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ABSTRACT

This paper analyzes the consistency properties of classical estimators for
limited dependent variables models, under conditions of serial correlation in
the unobservables. A unified method of proof is used to show that for certain
cases (e.g., Probit, Tobit and Normal Switching Regimes models, which are
normality-based) estimators that neglect particular types of serial dependence
(specifically, corresponding to the class of "mixing" processes) are still
cansistent. The same line of proof fails for the analogues to the above models
that impose logistic distributional assumptions, thus indicating that normality
Plays a special role in these problems. Sets of Monte—Carlo experiments are

then carried out to investigate these theoretical results.
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Temporal Dependence in Limited Dependent Variable Models:

Theoretical and Monte-Carlo Results

Introduction:

Consistency under "Mixing” Conditions

Analysis of limited dependen; variable models in the presence of serial
correlation in the unobservables reveals that full MI, estimation is in general
very intractable, because multivariate integration {in some cases T-fold) is
involved in evaluating the likelihood function.

Investigators in this area have mainly taken two routes in meeting this
problem: first, attempts have been made to present computationally feasible
estimators that are appropriate for such models, though they are statistically
inefficient relative to MLE. See Avery, Hansen and Hotz (1983) and Ruud (1981)
for orthogonality-conditions (OC) type of estimators.

Second, the behaviour of the ordinary (misspecified) ML estimator that
wrongly treats the errors as serially independent has been studied (Robinson
(1982}, Avery, Hansen and Hotz (1983)). The main conclusion from this line of
research is that for certain limited dependent variable models (in particular
for Probit, Tobit and normal Switching), the misspecified MLE is still
consistent and asymptotically normal, with an asymptotic covariance matrix that
differs from the one obtained under the incorrect assumption of i.i.d. errors.

This conclusion of the latter approach could lead to a premature belief
that failure to treat serial correlation correctly may not be too serious after
all, since consistency of the estimator is preserved and hence correct inference
only requires consistent estimates for the standard errors of the stahdard
estimator.1 In this paper we show that, rather surprisingly, this consistency

result does not in general extend to other widely used estimators for LDV



models that do not work within the normal family of distributions. We
illustrate this for the cases of the binomial Logit model (McFadden (1973)) and
the analogues to the Tobit and switching models that assume logistically
distributed errors (which we call L-tobit and L-switching respectively).

In Section I we adapt results in Levine (1983), White and Domowitz {1984),
Newey and Powell (1985), and White (1985) to prove the consistency of the
estimators that rely on normality and to highlight the requirements for
consistency. Compared to the proof given by Robinson (1982) for the Tobit
model, the proof here is much more straightforward, and readily extends to other
limited dependent variables models in the presence of serial correlation. We
illustrate this proof for the Probit (Finney (1564)) and Tobit models with
autoregressive errors. Moreover, we discuss the factor-analytic error structure
appropriate for longitudinal data analysis.

Ve proceed in Section II to analyze along the same lines the cases of Logit
and L-tobit. It is shown that the consistency requirements then fail to be
satisfied under ARMA-type logistic error specifications, since under such
conditions the regression function and the conditional density for a2 given time
period do not in general have the logistic form. Hence, one conclusion that can
be drawn is that the generally acknowledged closeness of the Probit and Logit
estimates (the two approximately differing by a scale factor of /v 3 that
standardizes for the unidentified variances-see Amemiya (1581)) may not hold in
the presence of serial correlation of the ARMA type.

Since what we show here is the failing of sufficient conditions for a proof
of consistency under logistic distributional assumptions, we proceed to examine

the operational characteristics of logit-like estimators under time-dependence

conditions, as compared to their normality-based counterparts. In Section III-



we present such a comparison of logit and probit estimators under serial
dependence using sets of Monte-Carlo experiments.
We conclude with a summary of the results of this paper and with an agenda

for future research.

Section I:

Consistencv in The Case of Normality Under False i.i.d. Assumptions

There have been several attempts to examine the effects and the possibility
of introducing serial dependence into the errors of limited dependent variables
models. Quandt (1981) allows for both demand and supply shocks to follow AR(1)
processes in the simple disequilibrium model with no observations on regimes
(see Fair and Jaffee (1972)): he then proceeds to apply'his estimator to a model
of the U.S. labour market, claiming to have established that the MLE that
incorporates serial correlation in the switching model, although computationally
laborious (each function evaluation requiring 2T quadratures), is feasible. As
Lee {1984a) points out, however, Quandt’s approach was not the true MLE: Lee
then presents the correct likelihood expression, and thus shows that the MLE is
indeed computationally infeasible because each function evaluation requires two
T-fold integrals. Robinson (1982) for the Tobit model, and Avery et al. (1983)
for the multiperiod (panel) Probit also recognize the intractability of MLE.
They therefore investigate the properties of MLE under (neglected) dependence
conditions. Robinson (1982) also conjectures that his consistency proof could
be adapted to cover the switching regressions model.

Without concentrating on any specific model in particular, White and

Domowitz (1984), Levine (1983) and White (1985) examine the effects of such



misspecification with respect to untenable i.i.d. assumptions for the method of
Maximum Likelihood Estimation. We here offer a general procf of consistency for
a particular class of serially dependent stochastic processes called "mixing"
processes, which includes the widely considered class of {finite) ARMA
processes, as well as factor-analytic error structures. This method of proof
combines theoretical results in Levine (1983), White and Domowitz (1984), White
(1985) and Newey and Powel} (1985). A novel feature for cases with concave
criterion function, is the éemoval of the usual requirement that the parameter
space be compact.

The consistency theorem we present implies that normality assumptions may
be of very special importance in establishing consistency properties of the
misspecified MLE because they generally yield marginal densities still of the
normal form. Specifically there appear to be internal consistency problems
under logistic assumptions for ARMA-type processes.

Consider the standard Probit and Tobit models, with Ye X being the

observables, and y: being a latent variable:

(1) Probit: Yo = %; B+ €,
-
Y, = 1, iff Y, >0,
= 0 otherwise
. * - *
(2) Tobit: Y, =X, B + €,
. *
dt =1, Y =Y, iff Y. > 0,
d =0, y. = 0 otherwise

£, is assumed to be i.i.d. N{O, 02) in both models. Since in the Probit case

the scale of Yy, cannot be identified, 02 is normalized at 1. Under these

assumptions, the MLE estimators are defined by:

T
(3) 8 = argmax {%- z log ft} .
5] t=1



where
(4) £, = d(x" B)yt. a-e¢ (x' B))l-y‘ for the Probit,
t t t
and
1-d, d,
(4%) ft = (1 - ¢(x'tB/a) . (¢((yt - x;B)/a)/a) for the Tobit.

$(.) and ¢(.) are the cumulative distribution function and the probability
density function for the normal distribution respectively.

We present a theorem that can be applied to show that the ordinary Probit
and Tobit estimators are strongly consistent under time dependence conditions.
Congider the stochastic process Zt = {(Yt'xt)} with Yt endogenous and Xt
predetermined at time t. Suppose {Zt} is stationary so that we can talk about a
typical time period t. Let f(ytlxt.ﬂo) be the actual density of Yt conditional
on Xt' where Bo is a p-dimensional columm #ector. Define the Quasi

loglikelihood contribution by

(5) A*(8) = log f(y,|x_.8)
and let
- 1 T t
(6) 6(QLE) = argnax {L(8) =33 1?\ (8)}
t=

Denote the score contributions by R;(G).
We consider the following set of assumptions:

Assumption (1): {Zt} is stationary and ¢-mixing of size r-(2r-1), r > 1,

or a-mixing of size ro(r-1), r > 1.

