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G. ABSTRACT

In the multiple regression model Ye = xéﬁ +u, where (u_} 1is sta-
tionatry and L is an integrated m-vector process it is shown that the
asymptotic distributions of the ordinary least squares (OLS)} and generalized
least squares (GLS) estimators of B are identical. This generalizes a
recent result obtained by Krimer (1986) for simple two variate regression.
Our approach makes use of a multivariate invariance principle and yields
explicit representations of the asymptotic distributions in terms of funec-
tionals of vector Brownian motion. Some useful asymptotic results for

hypothesis tests In the model are also provided.
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1. INTRODUCTION

Conditions under which least squares regression is efficient have been
of interest to statisticians for many years. Necessary and sufficient con-
ditions for the equivalence of OLS and GLS in finite samples were given by
Kruskal (1968), Zyskind (1967) and Rao (1967). These conditions are of
great theoretical importance, but are less important in practice since they
are so seldom satisfied, particularly in time series regressions. In infin-
ite samples, on the other hand, the situation is rather different. Here the
central result is due to Grenander and Rosenblatt (1%57). These authors
showed that for a regression with fixed regressors and stationary errors
least squares is asymptotically efficient if and only if the spectrum of the
error process is constant on the elements of the regression spectrum. This
condition is known to be satisfied in many cases of importance in time
series, including regressions on polynomial and trigonometric functions of
time. Thus, if a time series is stationary about a deterministic trend an
investigator may detrend the series by a least squares regression on a poly-
nomial of time and then analyze the resulting series without any loss of
(asymptotic) efficiency.

Frequently, we are interested in regressions that involve stochastic
regressors-of independent interest instead of deterministic functions. In
economics for example, long run regularities between various macreeconomic
variables often suggest formulations of regressions in terms of the levels
or log levels of the relevant time series. Since such time series are typ-
ically nonstationary and nonergedic the results of Grenander and Rosenblatt
(1957) on the efficiency of least squares do not strictly apply. However,
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if the errors in a regression relating such time series are stationary and
if the regressors are integrated processes of the ARIMA type then we might
expect least squares still to be asymptotically efficient. Intuitively,
this is because the regression spectrum has a singularity at the origin in
this case, so that power is effectively concentrated at a single point--the
zero frequency. As we shall show in the present paper, this intuition is
correct and the Grenander-Rosenblatt result does indeed extend to this type
of regression.

A simple example of this phenomenon was recently discovered by Krimer
(1986). Xrdmer studied a two variable regression model driven by a station-
ary AR(m) error process and with a repressor generated by an ARIMA(p,l,q)
model, He demonstrated the asymptotic equivalence of OLS and GLS in this
regression. But he did not find the limiting distribution of theselesti;
mators and his method of derivation does not easily generalize to multiple
regressions.

In the present paper we shall deal directly with the multiple regres-
sion case. OQOur method of proof relies on the theory of weak convergence and
vields generalizations of Kramer's results in a very straightforward manner.

Proofs are given in the Appendix to the paper.

2. EFFICIENCY QF OLS

We consider the regression model

(1) Y =B +u ; t=~1,2

where [ut}fm follows a zero mean stationary AR(p) process and {xt}g is

an m-dimensional multiple time series that is generated recursively by



(2) X =% +v,_; t=1, 2,

We assume that the innovation sequences {ut}fw and {vt}; in (1) and (2)
are statistically independent, so that the regressors in (1) are strictly
exogenous. Our results do not depend on the initialization of (2). We
allow X, to be any random variable (with a fixed probability distribution)
including, of course, a constant.

We define w = (u_, v!) and we require only that the partial sum pro-

t t t

cess St = lek satisfies a multivariate invariance principle. More

specifically, if

Xp(0) = TP, L Geby/Ts <

then

(33 XT(r) = B(r) as T t = |,

Here, T denotes the sample size, the symbol " = " signifies weak converg-
ence of the associated probability measures and B(r) 1is n-vector Brownian

motion (n = m+l) with nonsingular covariance matrix

Z - limg T"IE(STS,'I)
(4) =

Since {ut} and {vt} are independent we have B(r)' = (Bl(r), Bz(r)')
where Bl(r) and Bz(r) are independent Brownian motions of dimension one

. ; . . 2
and m , respectively, with variance matrices oy and 22



Multivariate invariance principles of this type have recently been
proved by Eberlain (1986) and Phillips and Durlauf (1986). They apply for a
very wide class of innovation sequences lwt} that are weakly dependent and
possibly heterogeneously distributed. Following Hall and Heyde (1980, p.
146), they may also be shown to apply to a large class of linear processes,
including those generated by all stationary and invertible ARMA models.

