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0. ABSTRACT

This paper continues the theoretical investigation of Park and Phillips
[7]. We develop an asymptotic theory of regression for multivariate linear
models that accommodates integrated processes of different orders, nonzero
means, drifts, time trends and cointegrated regressors. The framework of
analysis is general but has a common architecture that helps to simplify and
codify what would otherwise be a myriad of isolated results. A good deal of
earlier research by the authors and by others comes within the new
framework. Special models of some importance are considered in detail, such

as VAR systems with multiple lags and cointegrated variates.
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1. INTRODUCTION

In Part 1 of this work (Park and Phillips [7]) we embarked on a simple
and unifying analysis of multivariate regressions with integrated processes.
We showed how all of the major asymptotic distributions in such models can
be represented in a common form which provides a simple groundwork for
subsequent analysis. This common form helps to simplify the presentation of
rather complicated results and it illuminates earlier research findings by
clarifying their ;pecialized structure within a much broader context. Our
attention in Partrl was devoted to processes that are integrated of order
one. As in Part 1, we call a time series {Xt} an integrated process of
order k (an I(k) process) if the time series of k-th differences {Akxt}
is stationary (én I{0) process).

The object of this sequel is to show how the regression theory in Part
1 lays the groundwork of an asymptotic theory for regressions with processes
that are integrated of different orders. The simplest extension allows for
the presence of stationary regressors as well as I(l) processes. The sta-
tionary regressors may be jointly dependent variables or exogenous vari-
ables; the I(l) processes may be lagged dependent variables or other time
series with unit roots; there may be nonzero means, drifts and possibly time
trends in the formulation; and, since the setting is multivariate, we may
wish to allow for cointegration amongst the I(l) regressors. At the next
level of generality we wish to include I(0), I(l) and I(2) processes as re-
gressors. This allows for vector autoregressions (VAR's) with unit roots
and additional I(1l) regressors. Once this model is extended to allow for
nonzero means, drifts, possible time trends and cointegrated regressors the
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framework is sufficiently broad to provide a fairly complete picture of the
asymptotic theory of regressién for integrated processes of different
orders. Note that the Inclusion of I(k) regressors of different orders
itself requires that the theory must accommodate cointegration since, for
example, I(0) and I(1l) processes are trivially cointegrated. Moreover, omnce
the theory is completely developed for I{0), I(l) and I(2) regressors, gen-
eralizations to higher orders are straightforward. Note also that the pres-
ence of I(0) regressors in the framework allows us to treat higher order VAR
systems with many lags as a simple special case of the general theory. The
paper thus includes as a special case recent results in Sims, Stock and
Watson [12], which deals with the asymptotic normality of cecefficients in a
VAR with unit roots, To sum up, our aim in this sequel is to bring together
a set of results into one general framework which will give a comprehensive
asymptotic theory of regression for models of this type.

The plan of the paper follows the same lines as Part 1. The models
that are central to our study are discussed together with some preliminary
theory in Section 2, Section 3 develops the asymptotic theory for least
squares in the new context and relates the results to our earlier theory in
Part 1. Hypothesis testing is the subject of Section 4 and we develop and
study extensions of the G- and H-statistics of Part 1. Specializations of
our theory are examined in Section 5. These include regressions with
strictly exogenous regressors, general linear models with cointegrated
regressors, VAR systems with exogenous regressors and general VAR's with
many lags, unit roots and cointegrated variates. Some concluding remarks

are made in Section 6. Proofs are given in the Appendix.



2. THE MODELS AND PRELIMINARY THEORY

Let {yt]T be an n-dimensional meltiple time series generated either

by

Y = Alxlt + A2x2t +ul (L
or by

yt - Alxlt + A2x2t + A3x3t + ut (2)
where Al , A2 and A3 are, respéctively, n x m o, n X m, and n x m,

coefficient matrices and where

x - AX -V

2
1t = Vie © ¥ B Xy = Vg - (3

2t it

In (3), A is the standard first difference operator. Initializations of

the processes }; and {x3t}fl at t =0 and t =-1, 0 , respec-

tively, do not affect our results and any random initial values are permis-

oy

sible. As in Part 1, we shall also consider as direct extensions of (1) and

{(2) time series {yt]T that are generated by

Yo = ¥ + Alxlt + A2x2t + u, (1)

Ye = B + 8t + Alxlt + A2x2t + u (1)

and

Yo = + Alxlt + A2x2t + A3x3t + u, (2)

Ve = # + 6t + Alxlt + A2X2t + A3X3t +u . 2y



The condition or the innovation sequence w' = (u', v! v! v!
s for ation seq e T (e Ve Vae V3

are entirely analogous to those in Part 1. We require that the partial sum

t
for r e [0,1] ,

process S _ = waj satisfy a multivariate invariance principle. Thus, if
-1/2
Xp(r) =T 77 Sy

then as T t =

Xp(x) = B(r) (4)

where, as usual, the symbol " = " signifies weak convergence of the

associated probability measures. In (4),

11 m m m

1 2 3
B(r) - (Bo(r)i Bl(r)’ Bz(r>r B3(r))

is k-vector Brownian motion (k = n + my + m, + m3)' with covariance matrix

5, M1 Bpp O3 [ ™
a.. 09, 0,. @ m
P e T T PR O 5)
Gpg By By GOyy | My
| G390 O3y GO3p O3 | My

.1 ,
= lim TE(STST)
T-+o

=3+ A+ A

where
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T = 1im 7 ZlE(wtwé) (6)
T
and
1 T t-1
A= lim 5 = E(w.wé) (N
T “t=2 j=1
zij and Aij for i, j =0, ..., 3 are defined to be submatrices of X

and A corresponding to ﬂij in (5). We assume the diagonal submatrices

00 , 92 and 03 of 1, and EO and El of I to be positive definite

but we do not require O to be positive definite. OQur theory also requires
weak convergence to matrix stochastic integrals of the form féBdB' which,
as well as (4),.holds for a wide class of sequences {wt} that are weakly
dependent and possibly heterogeneously distributed under quite general con-
ditions. For these conditions, see Part 1 and the references given therein,

Finally, we require weak laws to apply to the second sample moments of

{wt} ; more specifically we need Tﬂlziwtwé + % in probability which holds

under very general weak dependence and moment conditions (see, for example,
McLeish [5]).

When {wt} is weakly stationary, ({ Y is an I(2) process, {x,_}

X3¢

} is I(0). 1In this case, (6) and (7) reduce to

2t

is I(1) and {xlt

z = E(wlwl)
and

]
A= Z E(w,w!)
g2 b

Moreover, if the series defining A is absolutely convergent then the



process {wt] has a continuous spectral density matrix fww(k) and

0 = ZWfWW(O) . (3’

Throughout this paper it will be convenient to refer to {xlt} as a sta-
tionary process and to {x2t} and {XSt] as integrated processes,
although, strictly speaking, our theory allows for somewhat greater gener-
ality.

The model defined by (1) or (2) {(together with (3))} may be regarded as
a simultanéous equations system in which we have both stationary and inte-
grated regressors. In this case, none of the common exogeneity conditions
for the regressors is presumed. Many other models that have been previously
studied in isolation come within the framework of (1)-(1)" or (2)-(2)".
Indeed, our subsequent theory is'applicable to a ﬁide range of important
linear mﬁdels in statistics and econometrics. Some of these will be indi-
vidually discussed in later sections in detail. We list a few of the most

relevant specializations below:

Model (1) + (3) can be specialized to:

(la) first order VAR systems with unit roots and additional sta-
tionary regressors;

(1b) higher order VAR systems with single unit‘roots; and

(le) multiple time series regressions with regressors that are co-

integrated of order CI(1,1) in the terminology of Engle and Granger

[2].



Model (2) + (3) similarly specializes to:

(2a) first order VAR systems with unit roots and additional I(1l)
regressors;

(2b) higher order VAR systems with double unit roots; and

(2¢) multiple time series regressions with regressors that are co-

integrated of order CI(2,1) or CI(2,2}.

Nankervis and Savin (1986) study (la) and (2a) by Monte Carlo methods
applied to the subcase of a simple scalar stochastic difference equation
with an exogenous variable. (lc¢) was considered by Sims (1978, 1986).
Fuller, Hasza and Goebel (1981) examined (la) and (lb) in a simple scalar
case and a univariate version of (2b) was considered by Hasza and Fuller
(1979).

The notation introduced in (4)-(7) will be used repeatedly throughout
the paper. Particularly, Bo(r) , Bl(r) , Bz(r) and B3(r) denote,
unless otherwise stated, four vector Brownian motions which are, respective-
ly, n , m, o, W, and m, dimensional with covariance matrices given by

3

the corresponding diagonal submatrices of @ in (5). We also define

By(r) = JyBy(s)ds
and

A -2 + A , A = 3 + A

20 20 20 21 21 21 -

Moreover, we shall frequently write these and other stochastic processes
without the argument for notational brevity when there is no risk of mis-
understanding.

The following lemma will be used extensively in the derivation of our

subsequent results:



LEMMA 2.1
. -5/2.T 1= —3/2.T 1
(a) (1) T /Zxy = [oBy . (1) T Ex, = foB,
cex ~1/2.T . -1/2_T .
(iii) T Elxlt > Bl(l) , (iv) T Zlut = Bo(l) :

-7/2

® 1) T/ %5, = o8, ) 177

T 1
thxzt = fOrB2 .

(111) 17 %5Tex, = férdBl - B (D) - féBl ,
(iv) T'3/22ftut - férdBo - By(1) - féno ;
@ (0 TUExgxy s [oBBy L (D TUEpg g s [oBBy
(iii) T'zz{thxét = féBéBé ,
(1v) T 2Elxyx;, = [B,dBs = Bo(1)B (L)' - [gB,B!
(v) T‘22§§3tué = JB,dB) = B, ()By(1)" — [B,B!
(vi) T Epx,.x; = [iB,dBI + b,
(vii) T_12§x2tué = féBZdBé + By -

Joint weak convergence of all the above also applies.

