

assumption 2(b). Also, since JT(?”TO) - Op(l) (assumption 2(b)) and
2

377 am —-d{m,r) is continuous over M X T (assumption 2(e)}, we have:

a A A
g;vgagd(M*,f*)JT(f—fo) = g;vga;d(m(ﬂo),TO)JT(T—TO) + op(l) = Op(l), (A.15)

where the second equality follows from 2(b). Similarly, using assumption
2(e), ————aad(m*,f*) - {D]; + op(l) where [D]a denotes the ath column of D.
Hence, if jT(mT(HO,r) - EmT(BO,rO)) = Op(l), the above results and (A.1l4)
yield

f d(m , 7Y, 7)) = Dﬁ(ET(ao, 7y - EET(aO, T9)) * op(l) , (A.16)

The proof is complete once we show that
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S8y, ) = Big(6y, 79)) — N(O,8) as T==, (A.17)

since this implies that (A.16) and (A.13) hold, which establishes (A.6).

A mean value expansion of the ath element of ET(HO, 7) yields

- . A - im s iy
JT(m (8, F)=Em (85,70)) = JT(my (85,74) Emp_(#,75))

(A.18)
3 - . A _ - e
+ -a—;TlﬂTa(HO,T")JT(T 7'0\ = JT(mTa(BO’fO) EmTa(HO:"'O)) + Op(l):

where 7% lies on the line segment joining 7 and o using assumption 2(b),

since 3 & (g.,1%) =2 dm(#

Z7 0 = 0 by assumption 2(f). Stacking equation

0’ 0'70

(A.18) for a = 1, ..., p and using assumption 2(c) gives (A.17). O
PROOF OF THEOREM 3: M —E+ M and D 2 DasT- = by the arguments used in
equations (A.1ll) and (A.12), respectively. Thus, I B, 1 and J_l £, J_l,

since J is nonsingular (assumption 2(g)). O

PROOF OF THEOREM 4: To prove part {(a), the delta method gives

A®@) - b)) L N, B as T - (A.19)

using assumption 4. By Theorem 3, V -2, v and by the continuous mapping

theorem and assumption 2(a), H P, H as T+ ». Since HVH' is nonsingular,

this implies that (HVA')~ -E» (HVH')—l as T -+ », This result, (A.19), and

the continvous mapping theorem give the desired result.

Next we establish part (b). Standard arguments give
F-2eu, and V-2 v as T»w . (A.20)

Mean value expansions about 90 yield: Va =1, ..., p,

a — - ~ a - s -_ . " —
Jfgggd(mT<6>, ) = JTEE;d(mT(Ho)* 7y o+ ——;———d(mT(a), DTE -8y, (a.2D)
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- 3 -
JTh (6) = /T b (8 + z7h, (65)/T(E - 6,) . (A.22)

where 6 and 6% lie on the line segment joining ¢ and § and hence, satisfy

Ol
§ B 90 and g% —E- 60 as T + «, We stack equations (A.21) and (A.22) for

a=1, .,., p and write them as
a - - A a - A . -
Jfggd(mT(G), 7Y = JTEEd(mT(eo), ) + JST(§ - 6y) and (A.23)
0 = Hx/T(F - 8) (A.20)

using the fact that h(d) = h(HO) - 9 .

By equation (A.6), Jfggd(ﬁT(ﬂo), ) 4, N(0,I) as T » =. By equation
(A.5), J 2. 7 as T » ». Hence, using the nonsingularity of J, we get
s —4 p

JJ % Ip. By assumptions 4 and 5, H¥* ==+ H as T » «»., Pre-multiplication of

{A.23) by H*J™ now gives

H*J_Jfgad(ﬁT(F), ) H*j_JT%Ed(ﬁT(HO), P+ BRI - 6

(A.25)
1

D H') as T -+ o .

== 5y _d -
e /Tgpd(m(8,), #) = N(0, HJ

With probability that tends to one as T —+ =, d is in the interior of &

and there exists a rv A of Lagrange multipliers such that

6 - -~ ~ ~'-

Egd(mT(ﬁ), Ty + H'A = 9 . {(A.26)
where B = 5§7h(5). Equations (A.25) and (A.26) combine to give

e TRTR T S T55am ), ) - 0 (L) (a.27)

Since H#xJ H’' -E» HJ-lH' and HJ_1H' is nonsingular, equations (A.27) and

(A.26) imply that /T X = Op(l) and
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Jngd(mT(B), 7) op(l, . (A.28)
Equations (A.20), (A.25), and (A.28) yield

B Sam (@), #) -5 8, HUH') as T - . (A.29)

The desired result now follews from equations (A.20) and (A.29) and the con-

tinuous mapping theorem.