When {wt} is stationary with spectral density matrix fww(x) then

(4) may be written in the form:

fu(O) 0
T = 2wfww(0) = 2
0 f (O
v
If {ut} is generated by
(5) P ou, = po=1
j=0"3 "t-3 t’ 0
where {et] is 1iid(o0, 02) and the roots of 2§=0szJ = 0 1lie outside the

unit circle then

ai = 2x£_(0) = [z?_oij—loz
For the purposes of this section of the paper we assume that (5) is the
model generating {ut}

We now write (1) in conventional matrix form for a sample of T obser-
vations as y = Xf + u . In this set up, the asymptotic distribution of the
OLS estimator B - (X'X)“1X'y is easily obtained. In fact, this is just a
special case of a more general result in Phillips and Durlauf (1986, Theorem

4.1). In particular we have:



IEMMA 2.1. As T t «
~ 1 -1
(6) T(p-B) = [foBz(r)BZ(rrdr] [[ By (x)dB, (x)]

where B(r)' = (Bl(r), Bé(r)) is n-vector Brownian motieon with covariance

matrix (4).

In this Lemma we represent the asymptotic distribution of the OLS esti-
mator as a simple functional of vector Brownian motion. The integral
féBdel in (6) is interpreted as a vector of stochastic integrals with re-
spect to the univariate Brownian motion Bl(r) . The matrix féB Bldr 1is a
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quadratic functional of the vector Brownian motion Bz(r) and is nonsingu-
lar with probability one.

The representation (6) is very useful in what follows. Not only does
it enable us to obtain a very elegant demonstration of the asymptotic effi-
ciency of OLS in the model (1l). It also leads us easily to some interesting
consequences concerning the distribution of statistical tests. These are
explored in the following section. Finally, we note from (6) that
B - 8 + OP(T-l) and B is, of course, a consistent estimator of A .

The GLS estimator of A in (1) is given by 3B = (X'ﬂ_lX)_l(X'ﬂ_ly)
where E(uu') = 020 . As is well known, B can be regarded as the OLS
estimator of the coefficient vector in the transformed model y* = X*8 + u¥
where y* , X% , u* are obtained from ¥y , X , u by premultiplying a

1

nonsingular matrix R such that R'R = Q = . Our first main result follows

from a direct application of Lemma 2,1 to this transformed model.

THEQOREM 2.2. T(B-B) and T(E-B) have the same limiting distribution as

T t = .



Theorem 2.2 can be viewed as an extension to the multiple regression
case of Kramer's (1986) theorem 3. However, our result is stronger and more
clearly demonstrates the asymptotic efficiency of OLS than Krdmer's theorem
3. Kr4mer shows the asymptotic equivalence of (X*'X*)l/z(é—ﬁ) and
(X*'X*)I/Z(B—ﬁ) for the case of a scalar coefficient g . He does not

establish the asymptotic equivalence of T(f-f) and T(f~B) ; and he does

not obtain the limiting distribution of the estimators.

THEOREM 2.3. A4s T t «
(@) &% (p-p) = 80, o51)

1/2,% 2

a2 g-p) = 80, o°1)

Both (a) and (b) remain rtrue if E is replaced by E .

The asymptotic normality of (X’X)l/z(;—ﬁ) is obtained in the proof of
Theorem 2.3 by a very simple conditioning argument. This normality is im-
portant and useful in the formulation of statistical tests. In partiecular,
it implies that the conditional F-statistic for testing a linear hypothesis
in (1) has an asymptotic chi squared distribution upon appropriate standard-
ization, as is the case for the standard regression model. Also the differ-
ence in the variances of the two limiting distributions in Theorem 2.3
should be noted. This has some interesting consequences which will be elab-

orated below.



3. STIATISTICAL TESTS

Suppose we wish to test the linear hypothesis

H0 c R =1

where R is gqxm of rank q <m . The following Theorem gives the main

results on the asymptotic distribution of Wald-type test statistics,

THECREM 3.1. Under the null hypothesis HD and as T T = :
A -1 -1 . 9 9
(a) (RS-r)'[R(X'X) "R'] (Rﬂ—r)/al = Xq
. -1 .
-1.,.~-1 2 2
(b) (RB-x)'[R(X'G "X) "R'] (RB~-r)/c” = xq
Both (a) and (b) remain true if S is replaced by B .