3. LEAST SQUARES ESTIMATION

As in Part 1, we consider three multiple least squares regressions

corresponding, respectively, to (1), (1})', and (1)":

Ve = ApXpe YA T (8)
Yo = B+ Alxlt + A2x2t +u (%)
yt = pu + ft + Alxlt + A2X2t + ut . _ (10)



Similarly, for (2), (2)' and (2)" we define

yt - Alxlt + A2x2t + A3x3t + ul (1l1)
yt =+ Alxlt + A2x2t + A3x3t + ut (12)
Ye = B + 4t + Alxlt + A2x2t + A3x3t + u, (14)

We let A = (Al, A2) in (1) oxr A ~ (Al, AZ’ A3) in (2) with analo-

>

gous definitions of A , and A in (8)-(13). Similarly, we let

X! = (xit, xét) in (1) or X' =

e = (X{or %5, X3) in (2). Define

t
xi = (1, xé) . xi = (1, t, xé) and given a sample of size T , define
. : 1! 1 1 2! 2 2
X' = (xl, e xT) , X 0= (xl, cas xT) , X = (xl, ceey xT) . (14)

With this notation we have:

- -1 -1 11017 2, 27 2 1

A= Y'X(X'X) , AT =YX (X X7 , AT = Y'XT(X" XD
where A = (;,K) and Kz - (E,F,K) . The least squares estimator of the
covariance matrix is given for each regression equation by

é = lY'(I - P)Y 3. = lY'(I - P,UY 5. o= lY‘(I - P.OY

0 T X ’ 0 T X ’ 0 T X

where PC - C(C'C)_lc’ for any matrix € of full column rank (with proba-
bility one, if it is random).
As is well known, the inclusion of the constant term in (9) or (12) and

of the time trend in (10) or (13) has the same effect on estimation of the

coefficient matrix A as demeaning and detrending the series {xt} prior



10
to regression (8) or (11l). The estimates A in (10) or (13) are thus eas-
ily seen to be invariant with respect to the introduction of a nonzero

constant mean for (v which turns {x2t} in {3) into a random walk

2¢)

with drift, We can also have a similar invariance to an unknown mean of
{v3t} simply by taking a regression with a quadratic rather than a linear
time trend (i.e. add the regressor tz to (1)" and (2)").

We can expect under quite general conditions that
-1_T , 0
T El(wtwt Z) = N(0, V') . (15)

For example, if we let St - W, @ w,_ - E(wt ® wt) and assume {ft}i is a

t

weakly stationary process for which the invariance principle (4) holds, then
it is not diffiéult to show (see, for example, Theorem 3.4 of Part I) that

(15) also holds, with covariance matrix given by

<0

0 '
V' = PD[@O + kfl(@j + ¢j)]PD (16)

where

- ! ' _ )
¢j E(wtwt+j ® wtwt+j) (vee Z)(vec )

and D is the k2 X k(k+l)/2 duplication matrix. We now define sub-

matrices

0 , , —
Vij < (S; @8V (5; @Sy (4, =0,1,2 3)

where the Si (i =0, 1, 2, 3) are selector matrices which select subvec-

tors of L corresponding to the component wvectors u v v

t’ lc 2t

3p respectively. Thus, for example, VO is the limiting covariance

v 10
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—1/22Tx u’ . When {

matrix of T 11 6%

xlt} and {ut} are contemporaneously
uncorrelated and 210 =0 , as 1Is often assumed in the standard regression

theory, the submatrix Vgo of VO in (15) may simplify to

V., =3 ® 3. . (17)

This holds, for example, if we further assume that {(vlt, ut)}i is a mar-
tingale difference sequence. The asymptotic normality of T_l/ZZ{xltué
which is given in (15), of course, holds under more general conditions,
especially when 210 = 0 . For an introductory and unified exposition of
this subject, see Chapter V of White [13].

The next theorem characterizes the asymptotic behavior of the least

squares estimators for Al , the coefficient matrix of the stationary re-

gressors, in regressions (8)-(13).

THEOREM 3.1. We have in regressions (8)-(10) or in (11)-(13)

A

(a) A A ——+ A¥

1 A Ay i

, 1 ,
where Af - Al + 21021 . Moreover, if (15) holds, then
(®) JTa, - an , JIGR, - A , JTE - AP = NO,V)

The covariance matrix V is given by

O [ 1]
vV = (J1 ® JZ)V (Jl ® J2)
where

n m m,+m n m

o -1
I =1, -85, 0 ), I =0, 57,0
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The above theorem shows, in short, that the least squares estimators of
Al in (8)-(10) or in (11)-{(13) are asymptotically equivalent to the regres-

sion coefficients from the regression of Yor OB % where

€ !
Yor = ¥¢ = A2x2t O Yo, = V¢ = A2x2t - A3x3t corresponding to the under-
lying data generating mechanism (1) and (2). It alsoc can be shown that a
similar result holds when there are regressors which are integrated of a
higher order. Therefore, the standard regression theory for the stationary
variables applies to the least squares estimators of Al : these estimators
are consistent if 210 = 0 and otherwise, are inconsistent. Moreover, add-
ing integrated variables as well as a time trend to these regressions only

induces OP(T_l) changes in the least squares estimators of Al and does

not affect the limiting distributions given in Theorem 3.1(b). We, of

course, only need joint asymptotic normality of T—l/z(ZTx u! - =

171ttt 10)
Tal/z(zixltxit - Zl) for Theorem 3.1(b) to be valid. Notice also that when

-1
1)

The asymptotic results for the remainder of the regression coefficients

and
210 = 0, the covariance matrix V 1is reduced to (I ® EII)VQO(I ® 3

in (8)-(10) are given below in terms of the functional

c Lo o & (b 1
(B,M,E) = |[ dBM’ + E’||[ MM

which we introduced in Part 1,



13
THEOREM 3.2. The limiting distributions of T(A2 -4, T(K2 -4,
JT(;—p) , T(K2 - Az) . JT(E—p) and T3/2(§—9) in the least squares re-
gressions (8)-(10) can be represented in the form f£(P, M(Bz), E(II, 32)) ,
where

-1

, 1
0o~ Z10% By -

P=5 20 ~ 291%1 31

I=A

and M(») and E(+,+) are given for each estimator precisely as in

Theorems 3.1-3.3 of Part 1.

All the least squares estimators considered in Theorem 3.2 are consis-
tent even if 210 # 0 and the stationary regressors are contemporaneously
correlated with.the regression errors. We obviously allow the integrated
regressors to be correlated with the errors as well. Note particularly that
the rateé of convergence for these estimators are exactly the same as those
for the least squares estimators in regressions with only integrated regres-
sors, as considered in Part 1. Thus, as far as consistency is concerned,
including stationary regressors in a regression with integrated variables is
innocuous irrespective of possible correlation with the regression errors.

When 210 =0, we have P = B0 and II = AZO in Theorem 3.2, and
each of the estimators there has the same limiting distribution as the
corresponding least squares estimator in the same regressions with only
integrated regressors. This can be easily seen by comparing Theorem 3.2
with Theorems 3.1-3.3 of Part 1, More specifically, the least squares

estimators of A2 , 0 and ¢ 1in (8)-(10) Behave asymptotically, if
= . =20

10 , Just as the regression coefficients in

A

Yie = Bo¥pe + Ye (8)
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"
xl
+
>
"
+
-

2%2¢t t (9>

=g+ 0t + A%, + U (10)’

where yit - Y. = Alxlt : the asymptotic results given in Part 1 apply
directly to the estimators in (8)'-(10)".

The limiting distributions of the least squares estimators in (1l1)-
(13), except for those of Al which are given by Theorem 3.1, can also be
represented simply in terms of the functional £ . 1In the formulae below,
these limiting distributions are explicitly given in terms of f(P,N,E)
where P(r) is the n-vector process given in Theorem 3.2 and N = N(Bz, B3)
is a function of the two Brownian motions B2 and B3 .

THEQREM 3.3. We have in regressions (11)-(13)

(a) T(Rz - A)) = £(P, @, M), 12(;3 - Ay = £(B, Q,, I

® TE, -4 = £(B, Qf, M , T(K; - Ay) = £(B, Qf, %)
STmp) = £(2, By, 7p)

() T(&, — A)) = £(P, Qf*, I , TZ(KB - A5) = £(P, Qf*, T*¥)
SEGw) = £, By, vy » T/2@-0) = £, By 1)

Here

TR
Q () = By(r) = foBzBé(fossBé] By (1)

o

[ -1
= 1- 1
Q,(r) = By(x) - f053sé[foszaé] B, (1)

and if we define R(r) by R(r)' = (Q; (1), 53(r)') , then
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- 1. (1 -1
P (r) = 1- fOR' fORR'] R(r)

.

[ -1
_ 3 ’ ’
Py(r) = 1 - 5r - féR+ [féa*n* ] RV ()

-1
Pi(r) =t - % - [f(l)sR*'[féR*R*'] R*(x)

where R*(r) = R(r) - féR and R+(r) = R(r) — 3rfésR . Moreover, Q?(r)
, . 1 = - 1—
is defined from B¥(r) = B,(r) — [(B, and By(r) = By(x) - [B, , and
Qf*(r) is defined from Bg*(r) - B%(r) - 12rfésB§ and
E%*(r) - E%(r) - 12rfés§§* in the same way as Qj(r) for j =1, 2 .

; . 1 =+ = 1 =
Also, if we let Bz(r) - Bz(r) - 3rfosB2 and B3(r) - B3(r) - 3rf0553 ,
and define QI(r) accordingly, then for 1 defined in Theorem 3.2,

1= TR e 1 -1
r- —[f05335_] [foﬂzBé] T, 7= "foQi[f 0Q1Qi] T,

-1 -1
1+ (el + +' 1 Ml ,
1, = oY [f 0% ] M, vy = fos [f ot ] L.