We now prove part (c¢). Suppose that assumption 6a holds. A two-term

Taylor expansion of d(ET(E), 7) about # gives

LR, = 2T[d(m (6),7) - d(m (9) ‘\]/b - 2Ta§,d(m , Y (E-8)/b
62 —'A ~
+ T(8- ﬁ)’agag,d(m (8%), £3(8-8)/b (A.30)

A

L 1(F-0)' TG0 /b

~

where §* lies on the line segment joining § and ¢, and hence, #% -2, 90 as
T » «, J¥ is defined implicitly, and "%“ holds by the first order conditions

for the estimator #.

Applying the mean value theorem element by element and stacking the

equations yields

b
~
|

a - - 3 - - ~ ° -
JT558(mn (@), #) = [Tpamy(8), #) + J/T(F-6)

/R8> (A.31)

s

for a matrix J that satisfies J -E+ J as T » . Pre-multiplying (A.31) by

J%*J and substituting the result in (A.30) gives



LR, = Tyora(@y(B), #)WI7) (%) T Sod(mp(®), #)/b
(A.32)
- Toha@, ), DT La@ @), Db+ o (1)

because J J = I_, Jfggd(aT(E), ) =01, J*J” -Bs I, and J - g% -Bs 0 as

P
T + ®, by (A.5), (A.20), and (A.28).

Since I = bJ and b -E» b by assumption 6a, we can choose V such that

I = bJ. 1In this case, LM, simplifies to

- a - - A ' ‘-_a - - A u
LMT = ngd(mT(E), ) J Ead(mT(G), 7)/b = LRT + op(l) (A.33)

using ggd(ﬁT(ﬁ), #) = H'X, as above. The desired result now follows from

part (b) of the Theorem. The proof of part (c) when assumption 6b holds is

analogous to the above proof under 6a. 0O

PROOF OF THEOREM 5: First we prove part (a). The proof of Theorem 3 shows

that M -B+ M and D -E+ D under {PT}, since § ~2+ 90, 3 B, o

tion 2(f) holds under {PT}. We have HVH' is nonsingular, S -EB, S, and

H -E+ H under {PT}, by assumptions 4, 8, and 4 and 7, respectively. Thus,

and assump-

HVH )" B+ (uvH' )L under (P}

Mean value expansions of ha(H) about ha(ﬁT), stacked for a =1, ..., p,

vield

jTh(;) - JTh(eT) + H*JT(; - bn) (A.34)

for an r x p matrix H* that satisfies H¥ -2, H under {PT}. Assumption 4 and

element by element mean value expansions give JTh(BT) - Hn as T + =. Part

{a) now follows by the continucus mapping theorem once we show that

JE@ - 8 -5 N,V under (P} as T . (A.35)

T}
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This follows using assumption 7 by the proof of Theorem 2 with 90 replaced

by 6. in all equations but (A.5), (A.8)-(A.12), and (A.15).

T
To prove part (b), note that under assumptions 4 and 7-9 the proof of

Theorem 4(b) goes through with the following changes: The parameter HO is
replaced by HT in equations (A.21)-(A.23) and equations (A.24), (A.25), and

(A.29) are replaced by
0 = JTh(8y) + B*/T(F - 65) , (A.36)

SR PO R S PP 5
HeT [Tozd(my (8), 7) 7 H&J JTEFd(mT(aT), #) + JTh(d)
4 (A.37)
— N(Hf, HVH’) as T + = , and

ﬁ?'gad(ﬁT(E), ) g, N(Hp, HVH') under ({P.} as T - = , (A.38)

T

respectively.
Part (c) is proved by the proof of Theorem 4(c). The latter goes
through under assumptions 4, 6a or 6b, 7, 9, and 10 with the only change

being an appeal to Theorem 5(b) rather than Theorem 4(b). O

PROOF THAT ASSUMPTION R1 = 1 AND R1 PLUS R2 = 2: First, we note that as-
sumption R1(f) and Lemma 2 of Jennrich (1969) guarantee the existence of a
sequence of LS estimators {;]. Next, the notation of assumptions 1 and Rl
are linked via the definitions given just below equation (3.2).