Definition 1: A stochastic process {Zt} is strong or g-mixine if and only
if there exists an infinite sequence of scalars a = (ao.al,...) with lim a = 0

such that, for any event Ft defined by 21.....2t and event Ft+k defined by

t+m t+mt1

Z-7, 2



t

|prob(Ft+m,F )y - prob(Ft+m) . prob(Ft)I < a .

Definition 2: A uniform or ¢-mixing stochastic process is characterized by
an infinite sequence ¢m' specified exactly as sequence a in Definition 1,
satisfying

t+m

]prob(Ft+m|Ft) - prob(F" )| ¢ ¢ prob(Ft) #0 .

Definition 3: Let the'stochastic process {Zt} be uniform ¢- {stronz a-)

mixing with the ¢— (a-) coefficient being an infinite sequence of order O(m-s).

Then s is termed the size of the mixing process.

Remark 1: m gives the minimum time separation between subsamples of which
Wwe try to measure the dependence. To fix ideas, an MA{T) process would have
¢(m) > 0, a{m} > O for m < T and both ¢(m) and a(m) equal to O for any m > T.
Such processes are said to be T-dependent (Billingsley (1979)). The requirement
that a process be mixing is akin to a requirement of asymptotic independence.
From Definition 3 we see that the mixing size gives the rate at which dependence
is vanishing. Hence, with separation of periods equal to m, the mixing
coefficients go to O at rate O(m-s), if the size is s.

Remark 2: ¢-mixing is a stronger requirement that c-mixing, in that
¢-mixing implies a-mixing. This 1s clearly reflected in the size requirements:
since ¢-mixing is stronger than a-mixing. we only need the process to be of size
r/(2r-1)<r/{r-1).

Assumption (2): f(yt|xt, 60) is the true conditional density of Yt given
X, and is a.e. equal to f(y, |xt, 8) only if 8 = 8 (global identtfication).

Assumption {3): {xt(e)} is a random sequence dominated in absolute uvalue
by uniformly integrable functions. Specifically the following domination of

moments (& > 0) is assumed:



EsupAb(8) 7% ¢ A ¢ w ,
8

where r ) 1 for strong mixing and r 2> 1 for uniform mixing.
Assumption (4): Bo lies in the interior of 8 , a compact subspace of RP.
Assumption (5): P\t(B) ls twice continuously differentiable on @.

Assumption {6): Lea(eo) is a pxp negative definite matrix (local

identification).
Theorem 1: If Assumptions (1)-(6) hold, ET(QMLE] 2.5, Bo .

Proof: Assumptions (1)-(5) are sufficient for the Generic Uniform Law of Large
Numbers (Theorem 1, p.3) of Andrews (1986), thus implying that L.l.(e) -&L(B)
uniformly in 6 on 6 , where L(8) = EA"(8). By the global and local

identification Assumptions (2) and (6), L(8) attains a unique maximum at 90 .

and by Assumption (4), Lemma 3 of Amemiya (1973). and the definition of

ET(CM_E) = argmax {LT(GT}’ ET (QMLE) then exists for large enough T and

converges to 90 almost surely.

We now state a Lemma that will allow us to relax the usual compactness

requirement of Assumption (4), in cases where the maximand is globally concave

in 8 (e.g., the Probit model):

Lemma 1: {Newey and Powell (1985)):
Let 90 be a point in RP and © be an open set containing 90. If
(a) I.T(B) converges almost surely to L(8) for all @ in RP uniformly on €,
(b) L(0) has a unique maximum on & at Bo.
(e) LT(B) is concave in 8.

Then for E = argmax (9),
8 € RP T



(i} © exists for large enough T, almost surely.

{ii) 6 converges almost surely to Bo.

Consider the following assumptions:
Assumption {4'): 90 lies in the interior of ® , an open set in RP.

Assumption {6'): LBB(B) ls a pxp negative definite matrix (concavity).

We then obtain:

Theorem 2: If Assumptions (1)-(3).(4').(5), and (6°) hold, aT(QMLE) a.s. 90 '

Proof: The Assumptions are sufficient for the Generic Law of Large Numbers of

Andrews (1986), and for Lemma 1 of Newey and Powell (1985).

COMMENTS: 1. It is important to note that Assumption (2) requires only that

T
f(y|x) be the correct conditional density, not that I f(ytlxt) be the right
t=1

likelihood for the sample {Zl""’ZT}' In the presence of serial correlation

T

clearly IT f{ytlxt) is not the right likelihood since each contribution is not
t=1
T
independent from the others. Indeed, I f(yclxt) may not correspond to the
=1

correct likelihood for any model — we only need the conditional density to be
specified correctly.

2. Common proofs of consistency for nonlinear models {(e.g., White
and Domowitz (1984). and Levine (1983)) geherally employ a uniform Law of Large
Numbers due to Hoadley {1571) which, as pointed out by Andrews {1986), is not
applicable when the criterion function is unbounded. Such proofs therefore rule

out interesting cases like Quasi-ML models with normal erroré.



3. With a strengthening of Assumption (3} to cover the domination
of {k;} and {R;B}. one could obtain Theorems proving the asymptotic normality of
the QML estimators. The proof is a trivial modification of the one used by
Levine (1983) in establishing his Theorem 2. We do not give the details here

because we are concerned only with consistency properties.

Proof of Consistency for Probit and Tobit with AR{1) and Factor-Analvtic Errors:

Proving the consistency of the Tobit (and Probit) estimator(s). which was
the main focus of Robinson (1582), becomes a simple exercise of checking the
conditions of Theorem 1. As an illustration, consider the AR(1) process
e =pE I, with normal innovation n, ~ N(O, oﬁ). in Models (1) and (2). We
first impose the following structure on the distribution of the exogenous
variables:

Assumption (7): The stochastic process {Xt} its stationary and strong (a-)
mixing.

Assumption (8): E XtXE is a positive-definite pxp matrix.

The proof consists of checking Assumptions (1) to (6):

An AR(1) with normal innovation is a finite order Gaussian ARMA process and
is therefore a-mixing with an exponentially decaying coefficient
a{m)<k + exp(-Am), A > 0. See Ibragimov and Linnik (1971). (This implies, in
particular, that we can take the parameter r in Assumption (1) arbitrarily close
to 1.) Together with Assumption (7) this then ensures that the cobservable {Zt}'
being a (measurable) non-linear function of mixing processes is a mixing process
itself, by Lemma 2.1 of White and Domowitz (1984). Hence Assumption {1) is

satisfied.
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By the properties of the Normal distribution:

y: ~ N(x;B . GE). where 03 = aﬁ/(l - p2) by statiomarity {]p|<1).
Hence for the Probit,

y 1-y
(7) £y Jx,. B. o> = 1) = o(x;B) © + (1 - #(x;8))

with normalization 03 = o%/(l - p2) =1, and

for the Tobit

1-d d
(7') £y lx..B.00) = (1 - 8(x8/5)) © (#(ly, - xB)/0,)/a,) © .

Note that in both models that parameter p is unidentified with respect to the

marginal distributions.2

Since ELT(G) exists, the global identification requirement can be established,

by first noting that it may be translated to:

For |8 - 90| 2 € > 0, there exists § > O such that E(L(6,) - L.(6)) 2 & .

where the expectation is taken over the distribution of the vector of
observables (Y,X).

For the Probit case the quasi-log likelihood contribution is globally
concave, achieving a unique maximum at the true parameter vector. {See Pratt
(1981) for an explicit discussion of the concavity properties of limited
dependent variable models.)