Finally, T# and T%*% are defined, respectively, from (B%(r), Eg(r)) and

(By*(r), _Bvi*(r)) in a manner analogous to that of T from (B,, ’153)

The above theorem together with Theorem 3.1 completely specifies the
asymptotic behavior of the regression coefficients in (11)-(13). Theorem
3.3 gives asymptotic results for the various ‘least squares estimators in a
very general and simple functional form with differences only in the respec-
tive arguments. Similar representations arose in our results in Part 1 and

this again shows how useful this functional is for the study of asymptotic



16
theory in regressions with integrated processes. Many of the interesting
results that follow later in the paper can be deduced quite easily from the
representations given in Theorem 3.3,

It is interesting to note that the stochastic processes defined in
Theorem 3.3 can be interpreted as the projection residuals in an appropriate
Hilbert space. Thus, treating C{0,1] as a subspace of the Hilbert space
L2[0,1] with inner product féglgz for square integrable functions 81
and g, defined on [0,1], we find that each element of Ql(r) is just the

residual from the projection of the corresponding element of Bz(r) onto
m

the subspace of the Hilbert space spanned by {ESj}jil for a given realiza-
tion of these stochastic processes. We may equivalently define Ql(r) to

be simply the residual from the continuous time regression

B, (r) = AB,(r) + Q (1)

-~

where A minimizes the continuous time least squares criterion
e, oy - a8, [B,¢x) = A, () ]ar
o2 3 2 3 )

Thus the projection operation is preserved in a well defined sense under the
asymptotics. All the other stochastic processes that occur in the statement
of Theorem 3.3 can be obtained in a similar fashion.

When the stationary regressors are excluded from regressions (11)-(13)
and if Al =0 in (2), (2)' and (2)", the results in Theorem 3.3 remain

valid if we just replace P(x) by Bo(r) , and I by A This can be

20

seen easily from the proof of the theorem. The limiting distributions of

the least squares estimators in this case are therefore only special cases
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of those given in Theorem 3.3 when 210 =0 . Including stationary vari-
ables in the regressions thus does not affect the asymptotics of the least
squares estimators as long as they are not contemporaneously correlated with
the regression errors. This parallels a similar result in Theorem 3.2.

Once again, all the least squares estimators in the regression equa-
tions (11)-(13), except for those of Al , are consistent regardless of the
correlation between regressors and regression errors. The estimators of A2
are Op(T_l)-consistent as in the case of regressions (8)-(10). We can
therefore expect in all of these regressions that consistency of these esti-
mators holds even if we relax some of our conditions imposed on the underly-

ing models, for example, the zero mean condition for {ut} . The rate of

convergence for .the estimators of A3 in (11)-(13) is even faster and is of

order Op(T_z) It thus seems natural that more aberrant regression errors
are permissible for the conmsistent estimation of AB . It is easy to show
that all three least squares estimators A, , A and A of A are, in

3 3 3 3

fact, consistent even if the mean of {ut} has a time trend. This, of
course, implies that ;3 is still consistent if (v} is generated by
(2)".

The coefficient matrix Al of stationary variables can be consistently
estimated even when 210 # 0 and the least squares estimators of Al in
(8)-(13) are inconsistent. One obvious way to obtain a consistent estimator
is to use instrumental variables in a simple two step procedure. More pre-
cisely, we first estimate the coefficients of the integrated variables as
well as the constant and the time trend from a least squares regreésion

without the stationary variables (in (8)-(13)). In the next stage we esti-

mate A, using appropriate instruments for Xy, as if the estimates for
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the regression coefficients obtained in the first step were true values.

When the instruments satisfy the same condition as x we can easily

1t ’
show from Theorem 3.2 and Theorem 3.3 that this substitution of the esti-
mates for the true parameters in the second stage only affects the asymp-
totics through terms of Op(Ttl) for all our models.

Suppose now that {vt} has nonzero mean and we assume, by redefining
{v.) , that (3) is replaced by

t
X -, + vV AX - r, + Vv Azx -r, + Vv (3)'
1t 1 1lc 2t 2 2t '’ 3t 3 3t
Then we have:
¢ 0
Xy, = ﬂzt + X v2j - «zt + Xy
j=1
t k 2 0
X = .t + Z zv = .t + X
3t 3 k=1 j=1 3j 3 3t

ignoring initial conditions (which would determine the constant term in

} and the linear time trend term in ({x

{ )} , mnoting that these may be

Xat 3t

random, of course). Now the processes {x2t} and | } are driven by

*3¢
deterministic trends as well as stochastic trends, which we have denoted by
{xgt} and {xgt} . The deterministic compoment, however, apparently domi-
nates asymptotic behavior in both processes since the stochastic trends are
of lower order in both instances.

Asymptotic results for the least squares estimators in regressions (8)-
{13) when {xt} is driven by (3)' instead of (3) can be obtained without

difficulty by first considering appropriately transformed models as we do in

Part 1. We will, however, not report the detailed asymptotics here since
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the results are too long and also somewhat obvious given the methodology and
the results in Part 1. Instead, we briefly outline below the main effects
of introducing a nonzero mean in {vt} on the asymptotic behavior of the
least squares estimators of A in our regressions.

If m, - 1 in regressions (8)-(10), then [xzt} behaves asymptotic-
ally as if it were Tyt and more conventional regression theory applies.

It is in fact easy to show, for example, that

3/2 - 2
/%R, - 4y = N[O, (12/«2)\1}

. w1 , =1 , —1. 1 ,
where V = 00 - 21021 010 - 01021 210 + 21021 0121 ElO , which reduces to
00 if 210 = 0 . When - 0, then A2 satisfies a similar result with
covariance matrix (3/w§)V .  When m, > 1 quite a different picture

emerges.. Most interestingly, if L5 # 0, JT(AI - Al) is no longer asymp-
totically normal even under the ldeal condition 210 = 0 . This can be
clearly seen from the fact that the limiting distribution JT(Al - Al)wl is

essentially equivalent to that of JT(u-p) in Theorem 3.6(a) of Part 1 when

z = 0 , and it is non normal. The limiting distribution of 'I‘(A2 - A)

10 2

is also given similarly as Theorem 3.5 or Theorem 3.6 of Part 1, depending

on whether = 0 or L8 =0 , If 210 = 0 and m, > 1 the final ex-

pressions involve appropriately redefined P(r) and II in Theorem 3.2. A
similar argument goes through for T(K2 - Az) ., the asymptotics being given
by Theorem 3.6 of Part 1. The estimators A and A are invariant, with

respect to L5 and both of Ll and T respectively.

Standard regression asymptotics apply to (11)-(13) if T, * 0, L 0

and m2 =M, = 1 in which case {x,,} and (x,, )} may well be regarded,

2t 3t

respectively, as .t and =« t2 for the purpose of asymptotic theory.

? 3



20
3/2 - 5/2 < .
Thus T (A2 - A2) and T (A3 - A3) both are asymptotically normal with
respective covariance matrices (192/w§)V and (180/n§)V , where V is

A

A
given above. The results for A, and A, can be obtained analogously as

2 3
above. Once again, if e 0, A1 is not asymptotically normal unless
m, = By = 1 ., Finally, we note that all these estimators are consistent if

(3) is replaced by (3}’ in our models.

HEOR 3.4, We have in regressions (8)-(l0) or in (11)-(13)

s 25 r 571

(a) Z5. Zys 2 0 = %10%1 Z10 -

Moreover, if (15) holds with 210 = 0 then

* - = 0
(by JT(E, - 2. JT(Ey - Zp), JTE, - 5y = N(O,Vy)

where Vg - is a submatrix of VO in (13) as defined previously.

The least squares estimators of EO are inconsistent if 210 #= 0 and

otherwise, they are éonsistent in regressions (8)-(10) or in (11)-(13).
Again correlation between the Integrated variables and the regression errors
does not affect consistency. Moreover, if le = {0 and (15) holds, the ef-
fect on the estimation of the error covariance matrix of including station-

ary variables in the regressions is at most of order Op(T”l) in all six
regression equations. The asymptotic normality of these estimators there-

fore follows exactly as in Part 1 (Theorem 3.4) where all the regressors are

integrated.
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4. HYPOTHESIS TESTING

In this section we shall derive asymptotic results for tests of linear
hypotheses that involve the regression coefficients in (8)-(13). The main
case considered here is where %y, is contemporaneously uncorrelated with
the regression errors. If 210 # 0 , then estimators of the covariance
matrices ZO and 00 which are based on least squares regression residu-
als, are inconsistent (due to the inconsistency of estimates of A1 ).
However, consistent estimators of these covariance matrices can be obtained
even in this case from regression residuals if we consistently estimate the
coefficient matrix A, of the stationary variables, for example, by the two

1

step procedure outlined earlier in Section 3. Note that when ElO = 0 ,
standard testing procedures for Al based on the least sgquares estimators
in (8)-(13) make little sense since these estimators are not consistent.
Appropriate tests may be constructed using the instrumental variable proced-
ure. The usual chi-square test statistic can also be used in this case
since substituting estimates for the unknown coefficients of the integrated
regressors (as well as the time trend and the constant term) in the second
step only affects the estimation of Al at order Op(T_l) as mentioned
earlier. Moreover, as long as we are interested only in regression coeffi- .
cients other than Al , tests can always be based on the least squares
regressions without the stationary regressors, which are, in fact, the first
stage of the two step procedure for the estimation of Al . The results for
these regressions are given, if we simply redefine the regression errors
{ut} , in Part 1 for models (1), (1)’ and (1)", and in Theorem 4.2 below

for (2), (2)' and (2)".

We first look at the regression equations (8)-(10) and consider null
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hypotheses of the form

R1 vec A1 - r1 (18)

2 2 (1%)

where Rj and rj are known qj X nmj . qj x 1 matrices, respectively,

and R.j is of full rank qj for j =1, 2 . Other hypotheses of interest

are

B = b and § = 80 . (20)

We commonly employ the Wald statistic for testing hypotheses (18)-(20).