Assumptions 1l(a), (b), and {(d) follow immediately from Rl. Assumption
1(c) follows from Rl using a uniform LLN of Andrews (1987b). In particular,
assumptions R1(a), R1(d), Rl{e}, and Rl(a) and (f) imply assumptions Al, B1l,
B2, and A5, respectively, of Andrews (1987b). Corollaries 1 and 2 of

Andrews (1987b) (the former of whiech follows from Theorem 2.10 of McLeish

(1975a)) then imply that {mt(ﬁ)} satisfies a unifeorm LLN over ©. Ths
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existence of the limit function m(+) of assumption 1(e¢) follows from RI(b)
and (¢). The latter two conditions also imply 1(e).

The notation of assumptions 2 and R2 are linked via Wt = (Y , X') ,
m (6,7) = (¥, - £.(6))35£.(9), and d(m,7) = m'm/2, for m € R®. Assumption
2(a) follows from Theorem 1 under assumption R1l. Assumption 2(b) holds,

T, 3

ErlE ¢ 5atelf) = 0

because r does not arise in this case and Em (3 ) = %
vT, by R1{b) and (f) (since R1(f) allows an interchange of the integral and
derivative operations).

Assumption 2(c) is verified using Theorem 2.1(A) and equations (6.1)-
{6.3) of Withers (1981) or Corecllary 1 of Herrndorf (1984). We refer to
Herrndorf's CLT, since his conditions are simpler, and hence, easier to ver-
ify in this case. The summands for the CLT are { ¢ aef (90)}. Using the
Cramer-Wold device, it suffices to establish CLTs for arbitrary linear com-
binations of these vector-valued summands. For any such linear combination,
equations (1.1), (1.2), and (1.6) of Herrndorf hold by R1(b) and (f}, R2(c),
and R1(d) and R2(d), respectively. Thus, assumption 2(c) holds.

Assumption 2(d) follows directly from Rl(a) and R2(a). Assumption 2{e)
holds because m’'m/2 is twice differentiable.

To establish 2(f), note that the differentiability of m (B) follows by
R2(d), and (m_(8)) and {a

88 t
R2(d), and R2(d) imply assumptions Bl, B2, and A5 of Andrews (1987b),

(9)} satisfy uniform LLNs over @ because R1(d),

respectively. The limits m(#) and M(4) exist uniformly for 4 € OC and are
2

continuous on ec by R2(b). {89 37

- (0)} satisfies the conditions of 2(f)

by R1(d) and R2(d). Hence, assumption 2(f) holds. Assumption 2(g) follows

from R2(b). QO



A-11
PROOF OF THEOREM 6: Tf § B+ S as T + @, then M B+ M and V B~ v as T = =
in parts (a) and (b) of Theorem 6 by Theorem 3, since assumptions Rl and R2
imply assumption 2 (as shown immediately above). In part {b), the proof of
g -2, 5 is analogous to that of ﬁ -2 M.

It remains to show ; By s in part (a). This follows by the method of
proof of Theorem 2 of Newey and West (1987), noting that their assumptions
(i), (ii), and (iv) are implied by R2¢d), R2(d) and R3, and Rl{a) and the
consistency of ;, respectively. Their assumption (iii) is stronger than our
assumption R1(d). Their proof still works with the weaker assumption R1(d),
however, by using the mixing inequality of Lemma 2.1 of Herrndorf (1984) in
place of that of White’s (1984) Corollary 6.16 in the proof of White's
(1984) Lemmas 6.17 and 6.19, which are used in Newey and West's (1987)
proof. (Note that the use of Lemma Al very conveniently allows the same
mixing condition to be used to obtain consistency of the covariance matrix
estimator as is used for comsistency and asymptotic normality of ;.) The

fact that our observations are indexed by a doubly infinite sequence enly

requires a slight alteration of their proof. 0O

PROOF THAT ASSUMPTIONS R1 PLUS R5 = 5 AND R6b = 6b: Assumption 3 holds by

applying Theorem 1 with the parameter space 90 instead of ©. Since @O is

compact, the proof that Rl = 1 goes through without change.
Assumption Ré6b implies 6b with pt(Wt, g, ) = (Yt - ft(ﬂ))2/2 and
T
2 .. 1 2.8 4 2
S o %iz T §T1E Eaft(90)557ft(90) = ¢cM, where ¢ = =g~ . O