A

Using A rather than B 1in (b) of Theorem 3.1 we have

-1
W - (Rﬁur)'{R(X'ﬂ_lX)_lR'} (R}é—r)/a2

which is the Wald statistic for testing Hy in the standard linear regres-

sion model with nonstochastic regressors and (known) error covariance matrix

2

o1 . It is interesting te note that Wl still has a limiting xi distri-

bution even when X is rather general integrated process generated by (2).
As the proof of the Theorem makes clear, this result holds because of the

strict exogeneity of x without which the conditioning argument used in

t H

the proof does not go through. When the innovation sequences {ut} and

(vt] that drive (1) and (2) are dependent the limiting distributions of

statistics like Wl are no longer x2 . The reader is referred to Phillips

and Durlauf (1986) for results which apply in this case.
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To make the tests in Theorem 3.1 operational for statistical inference

, . 2 . .
we need a consistent estimator of ¢~ ., 1t is simple to show:

THEOREM 3.2

3

m>82-fhy—ﬂr5Hy-ﬁ>3ﬁﬁ

-2
A2 p a2 2
(b) 2 (Ej_opj) o -54 2
These estimators depend on Q and the AR coefficients pj . When the order

p of the autoregression for u, is known the coefficients pj may be con-
sistently estimated by the usual two step procedure based on the OLS residu-

als. Call these consistent estimators Ej and write O = Q(7) . Then

2 =1 Hy - XBya Ly - XB) — o

and

These estimated error variances may now be used in statistical tests. We

find that

. 1
(RE -~ 1)’ [R(x'n‘l}c)'lk'] ®RE - r)/s’ = xi

where we employ the feasible GLS estimator

=1 1

by @aly

B - (x'ﬁ“

On the other hand, if (1) is estimated by OLS, the conventional error

variance estimator is:



8% - 17Ny - 1) (v - %) — oh = B(up)

In this case the usual Wald statistic for testing HO is:

-

- -1 17t 2
W2 = (RB -~ r)'[R(X'X) R’} (RS — r)/8°
and we deduce from Theorem 3.1(a) that
2,2, 2
W2 = (al/ou)xq .

Thus, the conventional Wald statistic for testing Ho based on an OLS re-

gression has a limiting distribution which is proportional to a x2 .  When
u, is generated by (5) the constant of proportionality is 02/(2§=0pj)20i .
For spherical errors this is unity. Fer an AR(l) it is (1 - pl)/(l + pl) ,
which shows that the asymptotic distribution of W

, can be very different

. 2 . . .
from the conventional Xq when there is serial correlation.

4. EXTENSTONS TO STATIONAR ORS

The results in the previous two sections apply when {ut} is generated
by the stationary AR(p) (5). Since a stationary process whose spectral den-
sity is positive and continuous may be arbitrarily well approximated by an
AR process of finite order it may be expected that our results hold asymp-
totically for a wider class of models with stationary error processes. The
following theorem indicates that this is so and establishes the asymptotic

efficiency of OLS for such a wider class of error processes.
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THEOREM 4.1. If [ut] is stationary with positive and continuous spectral

density fu(A) then as T 1t «

2 1 02

- rey — 1 ' .
T “X'Q X = 2nE _(0) fOBz(r)Bz(r) dr ;
_,  2nf _(0) -1
T“z(x'X)‘lcx'QX)(x'X) L, -~95—-{jé Bz(r)Bz(r)'dr} :
o

where Bz(r) is m-dimensional Brownian motion with covariance matrix 22 .

Note that given X the conditional covariance matrices of the OLS and

GLS estimators in (1) are given by:

var(f|X) = 2 (X'X) X',
-1

var(B|X) = o x'alx)
Theorem 4.1 shows that asymptotically the conditional covariance matrices of
T¢(f~B) and T(B-B) are identical. These conditional covariance matrices
are represented in terms of a matrix quadratic functional of a vector Brown-
ian motion sample path. Upon integration the unconditional asymptotic

A
covariance matrix of T(#-B) and T(E—ﬁ) is seen to be

-1
2ﬂfu(0)E{féBz(r)B2(r)'dr} .
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5. FINAL REMARKS

The proofs of our results depend heavily on the theory of weak converg-
ence, These methods seem to provide a very convenient way of handling the
complications that result from the presence of stochastic regressors gener-
ated by ARIMA models. Not only do they provide a means of establishing the
asymptotic efficiency of OLS in regressions of this type. They also yield
simple representations of the limiting distributions in terms of functionals
of Brownian motion. Furthermore, the conditioning argument developed in the
proofs of Theorems 2.3 and 3.1 gives us a simple way of demonstrating the
validity of conventional asymptotic x2 theory for classical tests of lin-
ear hypotheses in multiple regression with integrated processes.