Denoting by diag(K) the block diagonal entries of a square matrix K ,

define

I S 1 -t S
diag(X'X) - (Mll, M12) , diag[x X ] - (m21, M21, M22) .
(21)
ar o -1 1 1 my m,
diag[X X ] - (m31’ m32, M31, M32)

where Xl and X2 are given by (14). We will not need to be specific
about off block diagonal entries in (21). In (8) the Wald statistics for

testing (18) and (19) are given by
A ~ N A _1 A
F.(A,) = (R, vec A, — r_ R.(Z. @ M, .)R! R, vec A, — r,
1¢ j) (J § J) ( J( 0 13) J] ( 1 1 J)

for j =1, 2 . The statistics for the same hypotheses in regressions (9)

and (10), which will be denoted by 'Fl(zj) and Fl(Kj) respectively, can

be constructed similarly by substituting KT or Ei for Ai ) EO or

0
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for ZO , and finally sz or M3j for Mlj in (22). Also, the tests of
(20) in (10) can be based on

- -1~ <=1 - - 1, U

and Fl(;) is defined similarly with B, and EO . Moreover, we may want
to perform joint tests and we denote, for example, by Fl(gl, ;2) the Wald
statistic for the joint test of (18) and (19) in the regression equation
(8).

As in Part 1 and following the same general nomenclature therein, we

also define G,-statistics for the tests of (19) and (20) (not for (18)) from

1
the corresponding Fl-statistics simply by replacing 20 , EO and EO with
ﬁO , a consistent estimator of Qo . Our subsequent theory for tests of

hypotheses (19) and (20) is focused on the Gl-statistics rather than the
“standard Wald statistics., For more discussion on the rationale behind the
Gl-statistics and for the consistent estimation of 00 , see Part 1. If
[ut} is a white noise, or a martingale difference sequence, then the two
statistics are asymptotically equivalent,

The following theorem summarizes the asymptotic results for these sta-

tistics:
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THEOREM 4.1. Suppose 210 = 0 in regressions (8)-(10).

(a) If (15) holds with the covariance matrix given by (17}, then'

" - = 2
R, BED, G =g

{b) The limiting distributions of, the G,-statistics for testing (19) or

1
(20) are identical to those of the corresponding G-statistics defined in

Part 1.

{c) Given part (a) above, the conventicnal Wald tests on A are asymptot-

1
ically independent of the G1 (and Fl)-statistics for testing (19) or (20).

Parts (a) and (b) of the above theorem are what we would expect from
Theorems 3.1 and 3.2. Theorem 3.1 shows that the least squares estimators
of Al in (8)-(10) behave asymptotically exactly as if there were no
integrated regressors in either models (1)-(1)}" or the fitfed regressions
(8)-(10). Theorem 4.1{a) just confirms that this is also true for the Wald
statistics, which have limiting chi-square distributions under ideal condi-
tions, This observation also makes it plain that other testing procedures
are possible for the hypothesis (18) and remain valid for the more general
case considered here, since the problem is equivalent asymptotically to
hypothesis testing in the standard regression model. For a detailed treat-
ment of this subject, see White [13].

Given (15) and 210 = 0 (as is often assumed in standard regression
theory) a test of hypothesis (18), for example from regression (8), can be

based on the (asymptotic chi-squared) statistic
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A ~ ~ ~ _1 ~
. -1..0 -1, _
(R1 vec A) - rl) [R(I ® 21 )VlO(I @ 21 R ] (R1 vec Al rl)
where g - T-lsz x! and GO is a consistent estimate of V0 If
1 171t"1le 10 10

VO is given by (16), then the consistent estimation of this covariance
matrix is essentially equivalent to that of 910 and may be conducted in
the usual way (see Part 1).

Theorem 4.1(b) similarly implies that including stationary variables in
the regressions, as long as they are contemporaneously uncorrelated with the
regression errors, does not affect the limiting distributions of the Wald
statistics asg well as those of the least squares estimators. Thus, the
tests of (19) and (20) in regressions (8)-(10) are asymptotically equivalent
to the corresponding tests in (8)'-(10)’, the asymptotic results for which
are givep in Theorem 4.1 of Part 1. Now it is obvious that the transforma-
tions introduced in Part 1 to eliminate or reduce the nuisance parameter
dependencies remaiﬁ valid (with only trivial change in notation), and that
the limiting distributions of the (so transformed) H-statistics are as given
by Theorem 4.2 of Part 1.

Finally, in view of Lemma A.l1 in Part 1 which shows that the Wald sta-
tistics for the joint tests can be written simply as the sum of the two Wald
statistics for each individual test, Theorem 4.1(c) completely specifies the
limiting distributions of the test statistics for the joint tests, for
example Fl(al, 22)

We now consider in the regression equations (11)-(13) the tests for the

null hypotheses (18)-(20) and

R, vec A, = ¥

3 3 (22)

3
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where R3 and r3 are defined as their counterparts in (18) and (19). As

in (21) we also define

1 M M M 1 L Iomp omy m,
diag(X'X)™ = (M1, M., M), diag[x X ] = (myps Myr, Moy, My0)
(23)
" -1 1 i my m, m3
diag{X” X ] = (@yy. Wyps Mg, Mgy, Mgg)

where Xl and X2 are given in (l4). Again, it will not be necessary to
specify off block diagonal entries in (23). The notation given in (23) re-
places that used earlier and should not be a source of confusion. The Wald
statistics for testing (18)-(20) and (22) are then constructed in an analo-

gous fashion as for (8)-(10). We denote these new Wald statistics based on

the least squares regressions (11)-(13) by F2(-) We also define corres-

ponding Gz-statistics for tests of (19), (20) and (22) again by replacing
Eo , 20 and EO with ﬂo as before,
In the following theorem, the limiting distributions of the

Gz-statistics for testing hypotheses (19), (20) and (22) are presented in

terms of the functional

8,N,E) = [flap e N + | |1 @ [[lan e
Bpte. % 0 0

felo s () e} oz o (r3or) 7 (3n e

where e = vec E' and Q

™

is the covariance matrix of the wvector Brownian

motion B . The functional 8 Was introduced in Part 1, and the only

difference here is that N is now a function of two Brownian motiong, i.e.
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N = N(BZ' B3) , ag in Theorem 3.3. We also define g(B,N,E) = gI(B,N,E)

We have

THEOREM 4.2. Let 210 = 0 and consider regressions (11)-(13). First,

(a) If (15) holds with covariance matrix given bf (17), then

. - . 2

Also, for the other tests,

¢ (W) = g(By, Py, 7y)

where notation is defined in Theorem 3.3, except for FO , Fg and Fg*
which are defined analogously to I' , T'*# and T#* but with AZO replac-

ing N in these definitions. Additionally,

(&) Given part (a) the conventional Wald tests on A1 are asymptotically

independent of the G2 (and Fz)-statistics in (b)-(d).

Part (a) of the above theorem is entirely analogous to that of Theorem
4.1¢a). It implies that hypothesis testing on the coefficients of the sta-
tionary regressors in (11)-(13) reduces, at least in terms of the relevant
asymptotics, to testing in a regression with only stationary variables. Now
one can expect this to be true in general for regressions that involve both

stationary variables and integrated processes. In fact, it is not difficult
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to show that the same result holds in regressions with higher order inte-
grated regressors. Again, other procedures for testing (18) are possible
using appropriately constructed (asymptotically) chi-équare statistics, as
suggested previously.

The limiting distributions of the G _-statistics for testing (19), (20)

2
and (22) are explicitly given in (b)-(d) for regressions (11)-(13). The
results for the case where there are no stationary variables in the regres-
sions are easily obtained from Theorem 4.2(b)-(d) just by taking 210 =0 .
Moreover, by virtue of Lemma A.l1 of Part 1, the limiting distributions of
the Gz-statistics for the joint tests of (19), (20) and (22) can also be

easily deduced from Theorem 4,2(b)-(d)., For example, assuming R2 =T in
(20) to avold unnecessary complications, we have

A ~

where notation is defined in Theorem 3.3. The limiting distributions of
other joint test statistics can be represented similarly and will not be
reported here. Finally, Thecrem 4.2(e) again completely specifies the
asymptotic results for joint tests which also include the hypothesis (18).
We are now in a position to define the transformations which give rise
to the Hz-statistics. These statistics are ﬁnalogous to the H-statistics

developed in Part 1. In particular, the motivations are identical and the

limiting distributions of the Hz-statistics for the simple null hypotheses
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of the forp R2 = I and R3 = 1 do not depend on AZO . The nuisance
parameter dependency of the asymptotic distributions is therefore concen-
trated in the covariance matrix of the Brownian motions, and this dependency
disappears or reduces to a parsimoniously tractable form in some special
cases that we will consider in Section 5. For further discussion on this

point, see Part 1.