In the Tobit case, the expressions are exactly the same as in the i.i.d.
case, and the reader is referred to Amemiya (1973). Further, in analogy to the
Probit case, one can show that L(B) reaches a (global) maximum at 8 = 90 by
establishing the definiteness of the reparameterized Hessian matrix LBB,(G'),
where 0° = (B8/0.1/0) as in Olsen (1978). Since this reparameterization is a

monotonic (separately in both parameters), one-to-one and onto transformation of
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the original 8, the unimodality (though not the concavity) of the 8
parameterization is proved.

In view of the {exponentially declining a-) mixing properties of the
Gaussian AR(1) € Assumption {3) is straightforward to establish: Under

normality, the error has all moments bounded. Then recall that

(8) A*(8) = y,log &(x;B) + (1 - y,) log(l - &(x:P))

We must therefore examine the convergence of terms of the form

-1

T
T° 3 log #(x;B) log(l - #(x:B)) .

t=1

This holds under the mixing conditions on {Zt}’ together with an ergodicity

assumption.

The interiority Assumption {4) may be verified by letting 8 = (B’ , a?)’

and 90 = (ﬁo , ogo)'. Since the parameter space € is assumed not to contain the
region af { 0 {for the Probit 030 = 1}, it suffices to assume that © contains an

open neighbourhood of 30.
Assumption {5). which requires twice-continuous differentiability on 8 ,

follows from the fact that the likelihood contributions for both models are

continuous functions of the expressions

1 k
f=a ¢(T)mdF=¢(

K
(o )
£ £ €

which are twice continuously differentiable in k and 03 .

Finally. Assumption (6) requiring the non-singularity of the information
matrix LBG(BO))' is checked as follows: For the AR(1) Tobit case, one can apply
the proof of the negative-definiteness (and hence non—singularity)-of Leg(eo)

given by Amemiya (1973), and for the AR{1) Probit case the concavity proof by

Pratt (1981). The only modification needed is that, whereas in the i.i.d. cases
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the strong convergence of Lge(ﬁ) = EA;B(B) follows from the Kolmogorov SLLN, the
serial dependence in our case necessitates the SLLN given by Andrews (1986}.

One can similarly show that neglecting an error-components structure in the

simple panel binomial probit and Tobit cases with no lagged dependent variables,
still produces consistent estimates. Consider the stochastic process with the

one-factor error-components structure

2
(9) € =Ty F O™ N(O.VE} . Ve =0 INT + aﬂ (IN @i

i) -
See Hausman and Taylor (1581). irisa T x 1 vector of 1°'s.

In the terminology introduced above, this process is T-dependent where

T = max {Ti}' This is because all correlations vanish for any time period
i

separation greater than Ti { » , the number of observations for individual i,
and is therefore mixing. The asymptotic results follow when the total number of
individuals N — ® . Such an error process will be homoskedastic with variance
(cﬁ + aﬁ). Of course as in all examples given here the estimated covariance
matrices will be wrong in view of the neglected serial dependence.3
Hajivassiliou (1985b} presents an analysis of panel-data models with limited
dependent variables, which incorporate state dependence and cne—-factor

unobservable heterogeneity.

Section II

Serial Correlation and logistic Distributional Assumptions

The consistency proof given in Section I readily suggests difficulties

under logistic distributional assumptions on the error ¢ In exact analogy'to

e
(4) and (4’). when e, is 1.1.d. logistic, we have:
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(10) PEIA (1-L )1_yt for Logit ,
t t t
and
-4, 4,
(10°) £, = (1-Lt) - e, for L-tobit ,

where L = 1/(1 + eXP(-(Yt - x.B)/E_ ) and

e = —g—e exp(~(y, = X;B))/E)/(1 + exp(~(y, - x_'B)/E,)>. E_ is related to the

variance of £, by 03 = ff w2/3,

The analogous L-switching model can be obtained by letting the demand and
supply shocks be independently and identically distributed extreme-valued with
common variance. Then excess demand will be logistically distributed, since the
difference of two i.i.d. extreme value r.v.’'s will be logistic (see, for
example, McFadden (1573)). The Likelihood contribution for this model, which is .
straightforward to obtain, is given in a previous version of this paper.

We examine the effects of time dependence by considering a stationary

AR(1) process for €.’

Proposition 1: Consider the strictly stationary AR(1) process

€, = PE,_4* M, [p[¢1. IFf the tnnovation n, is independently identically

distributed as logi.si‘.i.z:.lll the marginals €, cannot be logistically distributed.

Conuversely, for the marginals to be logistically distributed, the tnnovation

cannot follow the logistic law.

Proof: The characteristic function of a logistically distributed r.v. W

with mean O and variance = 5512/3 can be shown to be:

(11) Ww(t) =T Ew t cosech(w Ew t).

where cosech(u) is the hyperbolic cosecant function ——32—:6— . Now suppose that
e -e

€ and €_; are logistic with mean 0 and scale parameters § and E—l respectively.



_14..

Suppose further that the innovation is also logistic, mean 0 and Eﬂ normalized

at 1(<===>a§/3). By stationarity

2 2 2 2 2
Ee = E£-1 and o, = an/(l-p ). so Ee = 1/(1-p7).

By the independence of n from £_4 that is implied from the assumption of i.i.d.

11's, the characteristic functions of the three processes must obey the relation:
(12) T EEt cosech(r‘fét) =7 EEp t cosech(r fe pt)Tw Eﬂ t cosech(w En t) .

This exploits the result that if X,Y independent with characteristic functions
¢1(t) and ¢2(t) respectively, then the characteristic function of kX + Y, k=real
constant, is equal to Wl(kt) . 2(t). (See Lukacs (1970))}. Using the

normalizations and results on the £’s above, we obtain:

1-p2 ).

(13) sinh(r p t /v’l-pz ) * sinh(w t} = p 7w t sinh(w ¢t /Y
This relation must hold for all real t and }p|<1, if e, e_; and 1 are to be
logistic with the specified parameters. But this requirement fails to hold in
general. For example, when t=1/2, (13) holds trivially for p = O (since sinh(0)

= 0). In general, however, (13) is a hyperbolic trigonometric equation that

defines a (possibly empty apart from O) finite set of solutions for p. |p|<1.

Propgsition 2: For e, to be distributed as logistic, with af = §§ w2/3 and be

strictly stationary with 1.1i.d. innovations, the p.d.f. of the innovation n,

must be characterized by the relation
(14) T Es t cosech({w EE t) =7 EE p t cosech(w Ee pt}) - @n(t)
and the inversion formula for absolutely integrable characteristic functions:

(15) £ (x) = L 2, exp(~itx) ¥ (1) dv .
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Proof: The result follows from (11) and the independence of the innovation n,
from € yr implied by the assumption of i.i.d. innovaticns.

These two propositions show that logistic distributional assumptions are in
general incompatible with ARMA-type serial correlation assumptions, in the
following sense: If p =0, T, and €, = 0+ n, can (trivially) both be logistic,

while if p # 0 (|p[<1), then n,o=E . -PE and the £'s cannot-all be

t

logistic. Moreover for Eev Eig

to be logistic, n, must have a p.d.f.
characterized by equations (14} and (15). Only then will the main consistency
requirement (Assumption 2 of Theorem 1), that f(y*lx. 90) be the logistic, hold.
As a result, the misspecified ML estimators for Logit and Ltobit that rely on
equations (10) and (10'), cannot be shown to be consistent using Theorems 1 and
2, since they do not use a valid conditional density for y‘lx in case the
innovations are logistic.