PROOF THAT S1 = 1 AND S1 PLUS 32 = 2: Assumption S1(f) and Lemma 2 of
Jennrich (1969) guarantee the existence of a segquence of 35L5 estimators

{#). Next, the notation of assumptions 1 and 2 and S1 and 52 are linked via
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the definitions of mt(-,-) and d(+,+) given just above equation (4.53).
Assumption 1(a) is implied by S1l(a). Assumption 1l(b) follows from

S1(b), the fact that (ZtZt rt=<=1, ..., —Tl} and {thé =1, ..., TZ]

satisfy weak LILNs as T1 -+ o and T2 -+ =, respectively (which follows from

McLeish's (1975a) Theorem 2.10 using assumptions S1(d) and (e)) and the as-
sumption 81(c) that the appropriate limits exist.

To establish assumption 1(c), we need {mt(ﬁ,r) N ol —Tl, Ce T2} to

satisfy a uniform LIN over (4,r) € 8 x T. Due to the multiplicative way in

which r (i.e., Qj) enters mt(G,r) and the assumption that lim Tir T T

T—reo

exists, this reduces to obtaining uniform LLNs for

{fit(B)Zr t==1, ..., —Tl} and {fit(G)Zr tt=1, ..., T,) over § € ©

T £ 2

as T1 - = and ’I‘2 -+ o, regpectively, for each i, r =1, ..., n. The latter

follows using Corollaries 1 and 2 of Andrews (1%87b), since assumptions
S1l¢a), 81(d), Sl{e), and S81(a) and (f) imply assumptions Al, Bl, B2, and A5

of Andrews (1987b), respectively. Assumption Sl(c) guarantees that the

T
2Emt(ﬁ,r) exists uniformly for (#,r) € ® x T.

function m{(#4,r) = lim T ng

T

Assumption 1{(d} holds because (1) d(+,+} is a quadratic form and (2)
m{#,r) is continuous on the compact set © x T by a subsidiary result of
the uniform LLN used above (which utilizes assumption S1(f)) and by the fact
that 7 enters multiplicatively.

Since d(e,+) and m(+,+) are continuous, assumption 1l{e) reduces to:

d(m(?, r ro) is minimized uniquely at 8 = 00. This follows because D is

O)I
nonsingular and m(#d, ro) has a unique zero at § = 90 by Si(c).
Assumption S1 and Theorem 1 imply that assumption 2(a) holds. The

first part of assumption 2(b) holds by assumption $2(d) and the fact that
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T
7% (Zit it " Ezitzit) satisfies a CLT for all i =1, ..., n. The
l

latter holds using assumptions S1(d), $2(d), and §2(f) and Herrndorf's
(1984) Corollary 1. The second and third parts of assumption 2(b) hold by
assumptions S2(b) and S1l(c), respectively.

Assumption 2(c) follows from Herrndorf's (1984, Corellary 1) CLT using
S1(d), S2(c), and S2(f). Assumption 2(d) follows directly from §1(a) and
§2(a). Assumption 2(e) holds because d(+,+) is a quadratic form.

Assumption 2(f) is established as follows: The differentiability of
mt(ﬂ,r) holds by S2(f). {mt(é,r)] satisfies a uniform LLN using assumption
S1 by the above proof that 51 = 1. {68 t(9 r)} and {g—m (9, T)} satisfy uni-
form LLNs by Corollaries 1 and 2 of Andrews (1987b) since assumptions 51(a),
S1¢(d), S2(f), and S2(f) imply assumptions Al, Bl, B2, and A5 of Andrews
(1987b), respectively. m(4,7r) and M(é,r) exist by assumptions Sl(c) and

82(e), respectively. dm(f#,r) exists and dm(BO, ro) = 0 because

2
E%Emt(ﬁo, r) = 0, ¥t, vr, by 82(b). sup aﬁaagm (6,7)p satisfy a
(9, 1)69 xT
weak LILN for all a =1, ..., p by assumptions S1(d) and S2(f).

Assumption 2(g) follows immediately from Sl(c) and S2(e). O

PROOF OF THEOREM 7: The proof is analogous to that of Theorem 6 using S1-S83

in place of R1-R3. O
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The comparative advantage of these two books is their depth and detail,
in which they dominate the present paper.