For tests involving regression coefficients from (11) we define:

A : 2. 5% [ -1+
Hy(A,)) = G,(A)) = 2T tr 90 AZO(A - A)) + Ter “o 20[x (I - x3)X2] 8,4
= GZ(AZ) + a , say
H.(A.) = G.(A.).— 2T?tr 6- (A — A+ Ter B8 %2 (1 - P, )%, |TIF
2833 R S o 1 o T1{%3 X3 1
Hy(A,, A3) = G,(A,, Ay) + a .
For (12) with the constant term, we set:
H,(A.) = G.(A,) — 2T tr O -1z, (K - Ay + 12er G71% X5 (1 - Py )Xy -1z
2\ 2\ 0 20 o %20 Xy’ 72 20
G2(A2) +b , say
H (A.) = G.(A.) - 212er G (A - Ay + er n ~1x X&' (I — P, )X*% ey
2\ 2483 r 8, T) L1 %% X33 2

- - - ] - -~ xele, =]
Hy(s) = G,(n) — 2JT 7,07 (a—p) + Ty 8, 7]RSS]

Similarly, for regression (13) with the time trend we define:
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- - , 14 , -1~
Hy(R)) = G,(K) = 2T tr & A20(A - A+ T?er i 20[X** (I- ng*)xg*] Ky
- G2(A2) + ¢ , say
Hy(Ey) = 6,(K;) - 2T er n Fi(E, - ay) + T*er Go1F [xxxe (1 - P, yxax|7IF
o '3|%% x*i 3

- - N S YU |

3/2~ =1 ,= 3~ =1~ -1

H2(9) e Gz(ﬂ) - 2T 1390 (-8) + T 7300 7éRSS3

Here 320 ‘is a consistent estimate of A20 which can be obtained as
in Part 1, X*. and X#*% are matrices, the t-th rows of which are,
respectively, deviations of X, from the sample mean and the fitted time
trend. Also, we define for computational convenience the least squares

regression equations

)

(i) =x = II.% + e

3t 172¢ 1t
(ii) Xy, = B + H2x2t + &5y
(1iii) Xqp = B + 8t + H3x2t + €1
for a sample of size T , and let fj - T_lﬂjﬁzo Gg=-1,2,3%

Similarly, in the regressions

A

(i) 1 = xétﬁl + x3t51 + e,
{(ii) 1 = 8t + x2tﬁ2 + x3t62
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A

(iii) €t = u + thﬂS + x§t63 + e3t

we let RSSj be the residual sum of squares from the j-th regression

(J=1,2 3 andlet 3, - —Tl/zﬁjﬁ G =1, 2) and

20
- -1/2%,~
Y3 = T B8y
If A20 = 0 , the Po =0 and 1j =0 for all j =1, 2, 3 . There-

fore, if the x2t's are strictly exogenous or lagged variables whose inno-

vations are only contemporaneously correlated with the regression errors,

then the above transformations are unnecessary and the H2- and G2-statistics

are asymptotically equivalent. Note that we do not need a correction for
possible serial correlation between the regression errors and the innova-
tions of [x3t} . Finally, we conclude this section by presenting the

limiting distributions of the H,-statistics in terms of a functional h

L

2
which is given by

h(B,N) = g(B,N,0) = g (B,N,0)

as in Part 1.

THEOREM 4.3. Let 210 = 0 . Then for the regression equations (11)-(13) we

have
(a) Hy(A)) = h(By, Q) . Hy(A) = h(By, Q) ,

A A

HZ(AZ’ A3) = h(BO, Ql) + h(BO, B3)

(b) Hy(A)) = h(By, Q) , Hy(Ay) = h(By, Q¥
H,(#) = h(B,, P})
H, (A, 33) = h(B,, Q¥) + h(B,, BY)

HZ(Z, Xz, X3) - h(By, 1) + h(By, Q) + h(B,, BY)
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(e) Hy(Ry) = h(By, QF%), Hy(Ry) = h(By, Q%)
Hy(#) = h(By, B)) , Hy(F) = h(B,, P;)

HZ(T\Z, Ay) = h(B,, QF*) + h(B,, By¥)

Hz(ﬁ, g, Kz, A'3) = h(By, 1) + h(By, r*) + h(By, Q¥*) + h(B,, ‘B‘g*)

where tr* = r - 1/2 and other notation is defined in Theorem 3.3.

5. SPECIALTZATIONS

5.1. Regressions with Strictly Exopgenous Integrated Regressors

In view of Theorem 3.2 and Theorem 4.1, it is easy to see that when
210 = 0 Theorem 5.2 and Theorem 5.4 of Part 1 apply to the regression coef-
ficients of the. integrated variables as well as the constant and the time
trends in (8)-(10), since they are asymptotically equivalent, both for esti-
mation and hypothesis testing, to regressions (8)'-(10)'. Hence all the
theory in Section 5.1 of Part 1 remains valid.

We can, of course, expect similar results for regression equations

(11)-(13). More expiicitly, we assume that the integrated regressors in

these regressions are strictly exogenous or, in other words, that the

processes [v2t} and [v3t} which drive [xzt} and {x3t} are generated
independently from the regression error process (ut} . It follows then that
both of 32 and B3 in the results of Theorem 3.3 become independent of

BO since 020 - 030 =0 .

The following theorem, which is parallel to Theorem 5.2 of Part 1,
characterizes the asymptotic behavior of the least squares estimators in
(11)-(13) when the integrated regressors are strictly exogenous. It can be

easily deduced from Lemma 5.1 of Part 1.
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Theorem 5.1. Suppose 210 =0, 020 = A20 =0 ‘and 030 = 0 . Then we

have in regressions (11)-(13)

" -1/2 - -1/2 = -1/2
(a) (A, — AOM S, (B, — A7, (K, - M7 = N(O, a, @ Imz)
A -1/2 - ~1/2 = -1/2
(b) (A, - AOMI/S, (By - A ¢, (&, - aM5/ " = N(O, 9, @ 1m3)
1/2 ~1/2 -1/2

(e) (w=m)my’ ", (p=wdmy /", (F-)my," " = N(O, Q

o’

where notation is defined in (23).

Theorem 5.1 once again confirms that upon appropriate standardization
the conventional asymptotic theory applies to regressions with striectly
exogenously integrated regressors. It seems almost trivial to extend this
result to the case of higher order integrated processes. We can write the
results given in Theorem.S.l heuristically in a form which is more compat-

ible with classical regression theory, as in Part 1. For example, we have

Y

- , -1
A2 - A2 -~ N[O, 00 e (XZ(I - PX3)X2) ]
and

-1
Ay — Ay - N[O, 9, ® (X3(I - pxz)x3) ]

conditionally on a realization of {x2t1 and {x,. .} for ta=1, ..., T .

3t
Similar expressions are, of course, possible for the other estimators.

The next result also follows from our previous theory and Corollary 5.3

of Part 1.
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THEOREM 5.2. Suppose 210 =0, 020 - A20 =0 and 030 = 0 . Then in the

regression equations (11)-(13):

(a) The limiting distributions of the Gz-statistics for the hypotheses,
possibly joint, of (19), (20) and (22) are chi-square, with degrees of
freedom given by the number of restrictions for each test; and

(b) If 4 =X and (15) holds with covariance matrix given by kl7), then

the Fz- (and Gz)-stacistics for the joint hypothesis of (18) with any

of (19), (20), and (22) are also asymptotically chi-square.

Theorem 5.2(a) is just a natural extension of Theorem 5.4 in Part 1 and
(b) is an immediate consequence of Theorem 4.2(c). Thus, (b) also applies

to the Fl- {and Gl)-statistics in regressions (8)-(10) in view of Theorem

4.1(¢c). Notice that we do not impose any restriction on 023 in either the

above theorem or Theorem 5.1. We therefore allow { } and { } to be

%3¢

driven by the processes that are both serially and contemporaneously inter-

%2t

correlated as long as the invariance principle (4) holds. Also, if the
innovation {wt} is a square integrable martingale difference sequence and

i =2 as in Theorem 5.2(b), then 210 -0 , 220 -0, 230 =0 is suffi-
cient to ensure that the above two theorems hold.

It may be worth noting that Theorems 5.1 and 5.2 are valid when in

addition to our underlying assumptions

E(u [F_ _4) =0 and E(uwul|[F_,) =%,

where Ft-l - a(xl, ceea X, yt_l) ., a o-fleld representing the information
accumulated up to time t-1 (i.e., including X, which is assumed to be
predetermined here). The standard statistical procedure for the linear re-

gression is, of course, not legitimate if the above conditions are viclated
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and the model is misspecified. Our results developed in previous sections
are intended to apply in quite general situations which allow for misspeci-
fication in this sense. By their very nature they therefore include
correctly specified models in which ortheogonality and homoskedasticity con-
ditions obtain., Under these conditions, the classical regression theory is

fully applicable as is implied by Theorems 5.1 and 5.2.

5.2. Regressions with Cointegrated Regressors

We shall consider the n-variate linear model

Ye = Azt + u, (24)

where the m-vector process [zt} is cointegrated in the sense of Engle and
Granger [2]; that is, the regressors are integrated individually, but there
are certain linear combinations (or cointegrating vectors) which lower their
order of integration. ' The regreséion theory for the above model when {zt}
is I(1) is considered in Part 1. These results, however, do not apply to
the above model as was mentioned in Part 1, since the covariance matrix of
the Brownian motion which asymptotically represents {zt} becomes singular
(see Phillips [8] and Phillips and Quliaris [10]).

In the following, we show how the general regression theory for (24)
can be readily deduced from our previous results, Now we assume in (24)
that the wvector process {zt} iz cointegrated, while each variable is
either I(l) or I(2), though it is mot difficult to extend the subsequent

theory to the case of higher order integrated processes. First transform

{24) as:
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Ve = AjFpp F BpRo F AgXy t Uy (25)

where - H:'izt , A, = AH (J -1, 2, 3) and H = (Hl’ H2, H is an

)
J h| 3
orthogonal matrix with the convention that Xy = o if [zt} is I(1). It

xjt

is assumed that the above transformed model satisfies the conditions under-
lying (1) or (2) introduced in Section 2.

The asymptotic theory developed in Section 3 and Section 4 is directly
applicable to the least squares regression corresponding to (25). The
asymptotic results for certain linear combinations of the regression coef-

~ A

ficients A of the original model (24), viez. AHj (j =1, 2, 3) , are
given by the theorems in previous sections. We can, of course, consider ex-
tensions of (24) to regressions with a constant or a time trend in a similar
way.

In particular, each column h of the matrix H1 is a cointegrating
vector of {zt} such that [h'zt) is stationary. We have assumed in (25)
that the columns of Hl are a set of orthonormal vectors. Being specific
about the matrix constructed from such cointegrating vectors, however, may
require unnecessary effort in getting the explicit limiting distribution of
; for a specific model such as a VAR with unit roots. Thus, let C be any
matrix {of full column rank) such that R{(C) = R(Hl) where R{(K) denotes
the linear space spanned by the column vectors of the matrix K ; and set
X = C'zt in (25) with a conformable definition for Al . We denote by
R(K)l the orthogonal complement of R(K)

We assume that (15) holds, and hence JT(AI - A{) has a limiting norm-

al distribution with covariance matrix V = (Jl ® JZ)VO(Ji ® Jé) , as given

in Theorem 3.1. Our next result now follows:
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THECREM 5.3.