Moreover, Propositions 1 and 2 point out that OC type of estimators, as
those proposed by Avery et al. (1983) for the multiperiod Probit and Tobit
models, could also not be shown to be consistent in general using our methods,
if their logistic counterparts are attempted, since the regression function
E(ytlxt.ﬂ} is the logistic only under the specific conditions of equations (14)
and (15).5

It is interesting to examine whether any distribution exists for the
innovation n that would satisfy (14) and (15) and yield logistic e€'s. That such

a distribution exists for |p}| = -é?—is proved by the following proposition:
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Proposition 3:

¥hen |p| = —%—, the function
WEEt sinh(wfept)
(16) ¢n(t) = sinh(rfgf} : vfept

is a valid characteristic function, uniquely characterizing the hyperbolic
cosecant distribution (Feller (1972)), with probability density function

fly) = —%—-cosech(g).

Proof: Trivial algebra shows that

(p-1)}x ., _—2px
¥ (t) = 1 e pu—r (1 e-x ) . where x:wfet. When |p}| = -%— .
i P14 (1-7)

2 2 = &
vt} = = = sech (~—5-).

ex/2(1+e-x) (ex/2+e-x/2)

The p.d.f. is derived in Feller (1972) using inversion formula (15) above.

We therefore see that at least when p = £ —%— , there exists a distribution
for the i.i.d. innovation 7w in a stationary AR(1l) process, such that the
marginals are logistic. It is an open question whether such an existence result
generalizes to any value of p (|p[<1). Proposition (3) suggests that the

distribution for m, if such an m exists, will depend on the value of p in a more

fundamental way than just through scale or location.
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Section IIX
The Operational Characteristics of Logit
and Probit Estimators Under Serial Correlation

Consider the simple binary discrete-choice model with i.i.d. errors. Since
in this case the quasi-loglikelihood contribution is differentiable, the key
consistency requirement is equivalent to the gradient of the maximand having a
zero expectation under the population distribution, at the true parameter
vector. See. for example, Amemiya (1973). For the Probit case, the consistency

requirement is that

—P

S R -
(17) E%T_T)qb xJ =0 j=1..... k

where ¢ = ¢(x;ﬁ) and ¢ = ¢(x;B); the expectation is carried over the true
distribution of €. conditional on the X's. Denote the true conditional

cumulative density of £ evaluated at x;B by G; expression (17) then becomes

G-

(177) m * ¢ -xj = 0.

This argument shows clearly why the Logit estimator is so close (up to a
different scale standardization) under i1.1.d. conditions to the probit one: if
the errors are logistic, the LHS of expression (17) becomes approximately zero
for certain data-parameters configurations, since the logistic G is a good
approximation to the cumulative normal ¢, except at the tails of the
distribution.

By analogy. one would expect the closeness of probit and logit estimators
to carry over to the serially dependent case, since our method of proof shows
that it is the marginal distribution of the £'s that will determine the
consistency properties. The degree of temporal dependence will 'in general

determine the speed of convergence to the asymptotic limits. Therefore our
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theoretical results in Section II do not prejudge in any way the ability, under
serial correlation, of the logit estimator to still approximate closely the
probit results. Given that the quality of the approximation worsens at the
tails, an interesting possibility to examine is that the probability of getting
observations at the tails goes up as |p| rises towards unitys.

In order to investigate these issues, we perform a Monte-Carlo analysis of
the behaviour of the simple (binary)} probit and logit estimators when the errors
follow AR(1) stochastic processes with: (a) normally and (b) logistically
distributed innovations.7 The first method of analysis is a variant of the
technique used by Hausman and McFadden (1984) to examine the power
characteristics of Lagrange Multiplier, Wald, Likelihood Ratio and Hausman tests
in the Multinomial Logit and Nested Multinomial Logit models of discrete choice.

In these Monte Carlo experiments, we employ the single-regressor model:

* 2
(18) ¥, = xtB + €, » €. =P E. 4 + 1, En. =0 ,En_ =0

observed Ve 1 if x;B +e, >0 t=1,...,T

~1 otherwise

The number of observations is T. Suppose X, is constructed to take only
two values: 2 or -2. Then the observation vector
(vpox) €A = {(1.2),(1,-2).(-1.2).(-1.2)} = { a; . a, , a; . a, }

Denote by n, the number of observations that are equal to a; (i=1,...4).

Then the Probit estimator of B is given by
(19) by = argrex {(ayvm,) log $(26) + (ny¥ny) log (-20)} .
and the Logit estimator by

1 1
(197) by = argmax {(n,+n,} log — =z + (ny+n,) log —%z} .
L 5 1774 1re~2P p 1+a2P
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Using the first order conditions, we obtain the analytic expression:

(20) b, = ¢ l(r) .

L
P~ 2
This is because J lies in the interior of a2 compact parameter set, and hence
$(28) and ¥#(-23) are bounded away from O. The expression for the variance VP

can be calculated using the second derivative at the optimum (r = ¢(2bp).

Correspondingly for the Logit case we obtain

. 1
(20") b =5 log 7= .

The expression for the asymptotic variance of the logit estimator VL can
similarly be calculated using the 2nd derivatives evaluated at the optimum.
Note that these formulae are the analvtic (up to machine accuracy for

evaluating log(.). ¢(.) and #(.)) expressions for the MLE estimates b, and b

P L

and of their variances VP and VL. Their random properties are induced by their
dependence on the ratio r(=(n1+n4)/T). Under i.i.d. conditions, as in Hausman
and McFadden (1984), (nl.nz.na.n4) follows a quadri-nomial distribution, which

enables us to obtain the exact distribution (up to machine accuracy) of r and

therefore of bp. bL. Vé and vy

In our case, however, the fact that £ follows a serially correlated AR(1)
process means that the distribution of (nl.n2,n3.n4) conditional on the data
vectors {yt.xt}. does not have a tractable analytic characterization. We
therefore modify the Hausman and McFadden {1984} procedure and generate a large
number N (=1000) of runs of sequences {yt.xt} of length T, thus obtaining an
empirical distribution for r. The x's are generated as 1.i.d. drawings from a
population X = 4.B - 2 , where B is a Bernoulli random variable with parameter
0.5. Once a distribution for r is obtained, we proceed to calculate the induced

distributions of bP and bL‘ Finally the calculated variances VP'and VL are

compared to the variances of the empirical distributions of the b's. The design
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of these experiments is described in Table 1la.
A second set of experiments was performed to examine the behaviour of the

estimators with multiple exogenous regressors. The design incorporated the

model:

»
(21)Yt=a+ﬁx1t+7x2t+st.et=pet_1+nt.En =0,Ef =¢

The regressors were generated as

(22)X1t=23t-1+zt.x2t=2Bt-1"2Zt.

where Bt was a Bernoulli random variable with parameter 0.4 and Zt exponentially
distributed with mean 1. These choices were made in order to introduce some
skewness and non-smoothness in the regressors. A correlation between Xl and X2
of ~0.33 was thus implied. Table 1b summarizes the design of the multiple
regressor experiments. Analytic expressians for the estimators are no longer
possible; hence iterative optimization algorithms are now employed. Note that
in the second set of experiments the initial conditions €, were assumed randomly
drawn and stationary. For the normality case, we obtain directly that

€y ™ L(o, 03) . The results of Section II, however, explicitly argue against
assuming that €, ™~ L(O,ag) » when the innovations are logistic. In these cases,
therefore, since the distribution of £ is unknown, we started the process at

T = =100, thus obtaining an approximately stationary £,

Results

Tables 2 through 4 present the results of the one regressor Monte Carlo
experiments, and Tables 5 through 7 the two-regressor results. In the
one-regressor experiments the number of replications was N = 1000 whereas the
considerable computational burden with multiple regressors restricted N to 100

replications for these experiments. The tabulated numbers are the averages over

each set of replications.
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The first row in each table contains the i.i.d. case with p=0. The

variance of the marginal error ¢ was standardized at 4, and 6 different values

for p were considered (therefore an =2V l—p2 }. For each set-up, the tables
give the (identified) values of the true parameters. The Logit point- and
variance-estimates were appropriately standardized for the w/v 3 factor (see
Amemiya (1981)) in order to make them as closely comparable as possible.