The results reported here do not apply in models where there is
regressor-error correlation, as in econometric models of simultaneous equa-
tions. However, similar techniques may be brought to bear to analyze such
regressions. The reader is referred to Phillips and Durlauf (1986) for

details.



APPENDIX

Proof of ILemma 2.1. The result can be easily deduced from Theorem 4.1(a) of

Phillips and Durlauf (1986).

Pxoof ¢of Theorem 2.2. The matrix R may be chosen so that

w TP r o P
(ALl) xg zj-Opjxt—j ;o g Zﬁ_opjut_j

. * *
for t > p . Since the end corrections leading to X, and u, for

1 <t=<p do not affect asymptotic results we may assume, without loss of

generality, that the transformation (Al) holds for all t =1, 2, ... with
the convention that x - . =% =0 ., It follows that

-p+1 0
vk = x% - x% =P and

t - ¥ T ¥t-1 T #5=03"t~j

- 3P
(A2) w% ijopjwt-j

where wﬁ' = (u¥, vg') and where, without loss of generality in what fol-

lows, we may set w_ Loy = o .

p+l -
The new process {w%}; defined by (A2) has partlal sums which satisfy

- I3 - 3 - , * - D -
the multivariate invariance principle (3). For instance, if (w_) is

t'l
. o 1-2/6
K that satisfy Zlak < o for some

§ > 2 then the same is true of the transformed sequence {w%}? (see, for

strong mixing with mixing numbers a

example, White (1984, p. 153)). 1In fact, using X%(r) to denote the random

element constructed from partial sums of w% we have, in place of (3),

X%(r) = B¥(r)



where B*(r) is vector Brownian motion with covariance matrix
Kk = (E?_Opj)z . When {wt} is stationary the new covariance matrix
P 2 . .
*I: -
= ZWfW*W*(O) (zj=0pj) (Zﬂfww(O)) may be deduced quite simply from the

action of the linear filter (A2). 1In the general case, we need only write:

- i = (P T,y _ P T :
(83) 1= E1VE 7 (By0P) BV~ BT ey

and it follows that:
11 T—lE(S*S*') - wzz - Tk
T+ T T )

where ¢ = =P

3=0°3
Notice that the transformed model is driven by the new process {wt}?
in exactly the same way as the original model (1) is by {wt} . Since §

is the OLS estimator of S in the transformed model we now deduce from

Lemma 2.1 that

-1
T(B-8) = [fésg(rwg(r)'dr] [foB%(x)dBy ()]

However, B¥(r) = ¢B(r) where the symbol " = " signifies equality in dis-
tribution. Asymptotic equivalence now follows since, by cancellation of the

2
scale factor ¢~ , we have:

=1 -1
{f%ng(r)ag(r)'dr] ([ gB%(x)aBE(x)] = {féB2(r)Bz(r)'dr] [ g8, (x)dB, (r)]

as required.



Proof of Theorem 2.3. From Lemma 3.1(b) of Phillips and Durlauf (1986) we

have:

2

(AL) T “X'X = féBz(r)Bz(r)'dr

and so by the continuous mapping theorem (cmt) and Lemma 2.1 we find:

]—1/2

@02 @) = [fp,mrmyrrar] s, e ()

Now suppose the n (= m+l) dimensional Brownian motion B(r) is defined on
the probability space (Q,F,P) and let F2 denote the sub o¢-field of F
that is generated by {Bz(r) 0= r=1) . We use the symbol " -[F2 ' to
signify the conditional distribution relative to F, in what follows.

2

Since Bl(r) is Gaussian and independent of Bz(r) we deduce that:

1 2,1 '
foBz(r)dBl(r)le = N(O, alfoBz(r)Bz(r) dr)
and

[féBz(r)Bz(r)'dr [ 5B, (x)dB, (x)] 5 =N, o

}-1/2
I)
5 1

However since the latter distribution does not depend on realizations of
Bz(r) it is also the unconditional distribution. Part (a) of the theorem

follows immediately.