(a) ﬁ(fx - A*) = N(0O, (I ® C)V(I ® C'))

where A% = A + ziozzlc' . Moreover, if V is positive definite,

R(R'Y N R(I @ C)l =¢ , and R vec A* =t for a given q X nm matrix R

of rank q , then
(b) (R vec A — r)'[R(I ® G)V(I ® C')R'] L (R vec A - 1) = xi

The above theorem is ‘a direct consequence of Theorem 3.1. It is easy
to show that the results are also valid for models which extend (24) by in-
cluding a constant or a time trend term. The asymptotic normality of g

with a singular covariance matrix was earlier found by Sims [11] in some

special cases, Theorem 5.3(a) implies that for any vector § ¢ R(C)l ,
JT(A — a%)§ = N(O, (I ® §’C)V(I ® C'6))

If 6 € R(C)l , then the limiting distribution of (A - A*)§ = (A-A)§ is,
upon restandardization, easily obtained from Theorem 3.2 or Theorem 3.4 and
is nonnormal.

In the simple case where I .. = 0 and V0 is given by (17), we have

10 10
V = EO ® Ezl and the limiting covariance matrix of JT(A — A) in Theorem
5.3(a) reduces to ZO ® CZIIC' . Further, by Theorem 3.4, the least squares
estimator ZO of Zo from (24) is consistent. Hence, the covariance

matrix can be consistently estimated by

A -1
2'Z
b | == ’ B
20 ® C{C [ T ]C} C (26)
if all the cointegrating vectors are known. However, this is not true in

many interesting cases and the following result should then be useful.
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PROPOSITION 5.4

Proposition 5.4, of course, implies that if V = Zo ® 2;1 then the
limiting covariance matrix of jT(;—A) can be consistently estimated by
50 ® (’I'“]'Z’Z)_1 , instead of (26) which is parallel to the classical re-
gression theory. Finally, observe that the following standard Wald sta-

tistiec for testing R vec A =1 , where R 1is given as in Theorem 5.3(b),
A A -1 _1 A
(R vec A - 1)’ R[ZO ® (Z'2) ]R' (R vec A — 1)

has a limiting chi-squared distribution that is exactly the same as in the
classical regression theory. All of the above results obviously hold for

regressions with a constant or a time trend as well.

5.3. ¥ stems with Exogenous Varjables
As mentioned earlier, our theory also applies to first order VAR sys-
tems with exogenous variables when the roots are unity. We explicitly write

the models as:

Ve = Alxlt + A2yt—l + u_ A2 = T (27)
and

Ve = Ap¥pe T AKXy YAy g U, A= (28)

where ({x and (x

1!

2t} are generated by (3). Notice that models (27) and
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(28) correspond, respectively, to (1) and (2) introduced in Section 2. We

call X, "exogenous" simply because it is generated by a mechanism distinct
from {ut} . We do not presume that any conventional exogeneity condition

applies to {xt] . A special case of the above models (viz. that for which
n = ml - m2 = 1 and {xlt] and {x2t] are strictly exogenous) was studied

in Nankervis and Savin {6] using Monte Carlo methods.
In the VAR system (27) with stationary exogenous variables, it is easy

to see that A20 reduces to A1A10 + AO , A21 to AlA1 + A01 and

Bz = AlBl + B0 . If the matrix

0 10 (29)
B M
is pogitive definite, then so is the covariance matrix of 52 , and there-

fore the asymptotic results for the least squares regressions (8)-(10) for
Xp, = Y,_1 2re given by Theorems 3.1 and 3.2 with the substitutions indi-
cated above. Of course, we set pu = § = 0 here. It may be worth noting
that Theorem 3.1 implies that the regression coefficient of x,, asymptot-
ically behaves exactly as if the existence of the unit roots were known.
Moreover, when 210 = 0 the limiting distributions of the G-statistics
are easily deduced. Contrary to the VAR system considered in Part 1, the
asymptotic distributions of the transformed H-statistics, however, are de-

pendent upon A, and the parameters in (29). It is interesting to recall

1
that this parameter dependency becomes one dimensional when n = 1 as shown

in Section 5.3 of Part 1. More specifically, the distributions of the vari-

ous H-statistics asymptotically depend on the composite parameter
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2 '
. wy + ajw;
2 . , 1/2
wo(mo + 201w10 + alﬂlal)

where (and henceforth) we use lower case letters to denote scalars and vec-

tors. Thus, if 210 = 0, the existence of a unit root can be tested by

first estimating p and using the table (for m = 1 ) provided at the end
of Part 1, although the test based on a regression of Yo o0 Y., yields

a much simpler procedure. Finally, if x is a set of differenced yt's

1t

and is not "exogenous," then the matrix (29) is singular. This case will be
considered in Section 5.4.
In (28), the exogenous variables are integrated of order one and {yt]

is effectively driven by (x which dominates lower order terms. The

2¢)

asymptotic theory for regressions (11)-(13) with =x (and 6 =0 )

3t T Ve
is thus given by Theorem 3.1 and Theorem 3.3 with the replacement of B3 by

AZBZ , if A2 is of full row rank and AZQZAé is positive definite. De-

ficiency in the row rank of A2 implies the existence of cointegration in
{yt} and this case can be analyzed as in the previous section. It also

follows that the strict exogeneity of ({x, )} together with I, = 0 is

2t 10
sufficient for Theorem 5.1 and Theorem 5.2 to hold for the model (28).

This confirms some of the conjectures made by Nankervis and Savin [6]
based on their extensive Monte Carlo study. They found, for example, that

the standard t-statistic for testing a unit root in (28) with a, = 0 1is

asymptotically normal if a, # 0 . The same result obviously deoes not hold
in (27). One might expect, however, the limiting distribution of the

t-statistic for the null hypothesis a2 =1 in (27) can be well approxi-

mated by normal if (x, } 1is "nearly" integrated and strictly exogenous,

1t
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and if a, 0 . This explains how Nankervis and Savin (6] mistakenly
concluded that the statistic has a limiting normal distribution in such a
case.

More precisely, the asymptotic distribution of the t-statistic is

given, in this simple setup, by

1 172 (30)
v

[767)

where V1 - alwlwl + wOWO and, WO and Wl are two Iindependent Brownian
motions with unit variance. It is now clear that the normal approximation
of (30) becomes more satisfactory as a, or w; gets large relative to w

0
(see Lemma 5.1 of Part 1), which is likely to occur if {

xlt} is an autore-
gressive process with a coefficient near to unity. 1In fact, it is easy to
see that Nankervis and Savin [6] set w% = 25wg in their experiment. When
a = 0 , then (30) reduces to the limiting distribution of Dickey and
Fuller‘s r statistic, as we would expect.

When n = m2 = 1 and 210 = 0 in (28) we can easily deduce from
Theorem 4.3 that the limiting distributions of the various Hz-statistics
depend only on p = w20/(w0w2) , which is parallel to Lemma 5.6 of Part 1.
The asymptotic distributions of some of the Hz-statistics in the case of
p = 1 are tabulated in Hasza and Fuller [4], where they considered a
(scalar) stochastic difference equation with a double unit root when the
innovations are independently generated. A generalization of their model to

the multivariate case with possibly serially dependent innovations will be

explored in the next section.
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5.4, General VAR Svstem with Unit Roots

Based upon our previous results, a very general theory for VAR systems
with unit roots and with lags of an arbitrary order can now be established.
We first consider a VAR with simple unit roots which is appropriately trans-

formed and written as:
Ve =811 0eg = Yepd oo T BT Vep1) F AV gty - GBD

Here A2 = I and all the roots of the determinantal equation

- -1 - 3P 3 . .
det Al(z) 0 , where Al(z) I Zﬁ-lAljz , are assumed to lie outside
the unit circle. We write Al - (All’ ce e Alp) .

[ - ’ —_ ] ’ -— t -
X (yt—l Yegr oo yt—p yt—p—l) and Xoe ™ Y1 and assume (31)

in this notation satisfies the conditions introduced for (1) in Section 2.
With this formulation (31) would seem to fall in the framework of (27),
except that the included stationary variables are not "exogenous" and the
covariance matrix given by (29) is in general singular. The results for
(27) therefore do not apply. In fact,.if we assume (ut} is a weakly sta-
tionary process which has a spectral density matrix, and (5)’ holds, then

the following relationship is satisfied by the submatrices of (29):

) =il @0, 0 = J8J

010 - Lp ® Jia

where LP is the p-vector of ones and J = Al(l)_l . It is now not diffi-

cult to show that

B, =: ® JB a.s.
P
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and

B, = AB. + B, =JB a.s.

since the Brownian motions are of almest surely continuous sample paths.

The asymptotic theory for the regressions (8)-(10) when the data are
generated by (31) now can be easily deduced from Theorems 3.1 and 3.2 with
these substitutions. The true parameter values for u and ¢ are, of
course, assumed to be zero. TFrom the viewpoint of statistical inference on
Al , the regressions (8)-(10) for the model (31) are thus asymptotically
equivalent to the VAR using differenced data. This is common in practice
when the roots are believed to be unity. The asymptotic theory for statien-
ary VAR’s, which 1s well developed in the literature (e.g. Hannan [3]), may
thereforg be applied for inference on Al

When the lagged differences in (31) are uncorrelated with the regres-
sion errors, as is conventionall& assumed in empirical VAR models, ocur co-

variance matrix estimates are consistent. The functional gR(B M(Bz), E)

0’
in Theorem 4.1, which represents the limiting distributions of the
Gl-statistics for regressions (8)-(10), reduces in this case to gR(BO,
M(JBO), E) . Also, the asymptotic distributions of the transformed
H-statistics can be represented as h(BO, M(JBO)) with various functionals

M(+) introduced in Part 1. It can now be easily shown for these M(-)

that

h(By, M(IJBy)) = h(¥, M(W)) - (32)

where W denotes n-vector standard Brownian motion with covariance matrix

In . (32) is parallel to the result of Lemma 5.5 in Part 1, and implies
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that the tests for unit roots and other tests, which may include the con-
stant term and the coefficient of the time trend, in (31) are asymptotically
equivalent to the corresponding tests in the first order VAR system with
unit roots considered in Part 1. The condition ElO = 0 imposed here, is
often violated. It may also be worth noting that this condition seems like-
1y to imply A21 - A20 = 0 in many cases of practical interest (although
not necessarily). To the extent that these conditions are satisfied, how-
ever, the motivation for the transformations to comstruct the H-statistics
decreases accordingly.