The estimates of the estimable quantities a/as. ﬁ/at, and 7/a£ are denoted
by af, bP’ cp for probit, and a . bL' . for logit. The asymptotic variances
appear in parentheses, while the calculated variances from the empirical
distributions of the parameter estimates are given in square brackets. In view
of the high number of replications, the empirical variances should be expected
to closely estimate the theoretical variances of the estimators.

In Part A of each table the results with normally distributed (0.0ﬁ)
innovations are presented, while in Part B we give the results of the exactly
analogous experiments with a logistic (O.Gﬁ) innovation 11. Three sample sizes
were tried in order to investigate the asymptotic behaviour of the estimators:
T=50 in Tables 2 and 5, T=100 in 3 and 6, and T=1000 in Tables 4 and 7.

The first set of conclusions that can be drawn is that as p rises in
absolute value towards 1, the bias rises quickly for both the probit and logit
estimators. The theoretical discussion above which suggested that logit should
still be a close approximation to the probit estimator when the errors truly
follow normal (serially correlated or not) processes is validated — the logit
point estimates are within 10-15X% of the probit ones irrespective of the value
of p (generally underestimating the true values). What is very impressive is
the magnitude of the bias that both estimators exhibit as Ipl rises. With
p = .9 we get a 10-15% bias, while for p = -.9 the bias rises to 40%; for

[pl = .99 the estimates are approximately 2-5 times their theoretical values.



This finding can readily be explained by our method of proving consistency.
Recall that a basic requirement (Assumption 1) was that the stochastic processes
be "mixing”. With |p|— 1. AR(1) approaches the random walk process which has
exploding autocovariances and therefore is not mixing - hence the asymptotic
independence requirements become harder to hold as |p|-—¢ 1. This is borne out
very well by the behaviour of the bias as T rises. With T=100 in Tables 4 and
7, the biases start falling; Even with [p|=.99 the estimates are only 1-2 times
the size of the true coeffici;nts, while with T=1000 the point estimates become
quite satisfactory. With i.i.d. errors, probit is off by less than 1% and logit
by 10%. More importantly, with |p|=.9 the biases are now only 10-20%, compared
to several orders of magnitude with smaller T's. We thus observe that the rate
of convergence rests crucially on p; the closer |p]| is to 1. the higher the
sample sizes needed to achieve acceptably low biases.

It is important to note that the situation is not as satisfactory with
respect to the standard errors obtained under the false assumption of 1i.i.d.
errors. The consistency of the variance estimator for Probit and (approximate
consistency) of the variance estimator for Logit for p = 0 is validated by
observing that the variance estimates differ from the calculated variances of
the respective empirical distributions by less than 10% when T=1000 (and by 20%
for T=50). However as explained above, once p # O these standard errors are
inconsistent, the size of the bias rising fast as the degree of serial
correlation (|p|) rises. Moreover the biases remain unacceptably vervy high even
with T=1000. For example, with T=50 the estimated variance of probit
underestimates the estimated theoretical variance by 40% when p = .9, and by
15(!) times for p = -.9. Even with T as large as 1000, the 40% bias remains for
p = .9, vwhile in the p = -.9 case we still cbserve an astonishingly high bias of

9 times the empirical estimates for the variances.8



The main aim of the experiments with AR{1) processes with logistic
innovations was to examine the importance of the theoretical result (Proposition
1 in Section II) that when the innovation m is logistic, the marginals ¢ are
neither logistic nor normal. Indeed for particular values of the
autocorrelation coefficient p, the marginal ¢ may be distributed more closely to
a normal than to a logistic random variable, "close” defined by reference to
higher order moments.9 As in the case with normal innovations, we see that
again the biases become Gery large as lp]——» 1, and improve somewhat with larger
T's. However, given that the marginals are neither exactly normally nor
logistically distributed, neither estimator is consistent. The calculated
biases appear almost uniformly worse case by case for both estimators as
compared to the first part of each table. Moreover, we now see that generally
the logistic seems to perform better as an approximation to the distribution of
£, but not uniformly so. (The logit is consistent, of course, for p = 0. See
especially Tables 5a and 8a where bias is only 2-3%). For example, with p = .5
the probit performs approximately as well as the logit.

To summarize: Our first finding is that the degree of serial correlation
affects crucially the speed of convergence for the consistency properties of the
estimators. The biases remain unacceptably high for moderate sample sizes, when
p is close to 1 in absolute value. Moreover, the precision of the estimators is
crucially dependent on lpl. Secondly, the estimates for the standard errors
that falsely assume i.i.d. errors are very badly inconsistent, even for moderate
values of p; for reliable inferences, therefore, it becomes imperative that one
calculates consistent estimators for the standard errors, if usual probit or
logit estimators are to be used in the presence of serial correlation. Finally,
if logistic innovations are generating the AR stochastic processes, neither
probit nor logit is fully appropriate. In general, the logistic distribution

performs as a better approximation than the normal, for such a process.
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Section IV

Conclusions

This paper analyzed the problem of temporal dependence in limited dependent
variables models. A general method to prove consistency under "mixing"
dependence conditions was offered and illustrated for the Probit and Tobit
models, the stochastic terms assumed AR{1l) processes with normal innovations.
Time dependence arising because of an errors-components structure in the
unobservables was shown to satisfy the "mixing"” conditions required by our
Theorems of strong consistency. It was further explained how the Theorems could
be applied to establish the consistency of the simple disequilibrium switching
regressions estimator under such serial dependence conditions.

We zlso pointed out that special problems arise in proving consistency and
asymptotic normality of limited dependent variables models estimators when the
errors do not follow normal serially correlated processes. The case of logistic
distributional assumptions was used to illustrate the nature of these problems.
The point was made that the additivity of ARMA processes does not blend well
with logistic distributional assumptions.

A set of Monte Carlo experiments confirmed the consistency results under
normal AR(1) conditions, while pointing out that for high levels of serial

correlation larger sample sizes are needed ceteris paribus if satisfactorily low

levels of bias are to be achieved for the point estimates. Moreover, the logit
estimator was found to be a close approximation to the probit even with AR(1)

errors. The standard errors, however, of both probit and logit estimators that
neglect the serial dependence in the errors were found badly inconsistent, thus

arguing that it is imperative to use autocorrelation-consistent standard errors

in these cases.



*MJIOM SININJ 01 SIYI SAEBI]
af -aaded styy uyr 03 psousisisy pue pajussald sjTnsal [e013LIosAYl 2yl Buisn
SJOJBUIISS POOYUI[SYI| wnuixXew isenb [euoIl1pucd jo sarjiadoad ayy jo sisdreue
ue Aq wayqodd oy3 yoeoadde 01 [njyatniy A[[eriuaiod swass 3] - adouspusdsp

swil ay3 23.rl0dIodUl Byl SIOIBWIISS POOYTTaNI] WNMIXER IUSIDIFF3 AI[nI 3yl

jo £31711qe3Idellul 9yl pue ‘puey Su0 uo adudpusdop [eBIJIIS 109730U JEBY] SJIOIBUWIISS
JUaIDT Ul (IU9ISTISUOD) JO AII[IQElIDel) 9yl USIMISq ostwoidwos L103delsIles

B JI8JJO PINOM 1EBY} SJIOIBWIISS JOF UYDIEeas dYyl si wsrqotd uado uy



-26_

Footnotes

1Methods of estimating consistently the standard errors for the
mis—-specified MLE under time—dependence conditions are given in Robinson (1882).
The general problem of consistent estimation of covariance matrices under serial
correlation is addressed in Newey and West (1986).