Gallant and White (1987, Ch. 2, pp. 11-12) accommodate multi-stage es-
timation procedures by elongating the parameter vector # to include
preliminary estimators. If both a preliminary estimator and the final
estimator are asymptotically efficient, however, then their assumption
PD (Ch. 5, p. 82), which requires the two estimators to have nonsingu-
lar asymptotic joint covariance matrix, is mot satisfied. For example,
this occurs with the 2SLS and 3SLS estimators in a simultaneous equa-
tions model when the errors are uncorrelated across equations. In
consequence, their asymptotic distributional results for multi-stage
estimators and test statistics do not apply In certain important con-
texts,

In addition, when misspecification occurs, the estimator obtained
by elongating the parameter vector does not necessarily equal the
multi-stage estimator of interest.

As mentioned above, the nonlinear LS estimator and various M-estimators
can be defined in two ways. The same is true of the ML estimator (see
Section 5.) The choice between the two definitions depends on assump-
tion 1(e). If the limit function d(m(4d, ro), 10) is minimized uniquely

at § = # ., when mt(-,-) and d(+,+) are defined in terms of the first

0
order conditions (i.e., the second definition given above for the LS
and M-estimators), then this is the most convenient definition. The
reason is that this definition must be used in any event to establish
asymptotic normality by Theorem 2 below.

On the other hand, the limiting first order conditions may have
multiple solutions, even though the function d(m(#4, ro), ro) that cor-

responds to the underlying minimization problem (i.e., the function
that corresponds to the first definition of mt(-,-) and d{+,+) for the
LS example) has a unique minimum at 90. In this case, we need to use
tEe first definition of mt(-,-) and d(+,+) to establish consistency of

{84}. Then, given consistehcy, we use the second definition to estab-
lish asymptotic normality. Since 30 is assumed to lie in the interior

of & for the proof of asymptotic normality, a sequence of estimators
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defined using the first definition also solves equation (2.2) for the
second definition with probability that goes to one as T —+ .

The advantage of proceeding as above is that one need not treat
the classes of least mean distance and method of moments estimators
separately (as is done by BGS (1982) and Gallant (1987)). This results
in considerable economy of presentation without sacrificing the gener-
ality of the consistency results.

The existence of the limits uniformly for (#,7) € GC X T means that

1 T2
sup 7 §T Emt(ﬂ,r) -m(8,r)] =0 as T -+ =«

(B,T)EGCXT 1

and likewise for M({(d4,r) and dm(d,r).

If necessary, the nonsingularity of HVH' can be avoided by using asymp-
totic distributional results for quadratic forms with g-inverted
weighting matrices and singular limiting weight matrix--see Andrews
(1987a).

As defined, LR, is unique except in the very rare case that M is pro-

T
portional teo the identity matrix. In this case, LRT can be taken as
either of the two expressions above.

Strong mixing is a condition of asymptotic weak dependence. A sequence
of rv’'s {Wt} is strong mixing if

a(s) = sup inf |P(ANB) — P(A)P(B)| - 0 as s ~+ = ,

t t ©0
AEF—m’BEFt+s

where FEQ denotes the smallest o-field in F that is generated by the

rv's {..., W Wt} and likewise for F:+S.

=1’
Assumption Rl is weaker than the consistency assumptions of White and

Domowitz (1984) in terms of the moment assumption placed on the errors.
Also, it replaces the deceptively restrictive assumption of continuity
of ft(Xt, ) in # uniformly in t almost surely (a.s.) (see the discus-

sion in Andrews (1987b})) by the smoothness condition R1(f). On the
other hand, Rl1(b) assumes the existence of a certain limit, which is
avoided in White and Domowitz (1984).

Assumption R2 is similar to assumptions in the literature. It requires
ft(B) to be three times differentiable, however, rather than just twice

differentiable, as often is assumed. This added smoothness constitutes
the price one pays for treating LS estimators of nonlinear regression
models, 25LS and 3SLS estimators of nonlinear simultaneous equations
medels, ML estimators, and various other procedures as particular ex-
amples of a single general method of estimation, as is done here.
Clearly, if one treats each estimation problem separately, weaker
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conditions can be obtained. The conditions given here, however, are
sufficiently weak to cover most mnonlinear regression models encountered
in practice.

For the linear simultaneous equations model, Hodoshima (1985) explores
the consequences for estimation of these differing scenarios.

With these definitions, the function mt(e,r) actually depends on beoth t

and T. This double subscripting does not affect the results of Theorems
1-5. All that is required is that the appropriate sequences of rv's
are replaced by triangular arrays of rv's.
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