Secondly, we consider VAR's with double unit roots which we transform

as:

2 2
{33) Ve = A11A Ye1 + ... + AlpA yt-p + Aszt_l + ASYt—Z +ou

where A2 - A

A, , jJ=1, ..., p . By appropriately defining =x

3 = I and the same condition as in (31) is satisfied for

e+ Fop M4 Fye
we suppose the conditions assumed for (2) hold for the above model. The
univariate version of (33) with independent errors was studied by Hasza and
Fuller [4].

It follows from Theorem 3.1 that statistical inference on Al in (33)
based upon regressions (11)-(13) (again with u = ¢ =~ 0 ) 1is asymptotically
equivalent to that based on the stationary VAR using second differenced
data. If the second differenced stationary component in (33) is either un-
correlated with the innovation sequence {ut1 , or is excluded from the
regression, the hypothesis of unit roots can be tested using our

Hz-statistics. The limiting distributions of these statistics can be easily

obtained from Theorem 4.3 by substituting B, = B, =-JB

3 2 o where
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J = Al(l)-l as defined earlier for (31). We also have

LEMMA 5.5. For the variocus functionals N(+,*) lintroduced in Theorem 3.3,

h(B,, N(JB,, JB;)) = h(W, N(W,W))

where W denotes n-vector standard Brownian motion {(i.e., Brownian motion

with covariance matrix = In Y.

Lemma 5.5 implies that the null distributions of the Hz-statistics for
the unit root tests and other tests including the constant term and the time
trend coefficients are asymptotically invariant within a wide class of
{ut} , which is allowed to be weakly dependent and possibly heterogeneous.
No transformation is needed if the innovations are martingale differences.

When n =1, the limiting distributions of some of the H, -statisties, viz.

2

and

A

By(hy Ay o Hy(Ry, By L By By By L By(E,, Ky
Hz(ﬂ, 4, 32, KB) , are tabulated in Hasza and Fuller {4]. Similarly, as in
the case of single unit roots, spurious demeaning and detrending seem to
yield statistics whose limiting distributions have thicker tails. The
direction of the bias in size resulting from the tests based nominally on
chi-square tables, however, is not certain. Interestingly, their table
shows that all the statistics considered there, except Hz(zz, §3) would
lead us to under rejection of the null hypotheses if the decision were based
on the chi-square table. This is in sharp contrast to the simple test of a
single unit root.

For a VAR with unit roots but not transformed as in (31) or (33), the

results of Section 5.2 apply and correspond to those given above for the

appropriately transformed models. From the practical point of view, the
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asymptotic normality given in Theorem 5.3 becomes more important as we have
more lags and less unit roots, because then the limiting covariance matrix,
roughly speaking, becomes less singular and the overall asymptotic behavior
of R is mainly determined by the contribution from the statiomary part,

In the context of the vAR system considered here, the matrix € defined in
Section 5.2 takes the form In @ 02 . For the p-th order VAR with simple

unit roots, for example, C2 is given by

i L |ox(p-1)

and therefore Theorem 5.3(b) holds for any matrix R except for R of the
form Rl ® LP where Lp is as before the p-vector of ones. Similarly,
where there are double unit roots, R(Cl)l is two dimensional and is
spanned b ¢ and r , where 7 = (1, 2, ..., '
P Y ot p p( p)
We have assumed so far that is positive definite and {yt} is

0

1tself not cointegrated. If this is not true and there exists a matrix Cq

such that {Ciyt} is stationary, then each column of Cl ® Ip is a cointe-
grating vector for the p-th order VAR. Combining this with the above re-
sults, one can easily deduce the theory for the general VAR system. Finally
notice that if the innovation sequence {ut] is i.i.d, or a martingale dif-
ference sequence as is in the standard VAR system, Proposition 5.4 implies
that the usual Wald statistic has a limiting'chi-square distribution as long

as the restriction matrix R satisfies the condition given in Theorem 5.3.

Our results here therefore give a rather complete answer te Sims’' [1l]
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problem concerning asymptotic normality of the regression coefficients in a
VAR with unit roots, which has recently been explored in Sims, Steock and

Watson [12].

6. CONCLUSTIONS

The central purpose of this paper and its companion, Part 1, has been
to achieve a simple and unifying asymptotic analysis of multivariate regres-
sions with integrated processes. The framework of analysis we have developed
is a general one but it has a common architecture that helps to simplify and
codify what would otherwise be a myriad of isolated results. The models we
have looked at in detail show well the scope of the underlying theory. They
have been delibérately selected with two objectives in mind: (i) to help
provide an overall picture of how additional complications, such as multiple
lags, cointegrated regressors and regressors with drift, may be comforyably
accommodated within the theory; and (ii) to provide explicit results for
models of obvious empirical relevance such as VAR's with some unit roots and
some cointegrated variates., It is our hope that the framework we have de-
veloped will provide a useful conduit for further research in this field as

well.



MATHEMAT APPENDIX

1. Proof of Lemma 2.1. The initial wvalues of {xt} do not affect our
asymptotic results and are set to be zero with no loss of generality. To

prove (a)(i), (b)(i) and (e)(i)-(ii), we first notice for

r € [(t-1)/T, t/T] that

-3/2 r ~3/2 ~-1/2{t _
(A1) T /"xy, = JoXap(s)ds + T 7778, + T T~ T)S3cee1)
using an obvious subscript notation for components of XT and St . It

follows from (Al) that

223 4 L3/

-5/2.  _ (&/T r -
T xy = Jo¥3p(s)dsdr + T 3e ¥ 2 3(t-1)

(e=1)/T

for all t =1, ., T and, since ETSt - OP(TB/Z)

1

-5/2_T 1er
T 2%y, = fof0x3T(s)dsdr + o (1)

1lprr 1-
> IOIOBB(s)dsdr - f053

by the continuous mapping theorem. This proves (a)(i). By the same token

(Al) yields:

-5/2 - T -3/2(t _ t—-1 _ o172t 2
T tx3t rf0X3T(s)ds + T [T r ]ZL S3j T [T — r] SB(t—l)

-5/2 -3/2(t _
+ T /s, +T [T r]tSB(t_l)

and



~7/2 - /T L-7/25t-1
iy OL L e S33
1772 ~7/2 1 -7/2
3T T Syeeny T T T S5 ¥ 5T T S5y

Notice {(a)(i) and that Eitst - OP(TS/Z) to get

7 7/25T 1_cr
T tRy = J‘Orfox3T(s)dsdr + op(l)

1 =
~ JorB,

as stated in (b){(i). The proof of (¢)(i) is also immediate from (Al), 1i.e

=4 T 1[ or r .
T 20 3 3t IO[IOX3T(5)dS][IOX3T(S)dS] dr

—4_T[(t-1 , -1, )
+T E1[[21 S3J]S3t 3t[21 S3j]]

1 -4 T(-t-1 , -1, )’
* 9t 2”‘1[[‘21 SBj]S3(t—1) 3(t--1)[2 SSj]]

L —4.T
3T E 83 em1y33¢e-1)

1 '
- IO[IEX3T(s)ds][ISX3T(s)ds] dr + op(l)

Here we use the fact that ET(Et 18 )Sé = Op(Ta)

from (c¢)(ii), which will be proved next. We have

/2y Xym (1) + 71/,

2t 2t

for r e [(t-1)/T, t/T) and therefore,

This can be easily seen



3T
T "Z1%3¢%2¢ fo[[fo 3T(s)ds] Zyp(®) 7 [dr
3T (t~1g 1 ~3_T , 3T, o,
+T z1[21 j] 9T ES3e-)S2(e-1) t T E15352c

- fo[[fo 3T(s)ds] X, (D)’ ]dr + 0 (1)

= fon B)

since ZT(Zt 13 )vé - OP(TZ) as is easily seen again from what follows.

For (¢)(iv), we have

-2.T 2 1(t-1. Y., . =2.T
T 3% = T z1[21 S3j]vlt *T R85,
2T ,
- TEls5 (S - S + o (1)
~3/2.T 126 ' _ om2Ts s,
a7 2gs, 0 a2 " - 17Esy st 4 0 (1)

4

[féB3(r)dr]B1(1)' - féB3(r)Bz(r)'dr

IOB dB;

by integration by parts. The proof of {c)(v) is entirely analogous ahd is

omitted. For the remaining results, see Part 1.