2Robinson (1982) and Lee (1984a) propose the use of appropriately defined
residuals for estimation of and inference on p.

3Recall the comments on Theorem 1 which pointed out that Assumption (2)
required only that we waork with the correct conditionzl density, NOT that we use
the right likelihood for sthe sample (ZI"“'ZT)' Hence the results in White,

etc.. that yield Theorem 1 and allowed us in this Section to study the behaviour
of misspecified MIE, also suggest here a feasible alternative to full MLE.
Specifically, one could consider estimators which evaluate the correct
expressions for the densities of a characteristic (under stationarity) peried,
conditioned on chosen subset of the available information; the resulting
Conditional Quasi Maximum Likelihood (CQMLE)} estimators can then be shown to be
consistent and asymptotically normally distributed. The properties of such
estimators are examined in Hajivassiliou (1985a). The analogies to Ruud (1981)
and Avery et al. {1983) OC-type of estimators should be clear. The key
difference is that CQMLE estimators would work with the correct density
conditioned on a chosen subset of the past information, while the OC-type

estimators employ the first and second moments of the density, conditional on
the chosen information subset.

4Strictly stationary processes are characterized by invarianc with t joint
distributions, while in the case of weak staticnarity only the autocovariance
functions are invariant. The two coincide for the case of Gaussianity. since
then independence implies and is implied by uncorrelatedness. In the absence of
Gaussianity we impose a stricter requirement on Mo namely being i.i.d. rather

than just uncorrelated i.d. See Granger and Newbeld (1977).

5Note that our results have only shown that Theorems 1 and 2 of Section I do
not hold for additive, finite ARMA-type processes with logistic innovations,
because the marginal errors are not logistically distributed. It should be
pointed out that there exist time-dependent processes that have logistic
marginals, along the lines of Johnson and Kotz {1972). Such processes, however,
are not analogous to ARMA processes, which are widely used in time-series
econometric applications.

GA second issue, that we do not address here, is the efficiency
characteristics of such estimators that neglect the temporal dependence of the
errors. From the linear model we know that the inefficiency resulting from
falsely assuming i.i.d. errors under serial correlation, rises quickly with the

degree of the serial dependence., possibly reaching very high levels (see
Malinvaud (198Q)).

7Note that the problems of ML estimation in limited dependent models with

serial dependence, are not specific to AR(+) processes, but arise in the same



o8uel §°0 01 S'0 O3

ur st _u_ uays esed OT1SIBOT 2yl ul ¥ JO sonIBA () O3 JosOTD ATIOUIISIP SY3 S10)

S09T°1 69%0°0 PE10°0 £¥S0°0 6'-=4d
SOSI™1 ¢089°0 ¥E10°0 8+00°0 g-=4d
S091°1 102070 ¥e10°0 F1S0°0 6 =4d
SO9T°1 . 8569°0 PEIOTO 9LI0"0 g =d
G091 1 S09o1°1 ¥EI0°0 PET070 0 =4d
u 103 Y5 i3 Joj £ u E{:} 1 by " 1o} Y5
DI15130] TEWION

:SU013E011d3L 0001 1940 paBeiose *s, %5 Sutmorre; sy

pa1eInDIeo oH .ouwo SIS03JIO] JO IUIIDIIIF0D ® SBY Ss9d01d Jewiou © 'Yl 10N
‘suoryeAOUUT O13SI80] (q) pue Tewrou (e} Yila ssevoad (1)¥yy JO SUOTIBZITEAI
000T JO SaTJ9s pajelousd as  ALyreorsidwe A1rrrqissod siya 93el1isssur ohm

‘aseD
souspuadop Teiodwel Ul SI01J8 pJIEpUEIS Yl IO I0jBWIlIES (cg51) 1soM pue Aamay
a3yl jo esouwewdojsad 9yy 23eSrissAul 03 aq PInoa LIITiqrssod Burisardut n<m

+POOYITSMIT 9Yl 03Ul UFEYD UOIIBJIB23UT InOoUn uUe @ONPOJIIUT [F3IS
SIspow Sa]qEelJeA juspuadep polIWI] JO SIIJrJedUIT-UOU By3 ° A + -3 d = 3

ssaooad (1)YH @Y1 Burumsse usas ‘ayduexe J0j ‘suorien1jroads (.)VH ul Les

|N.N|



-28-
REFERENCES

Amemiya, T. (1973): "Regression Analysis when the Dependent Variable is
Truncated Normal,” Egonometrica (November).

Amemiya, T. (1981): ™Qualitative Response Models: A Survey,” Journal of
Economic Literature, 19.

Andersen, E.B. (1970): “Asymptotic Properties of Conditional Maximum
Likelihood Estimators.” Journal of the. Roval Statistical Society, B 32.

Andrews, D.W.K. (1986): '"Consistency in Nonlinear Econometric Models: A
Generic Uniform Law of Large Numbers,” Cowles Foundation Discussion Paper,
Yale University.

Avery, R.B., Hansen, L.P! and V.J. Hotz (1983): "Multiperiod Probit Models and
Orthogonality Condition Estimation,” International Economic Review. V. 24,
No. 1 (February).

Billingsley, P (1979): Probability and Measure. New York: John Wiley and
Sons.

Butler, J.S. and R. Moffit (1982): "A Computatiomally Efficient Quadrature
Procedure for the One-Factor Multinomial Probit Model,” Eccnometrica 50.

Chamberlain, G. {1980): "Analysis of Covariance with Qualitative Data,”
Review of Economic Studies XLVII.

Fair, R.C. and D.M. Jaffee (1972): "Methods of Estimation for Markets in
Disequilibrium.” Econometrica, 40 (May).

Feller, W. (1972): An Introduction to Probability Theory, Vol. 2, Second
Edition. New York: Wiley.

Finney, D. (1964): Statistical Methods in Bioassay. London: Griffin.

Granger, C.W.J. and P. Newbold (1977): Forecasting Economic Time Series, New
York, Academic Press.

Hajivassiliou, V.A. {1984): ™A Computationally Efficient Quadrature Procedure
for the Cne Factor Multinomial Probit Model: A Comment," MIT mimeo.

Hajivassiliou, V.A. (1985a): "The Estimation of Certain Non-Linear Models with

Autocorrelated Errors by Conditional Quasi Maximum Likelihood Methods,” MIT
mimeo.

Hajivassiliou, V.A. (1985b): "A Theoretical and Monte-Carlo Comparison of
Alternative Estimators of Panel-Data Non-Linear Models with Unobservable
Heterogeneity.” Yale University mimeo.

Hausman, J.A. (1978): “Specification Tests in Econometrics,” Econometrica, 46
(November) g

Hausman, J.A. and D.L. McFadden (1984): "Specification Tests for the
Multinomial Logit Model," Econometrica, 52 (September).



- 29 -

Hausman, J.A. and W. Taylor (1981): "Panel Data and Unobservable Individual
Effects,” Econometrica, 49.

Heckman, J.J. (1981a): "Dynamic Discrete Models,” in Structural Analysis of

Discrete Data with Fconometric Applications by Manski, C. and D. McFadden
(eds.). Cambridge: MIT Press.