To prove part (b) we first show that as T 1 =
(AS) 1X5(0) - @Xp ()| = max;sup |Xg, (x) - X (1) | = 0

where ¢ = 2§-Opj . We note that for (k-1)/T = r < k/T we have



B R N A A
- T_1/2122-0p5+1 E:}-swirl
< T elBT vy |
Thus |
%3¢ - @xp(o] = T/ %plo] (max, max_|w, |
— 0
P
proving (A53). It now follows that as T t « :
h(X%(r)) - h(@XT(r)) “E* 0
where h is any unifeormly continuous functional on Dn[O,l] , the product

space of n copies of D[0,l1] . In particular,

1 , 2,1 ,
fo}%(r)X%(r) dr — ¢ IOXT(r)XT(r) dr —> 0
and we deduce directly that:

2 1 2

X0 X -¢ 772

2 2

(A6) T X' = T “Xx'%* — o 2% Y 0 .

From (A6) and (A4) we obtain

2 1

(A7) T2R'07K = ¢ J B, (r)B, (r) dr .

Part (b) of the theorem now follows since 02 - wzai . Similar arguments

A

show that parts (a) and (b) remain true when B 1is replaced by 3 .



Proof of Theorem 3.1. By the emt and Lemma 2.1 we deduce that:

o N2 s
{R(T X'X) R'} T(RS ~ 1)

-1/2

-1
1 -1 1 . 1
= {R{IOBz(r)Bz(r)'dr} R'] R{joazcr)sz(r) dr} fOBz(r)dBl(r)

2
= N(O, aqu)

The last line follows from the same conditloning argument used earlier in
the proof of Theorem 2.3(a). Part (a) of the Theorem now follows from a
further application of the cmt. The proof of part (b) makes use of (A7) but
is otherwise entirely analogous. The invariance of the results to the re-

placement of B8 by B 1is also straightforward.
Proof of Theorem 3.2

a2

8¢ =T

1 1 1

(v - XB') @ 5y - XB) = T *(y* - X4B) ' (y* — X*B)

-1
- T“lu*'u* - T"I(T'lu*'x*)(T'zx*'x*) (T"lx*'u*)

- T a4 op(l)

as required for (a). Part (b) follows immediately.

Proof of Theorem 4.1. We first approximate fu(A) from above and below by

the spectra of stationary, finite order autoregressive processes. Thus

fl(A) = fu(l) = fz(A)



-2
2 P; 13k
where £,(3) = (o /2w)|EkBObjke |

variance matrices satisfy:

v (3 =1, 2) . The corresponding co-

and similarly:

x'oglx U & x'nzlx .

Now, as in the proof of Theorem 2.3 we obtain:

2 1

ey 2rl '
T X ;7% = wjfoBz(r)Bz(r) dr

where

P. 2
2 j 2
2 [Ek_obij o /2ﬂfj(0)

Using Skorohod’s theorem (see, for example, Billingsley (1979, p. 337)) it
is now possible to define a common probability space supporting the random

matrices Y.. , Y. and 2 for which
JjT h| T

Y, =T 2% ix
T J

.
[

2.1
wjfoBz(r)Bz(r)'dr

2 1

Z. =T “X'q "X

and such that:

(AB) YZT = Z
and

1A
v
0]
n

1T



(AD) YjT - Yj a.s.

Take any w for which (A8) and (A9) hold and let « be any m-vector. Then

a'Yz(w)a = lim, 1im a'Z

T+ T

T(w)a = a'Yl(w)a .
However 2 and ¢, may be made arbitrarily close to 02/2xfu(0) . It

follows that
Z (w) + Z(w) = (02/2nf (0)02)Y, (&)
T u 1771

for each w . We deduce that

2

2 fed 1 ,
2m£(0) J0B2(FIBy(x) dx

a7 x -

o

proving part (a).

To prove (b) we first recall that from earlier arguments

"-21 1 '
T “X'X =» foBz(r)Bz(r) dr .

To determine the limiting behavior of T—ZX'QX we now approximate fu(A)

from above and below by the spectra of stationary finite order moving aver-

age processes. Thus, let
fl(l) = fu(A) < fz(A)

P- . 2
where fj(k) - (02/2ﬂ)]E lAkI , (i=1, 2) . Now we have

j
k=023k°



XX <= X'0X = X' X

and proceeding in the same way as before we deduce that

T2X'QX = (2£ (0)/67) [gB, (X)B, (x) ar .

It follows that

-1

-1 -1
[T_2X'X] (T_ZX'QX)[T_QX'XJ - (2ﬂfu(0)/02){f132(r)BQ(r)‘dr}

as required for part (b).

A-8
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