2. Proof of Theorem 3,]1. In the regression equation (8), we have

A

- -1
- ] — ’ -
Ap = A +U(I- By )xl[xlcl P, )xl]
2 2
U (e )t

- A, + LI 40 ™)

1 T T P
P -1
SRR
and given (15},
) -1
a U X Y[R X))
el 11 %1% -1 -1
Ay~ Af T T 0% T O(T

. y
(r1¢ A ] -1 ' -1 '

N I T | o ) RN o G Y b s RO 0 B

T oll" T 0|7 T T 1 b
[U'X ) XX
1 |t o B -1 ~1/2
T ~ Z10[% z1021[ T 21]z + o (T )

It follows from (15) that

~1/2 %
T (A - AF) = J

1[T-1/22{(wtwé - E)]Jé + 0 (1)

0 ! ’ =
= (J, 8 J)ON(0, V) (J] @ J)) = N(O,V)

as required. The results for other regressions can be deduced similarly.
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3. Proof of Theorem 3.2, Write the least squares regression equations (8)-

(10) as
"r_A"'J Al
¥ A% + U
V' o= 12! X Tt 1T
Y pe’ + A2X2 + U
V' - ' A T ’
Y ue' + 8r' + A2X2 + U
vhere ¢ = (1,1, ..., 1)’ , r=¢(1,2, ..., )’ and ¢ =(I-PB ),
1
r = (I - PX yr o, X2 = (I — Px )X2 , Y = (1 -~ Px )Y . We have from
1 1 1
Lemma 2.1
m==‘f1c1P gr =j‘1rdP I'J":'S"('z'afldPB'+H’ (A2)
JT o T3/2 0 T 072 )
Moreover, it 1s easy to see that
~,~ — - ~l~ '
pling 1 #F o AT S B 1
T ~ttO0l) s T3t Ta3t%(T) T3~ 3 tolr)
P T T P T T P
(A3)
— ri'a ’ —ry '
a_'L_,»__'_zM[;] e P +0[;] _TXZ_TX2+O[l]
2 2 plT p3/2 53/2 plT p3/2 " 5/2 plT

Now the stated result follows easily from the proofs of Theorem 3.1-Theorem

3.3 in Part 1.



4, Proof of Theorem 3.3.

gressions (11)-(13) as

Y’ = AZXé + ABXé + U
T e ! A T X e
Y pi' + A2X2 + A3X3
Y =g’ + 01" + A2X2
Notice that
U’'X
3 1 oone
5 =dePB3
T
and
~J~ ’ -l-
L X3 _ ¢ X3 ‘o [l] T X3
T3/2 T5/2 plLT T7/2
Ty '
X3Xy  X3X4 1
s "7 "%
T T

The stated results are immediate

that

-1 -1
1o, (1= =) 5 (el
féR'[féRR'] R = fogé[foBsBé] By * foQi[foqlqi]

Because I3E3Qi =0 a.s.

In notation similar to that above we rewrite re-

+ U
+ K Zy + T
(A4)
f'XS 1 XéX3 XéXB 1
=F2%%l7)r T3 "3 *%lT
T T T
(A5)

from (A2)-(A5) and Lemma 2.1. Notice also

-1
Q



5. Proof of Theorem 3.4. It can be easily shown that in regressions

(8)-(10) or in (11)-(12)

A ) ! r _l r
vy 0 0 _wu _ (TH|EAA]CRY, B
T' T' T T T T plT

P B
— Zy = E1p%; Fp

1/2

Moreover, if Z = 0 and (15) holds, then T U’Xl - Op(l) and

from which the stated results follow immediately.

6. Proof of Theorem 4.1. If Z._ =0, it follows from Theorem 3.4(a)

10
that EO, EO’ §0 £, EO . Therefore, by Theorem 3.1 it suffices to that
P -1
Mil - 21 , 1 =1,2,3

for part (a). Also, if 210 -0, P{r) and @I 1in (A2)-(A4) reduce, re-
spectively, to Bo(r) and AZO . Part (b) is now immediate in light of
(A3). Finally, the limiting variate Z (say) in (15) depends on a quad-
ratic function of the elements of wt , whereas B(r) depends on partial
sums which are linear in wt's . Hence Z and B(r) are uncorrelated and,
being Gaussian, are therefore independent, The independence, of course,
carries over to any two statistics whose limiting distributions are,

respectively, represented by functionals of Z and B(xr) , as in our case.

This proves part (c).



7. Proof of Theorem 4.2.

ogous, respectively, to those of parts (a) and (¢} of Theorem 4.1.

{d), notice that

M

M

T2M

1=2
Tmyy = [f OPl]

12

22

32

r

1 -1 3 1 -1
= J.u:)QlQi] o Ty = [fonqé]

.

rfl & *,]—l T3M = fl * *']_1
o9t ’ 23 * [J0BY

r 1 , _1 3 1 , "1
> [Joorat* | . THyy = |foopragr|

-1

-1
152 3 152
» Tmgy @ [fon] r Tmgy = [f0P3]
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The proofs of part (a) and (e) are entirely anal-

For (b)-

(A6)

-1

The stated results are immediate from the above results, and those of

Theorem 3.3.

8. Proof of Theorem 4.3.

=1t

el

el

Also,

Recall that if = = 0

4

10 , then II reduces to

We have
) -1
1= ' 1 r
J 03332] [f 05232] A20

. -1
I 1Eamye J Lhspsr| &
JoB383" | [/ o®3"3 20

) -1
flﬁ**g**' flg**B**' A
05 °% 0°2 72 20

1 1 -
~JoR1 [f 0Q1Qi] 20

A20 .
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~ L+ [l +.+'
7, = S0 [foqlql ] 20

~ —fl et J*l " _IA
73 = ~JosQY" |J ot 20

-1 -1 -1

and RSSl - o,y R582 = Wy and RSS3 = my, . Now all the stated re-
sults for the statistics for testing single hypotheses follow immediately
from the above results, (A6), Theorem 3.3 and Theorem 4.2(b)-{(d). For the
joint tests, apply lLemma A.l1 in Part 1. Thus, for example, in the case of

R2 =1 and R3 -1,

A A

and the stated result for HZ(AZ’ A follows easily from the fact that

3)
which may be deduced from the earlier result for H2(A2) . The proofs for

the other joint test statistics are analogous and are omitted.

9. Proof of Theorem 5,1. To facilitate the proofs, we define a functional

k by

1 L. Y12
k(B,N) = deBN'[foNN']

as in Part 1, It is easy to see from Theorem 3.3 and (A9)-(Al2) that the
limiting distributions of the given statistics can be represented in the

generic form k(B,, N(B,, B,)) where the function N(«,*) of B, eand B,
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is given for each estimator in Theorem 3.3. Since Q,, =0 and Q.. =0

20 30 ’
and B(r) 1is Gaussian, BO is independent of both B2 and B3 , and,
hence, any function of Bé and B3 , including N = N(Bz, B3) All the

stated results are now simple consequences of Lemma 5.1 in Part 1.

10. Proof of Theorem 5.2. When 210 = 0 and A20 = 0, the limiting dis-

tributions of the Gz-statistics in Theorem 4.2 become of the form

(B, N) , where (o,¢) = (+,,0) as in Part 1, and N 1is a function
0 &r

of 32 and 53 appropriately defined for each test. If 020 = 0 and

030 = 0, then N = N(BZ' 53) is independent of Bo and the results for

the statistics for the single hypothesis follow easily from Corollary 5.3(a)
in Part 1. 'For‘the tests of joint hypotheses among (19), (20) and (22), we

assume momentarily that (19) and (22) are of simple form and that R2 =1

and R3 = 1 . Now, by virtue of Lemma A.1 of Part 1, all the G,-statistics

2
for the joint tests can simply be written as sums of the statistics for the

individual null hypotheses. Therefore, if A, . =0

20 , we have for example

fal A

G2(A2, A3) = h(B )+ h(BO’ B

Now notice that
1 "
f0Q133 0 a.s.

and apply Corollary 5.3(b) of Part 1 to get the desired result. The proofs
for the other joint tests, and for the tests of subsets of parameters are
entirely analogous. The latter case obviously extends our proof to the gen-

eral case where R2 and R3 are arbitrary matrices of full row rank, which
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can be easily seen by appropriate transformation of the models where neces-

sary, This proves part (a). For (b), we assume Rl = I . It is easy to

see that this causes no loss of generality. Then again by Lemma A.1 in Part
1, we can write, for example,

A ~

FZ(AI’ Az, A3) - FZ(AI) + F2(A2, A3}

~

‘where ?Z(Az, A3) is the Wald statistic for the joint test of (19) and (22)

based on regressions with no stationary wvariables. We have, however, seen

~ A Py

that ?2(A2, A3) is asymptotically equivalent to F2(;2, AB) , the Wald
statistic constructed from regression (11). Now the stated result for
FZ(;l’ ;2, 33) follows from Theorem 4.2(a), (e), and part (a) above. The
proofs for the other Wald statistics for the joint tests of (18)-(20) and
(22) are analogous and are therefore omitted. Finally, notice that, under
the given conditions, 0 = £ and the F2- and G2-statistics have the same
asymptotic distributions.

Then

11. Proof of Theorem 5.3. To prove part (a), we first let C = H1

we have

1
T3/2

JEa =A%) = [T(A] - ADH! + 7%[T(A2 ~ AHI] + [T2(A3 - A,HY]

- JT(Al - AD)H] + op(l)

Notice that A%H = (Af, 0, 0) . Now the result follows directly from
Theorem 3.1(b). If C 1is a matrix such that R(C) = R(Hl) , then there

exists an invertible matrix L such that Hl = CL . The stated result in
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(a) therefore follows easily by redefining V0 , El and 210 appropri-
ately. For part (b), simply note that, under the given conditions,

R(I1 & C) 1is of full row rank, and so R{(I ® C)V(I @ C')R’ 1is invertible.

12. Proof of Proposition 5.4. We assume w.l.o.g. that C = H1 . It is

easy to show

where Ki = (I, 0 ), which is immediate from Lemma 2.1 by inverting a

partitioned matrix. Now, notice that

to get the stated result.

13. Proof of Lemma 5.5. Write

-1
—~1/2 1 il 1, 10, a—1/2
h(B,, ¥) - tr{ﬂo J BN [J‘ONN] JoNdB/ O, }

and notice that
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-1
el '
N(JB,, JBj) [ION(JBO, JB,)N(JB,, JB,) ] N(JBy, JBg)

-1
- N(Bo, BO)'[féN(BO, BO)N(BO, Bo)'] N(BO, BO)
1 -1
- Ncw,W)'[ION(w,mN(W.W)'] N(W,W)

upon the transformation BO -+ 051/230 = W for the various functions N(+,«)

introduced in Theorem 3.3.
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