Heckman, J.J. (1981b): "The incidental parameters problem and the problem
of initial conditions in estimating a discrete—time, discrete~data
stochastic process,” in Structural Analysis of Discrete Data with
Econometric Applications by Manski, C. and D. McFadden (eds.). Cambridge:
MIT Press.

Hoadly, B. (1971): "Asymptotic Properties of Maximum Likelihood Estimators for
the Independent Non-identically Distributed Case,” Annals of Mathematical
Statistics, 42.

Ibragimov, I.A. and Y.V. Linnik (1971): Independent and Stationary Sequences
of Random Variables. The Netherlands: Wolters—Noordhoff.

Jennrich, R.I. (1969): "Asymptotic Properties of Non-Linear Least-Squares
Estimators,” Annals of Mathematical Statistics, 40.

Johnson, N. and S. Kotz (1972): Distributions in Statistics: Continuous
Multivariate Distributions. New York: John Wiley and Soms.

Lee, L.~F. (1984): "The Likelihood Function and a Test for Serial Correlations
in a Disequilibrium Market Model,” Economics Letters, V.14, Nos. 2-3.

Levine, D. (1983)}: "A Remark on Serial Correlation in Maximum Likelihood,"
Journal of Econometrics, 23.

Lukacs, E. {1970): Characteristic Functions. New York: Hafner.

Malinvaud, E. (1980): Statistical Methods in Econometrics. Amsterdam:
North-Holland.

McFadden, D. (1973): "Conditional Logit Analysis of Qualitative Choice
Behaviour,” in Frontiers in Econometrics, P. Zarembka (ed.)., New York,
Academic Press.

Newey, W.K. and J.L. Powell {1985): “Asymmetric Least Squares Estimation and
Testing,” Princeton University mimeo.

Newey, W.K. and K. West (1986): "A Simple, Positive Definite,
Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,”
Discussion Paper #92, Woodrow Wilson School. Princeton University.

Neyman, J. and E.L. Scott {1948): "Consistent Estimates Using Partially
Consistent Cbservations,” Econometrica. 16.

Olsen, R.J. (1978): "Note on the Uniqueness of the Maximum Likelihood
Estimator for the Tobit Model,” Econgmetrica, 46 (September).



“(Axenuwer) 1 "oy ‘2S 104 'EOiiiewoUsdsT ,, *SUOTIRAIASQ
Juapuada(] Y3 T4 UOISSRIBoY Jesuruoy, :($86T1) ZIIMOwWwoF "] Pue " ‘OITYM

*O891( weg 31 BIWIOIITED Jo Al1sdoartun ‘ydesBououw paysyyqndun
. SIsATeuy uorledyjidoedg pue ‘sousdsjul ‘uorlewidsy,, :(S851) "H ‘9ITum

*8591g
:(¥861) "H "°@3Tum

DIWapROY (HIOJ M) ‘SUBIOLJ3SWOUDDY J0j Ad09] O:1303ALASY
‘G ‘EOTJdIoWouony ,, '£11011SEPINSOLAaY I0F 1831 393JI(]

® pU®R XJJIT} SOUBIIRAC) 1LIISTSUC)-AIrorisepoysoraiaf vy, :(0851) "H ‘=31us

"L'I'H ‘uorieilassig ‘g yd paysyrqndun
. 'ST9PO} a1qerles juspuada pe3TwlT ul uorledrjyroadssiy,. :(1851) °d ‘pnny

-(Arenuer) ‘®OTJIjowoucoy ,, ‘Se[qeldes juspuads palIWlT]
Butureluo) STIpPoOK JO saTazadoad orloadwdsy 9y ug,, :(Z8651) d ‘uosulqoy

) 'S133397] SO1WDUODY ,,'STSPON
unyxqiiinbesyg o1durg ur sicixy peierazdoooany, :{I1861) "T'Y ‘IpuEny

*g) ‘UOTIBIO0SSY [eol3sisely uevilady
33 JO [euInof ,'pooyrlsl] Bo7 ayi jo Aitaeouo), :{I861) "K°f ‘13®Y

IOm.HI



Table 1a
Summary of the Design of the Single-Regressor AR{1) FExperiments

Part A: Normal Innovations

» . » ~
Y, = xtﬁ te LYy, = 51gn(yt). Xt =4 Bt 2, Bt Bernoulli(0.5)
E.=PEL_L*T . €, = 0, n, ~ N(O.aﬁ)
p = 0. T = 1000 N = 1000
= 0.5 = 100
= 0.9 = 50
= 0.99
=0.5
=0.9
=0.99
2 =at 8=0.5

Part B: Logistic Innovations

Difference from Part A: N ™~ L(O.aﬁ)

*
Chosen to match the variance of X.

Table 1b
Summary of the Design of the Multiple-Regressor AR(1) Experiments

Part A: Normal Innovations
» -
Yep=a+rx Brxr+e .y =siem(y)
xlt =2 Bt -1+ Zt . th =2 Bt -1 -2 Zt N
Bt ~ Bernoulli(0.4) , Zt ~ Exponential({1.0)

E =P EL + M. g ™ N(O.U?) | Ml N(O.aﬁ)
p = 0. T = 1000 N = 1000
=0.5 = 100
= 0.9 = B0
=0.5
==0.9
02 =4 a=05.,.p8=06, v=-017

Part B: Logistic Innovations
Differences from Part A:1l. eo - see text

- 2
2. L L{O.an)



Table 2
Single Regressor Model
1000 Replications
Sample Size = 50, a, = 2

Estimand: B/aE =0.25

Asymptotic Variances appear in parentheses., Empirical Variances in square brackets

Probit Estimators Logit Estimators
p an bP bL
Part A': Normal Innovations
0. 2. 0.254580% 0.2279153
(0.0078335) [0.0095871] (0.0074114) [0.0080935])
0.5 1.732 0.2586921 0.2316315
(0.0073960) [0.0098133] (0.0074647) [0.0083423]
0.9 0.872 0.2801066 0.2523600
(0.0067280) [0.0175155] (0.0079193) {0.0151086]
0.99 0.282 0.5222981 0.5049625
(0.0042975) [0.0888461] (0.0222583) [0.0994469]
-0.5 1.732 0.2546230 0.2279220
(0.0074278) [0.0101054] {0.0074248) [0.0085352]
0.9 D.872 0.2762809 0.2450192
(0.0065166) [0.0184784] (0.0079391) [0.0161192]
-0.99 0.282 0.5188756 0.5015879
(0.0044086} [0.0895826] (0.0221658) [0.1001281]

Part B': Logistic Innovations

0. 2. 0.2867327 0.2573598
(0.0069834) [0.0093343] (0.0077530) [0.0080304]
0.5 1.732 0.2758900 0.2474689
(0.0069461) [0.0102229] (0.0076515) [0.0087240]
0.9 0.872 0.2843669 0.2563537
(0.0065253) [0.0174256] (0.0079880) [0.0151910]
0.99 0.282 0.5135963 0.4961612
(0.0060355) [0.0895202] (0.0218496) [0.0998926]
-0.5 1.732 0.2750415 0.2467136
{0.0074178) [0.0102365] (0.0076481) [0.0087753]
-0.9 0.872 0.2774820 0.2502179 -
(0.0062960) [0.0190782] (0.0079829) [0.0166531]
-0.99 0.282 0.5013302 0.4827290

{0.0043638) [0.0865095] {0.0207470) [0.0957643]



Table 3
Single Regressor Model
1000 Replications
Sample Size = 100, o, = 2

Estimand: B/aa = .25

Asymptotic Variances appear in parentheses, Empirical Variances in square brackets

Probit Estimators

Logit Estimators

p ar; bP bL

Part A': Normal Innovations

0. 2. 0.2505130 0.2934666
(0.0036511) [0.0045219] (0.0036188) [0.0037698]

0.5 1.732 0.2526407 0.2954230
(0.0036080) [0.0046652] (0.0036304) [0.0038902]

0.9 0.872 0.2625294 0.2350084
(0.0034141) [0.0088231] (0.0037346) [0.0074651]

0.99 0.282 0.3968001 0.3718513
(0.0028994) [0.0591346] (0.0069293) [0.0618312]

0.5 1.732 0.2521087 0.2249579
(0.0035017) [0.0048481] (0.0036300) [0.0040402]

0.9 0.872 0.2620048 0.2344880
(0.0033492) [0.0079652] (0.0037199) [0.0067153]

-0.99 0.282 0.4039304 0.3781811

(0.0026555) [0.0576181]

Part B': Logistic Innovations

{0.0068326) [0.0594861]

0. 2. 0.2798108 0.2502886
(0.0036670) [0.0044693] (0.0037661) [0.0037874]
0.5 1.732 0.2608661 0.2412417
(0.0037139) [0.0050681] (0.0037219) [0.0042843]
0.9 0.872 0.2676080 0.2397404
(0.0034606) [0.0092549] (0.0037697) [0.0078940]
0.99 0.282 0.3934667 0.3669687
(0.0031333) [0.0524056] (0.0064462) [0.0538629]
-0.5 1.732 0.2681992 0.2396793 .
(0.0035681) [0.0048206] (0.0037099) [0.0040667]
-0.9 0.872 0.2618553 0.2343873
{0.0032640) [0.0087898] (0.0037305) [0.0074295]
-0.99 0.282 0.3757481 0.3495618

(0.0027114) [0.0518419]

(0.0061081) [0.0523566]



Table 4
Single Regressor Model
1000 Replications
Sample Size = 1000, g, = 2

Estimand: f)'/aE = .25

Asymptotic Variances appear in parentheses, Empirical Variances in square brackets

Probit Estimators

(0.0003357) [0.0052346]

Part B': Logistic Innovations

Logit Estimators

P Un bP bL

Part A': Normal Innovations

0. 2. 0.2494562 0.2220464
(0.0003573) [0.0004429] (0.0003565) [0.0003668]

0.5 1.732 Q.2495522 0.2221015
(0.0003600) [0.0004796] (0.0003566) [0.0003969]

0.9 0.872 0.2512702 0.2237135
(0.0003560) [0.0008754] (0.0003578) [0.0007264]

0.99 0.282 0.2607915 0.2326899
{0.0003460) [0.0055545] {0.0003682) [0.0046703]

-0.5 1.732 0.2491628 0.2217407
(0.0003594) [0.0004242] (0.0003563) [0.0003511]

-0.9 0.872 0.2498704 0.2224321
(0.0003596) [0.0008232] (0.0003571) [0.0006815]

-0.99 0.282 0.2639751 0.2358644

(0.0003694) [0.0044048]

0. 2. 0.2807466 0.2506034
(0.0003527) [0.0004433] (0.0003718) [0.0003734]
0.5 1.732 0.2681206 0.2390359
(0.0003548) [0.0004453] (0.0003653) [0.0003726]
0.9 0.872 0.2556944 0.2277398
(0.0003465) [0.0008409] (0.0003598) [0.0006990]
0.99 0.282 0.2634207 0.2353769
(0.0003565) [0.0053963] (0.0003693) [0.0045436]
-0.5 1.732 0.2681923 0.2391042
(0.0003557) [0.0004650] (0.0003654) [0.0003893]
-0.9 0.872 0.2550962 0.2271937
(0.0003589) [0.0008320] (0.0003595) [0.0006918]
-0.99 0.282 0.2671260 0.2387994

(0.0003404) [0.0055972]

(0.0003715) [0.0047244]



Table 5
Multiple Regressor Model
100 Replications
Sample Size = 50, o, = 2.

Estimands: a/aE = 0.250 B/aE = 0.350 T/UE = =0.300

Asymptotic Variances appear in parentheses, Empirical Variances in square brackets

Prohit Estimators Logit Estimators
P9y 2p bp °p 2 by °r

Part A’': Normal Innovations

0.0 2.000 0.2579541 0.4787046 -0.3607412 0.3171698 0.5133784 -0.3370047
(0.3752437) (0.1636032) (0.0751309) (0.7249450) (0.3089917) (0.1181540)
[0.3536485] [0.2328129] [0.0880862] [0.4550607] [0.3094589] [0.1314675]

0.5 1.732 0.4027455 0.5874178 -0.3528150 0.5142062 0.6469927 -0.3070444
(0.8110830) (0.3114668) (0.1260550) (1.6281784) (0.6616594) (0.2089812)
[0.6979101] [0.4599179] [0.1518096] [0.9575587] [0.6467614] [0.2428799]

0.9 0.872 0.1882999 0.3660746 -0.2180513 0.4009333  0.3979176 -0.1934803
(0.8037646) (0.3266774) (0O.1265089) (2.6834013) (0.5175002) (0.1397020)
[0.4460172] [0.2754186] [0.0731708] [0.8885186] [0.4044783] [0.0994552]

-0.5 1.732 0.1989358 0.4707831 -0.4008661 0.1735404 0.4829105 -0.3956323
(0.1550297) (0.1516370) (0.0691430) (0.2181318) (0.1890108) (0.0699833)
[0.1920410] [0.1376996] [0.0604673] [0.2056911] [0.1569938] [0.0709227]

-0.9 0.872 0.2752761 0.6199964 -0.4845482 0.3426579 0.6495772 -0.4441976
(0.4992085) (0.2671181) (0.3552663) (1.0260156) (0.4477548) (0.4058198)
[0.5020042] [0.4022010] [0.2390729] [0.6720861] [0.5033030] [0.3128376]

Part B': Logistic Innovations

0.0 2.000 0.2361215 0.5127859 -0.3915020 0.2155671 0.5071024 -0.3749333
(0.3044447) (0.2122491) (0.1367528) (0.3680969) (0.2269430) (0.1365875)
[0.2535107] [0.1889330] [0.1250501] [0.2667837] [0.2032874] [0.1332895]

0.5 1.732 0.2987701 0.4751115 -0.4190854 0.3187744 0.4875509 -0.4034841
(0.4632063) {0.1681924) (0.1460335) (0.8363758) (0.3002539) (0.1841566)
[0.3963428] [0.2149022] [0.2001480] [0.4961355] [0.2957126] [0.1851565]

0.9 0.872 0.2193577 0.3926271 -0.3080081 0.3617789 0.4337192 -0.2901406
(1.3177179) (0.5272871) (0.3585558) (2.8338627) (0.6523845) (0.3830668)
[0.6521304] [0.4437620] [0.2819469] [0.9357767] [0.5400064] [0.3337780]

-0.5 1.732 0.2644876 0.4453503 -0.3350017 0.2927487 0.4855190 -0.3101692
(0.2157883) (0.1002935) (0.0622836) (0.5225454) (0.2190051) (0.0968030)
[0.2441394] [0.1419021] [0.0679874] [0.3667000] [0.2365054] [0.1090284]

-0.9 0.872 0.2101201 0.7370919 -0.5194598 0.2840386 0.7837387 -0.4702389
(0.4318846) {0.5401904) (0.2203287) (0.9803984) (0.8000970) (0.2593458)
[0.4756398] [0.5903681] [0.2620252] [0.6551404] [0.7057154] [0.2885114]
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