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t. Introduction

The Nash equilibrium (N.£.) solution concept is often used to solve n-
person non-cooperative games (games where there is no cooperation among
players), because of the appealing notion of stability that it embodies. A
N.E. solution specifies strategies for all players, such that each player gets
his most preferred payoff, given the N.E, strategies adopted by the other
players. Any n—person game in which each player has a countable number of

strategies can be represented in matrix form, as in the following example,

forn=2:
Player 2
Si\sg ! 2 3 4
Player | 1 [(21,32)] (43,56} | {31,27){(24,11)

(12,46)] (56,34)) (18,54) | (28,45) payoffs tn doilars
3 i(14,38){(25,30)] (42,10} (30,39)

where s, (k = 1, 2) denotes the strategy of Player k, and the ordered pairs

denote componentwise the payoffs of Players 1 and 2. In our example, the
pure strategy N.E. solutionis s;=3 and s, = 4,

In any matrix game, the number of pure strategy N.E. can be as small
as zero or as large as the number of possible outcomes. Clearly, it canbe a
horrendous task to find the number of pure strategy N.E. in an n-person
game where the payoffs are arranged in 2 seemingly unstructured manner, n
is greater than 2, and the numbers of strategies of the players are very
large. Inthis paper, we shall study the number of pure strategy N.E. ina
‘random” n-person game. We choose to study only pure strategy N.E.,

because it is often impractical to use mixed strategies and because many
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people are uncomfortable with using them. To the delight of many people,
our results will prove that it is not so rare to have one or more pure strategy
N.E. From now on, without exception, all the strategies referred to in this
paper are pure strategies, and 21l the games are non-cooperative games in
which each player has a countable number of strategies. Once we adhere
only to pure strategies, all that is important is the ordinality of the payoffs,
and since we can transform any game with cardinal payoffs to one with
ordinal payoffs for our analysis, we need only study ordinal games in this
paper.

In 1968, Goldberg, Goldman and Newman found that the probability that
a 2-person cardinal game has at least one pure strategy N.E converges to
1-¢~1 as the numbers of strategies of both players go to infinity. Dresher
extended this result to n—person games in 1970 and showed that the
probability that an n-person cardinal game has at least one pure strategy N.E
atso converges to 1-e~! as the numbers of strategies of two or more players
go to infinity. These researchers generated the payoffs of their cardinal
games from 8 continu.ous distribution, so that for any player, the probability
is 1 that all his payoffs are distinct. Their work thus in fact involves only
strictiy ordinal games, i.e,., games where there are no ties among the
payoffs of any player. They did not conceive of the need for research in
weakly ordinal games, 1.e., games where ties among the payoffs of a player
are admitted. This restriction of their work sorely limits its ability to mode!l
real situations, since people quite often have only 2 weak preference
ordering over a1l the possible outcomes of an event,

In this paper, we increase the scope of previous research. We first
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study the distribution of the number of N.E. in a ‘random® n-person strictly
ordinal game as the numbers of strategies of some players go to infinity, We
find that the probability distribution of the number of N.E. in an n—person
strictly ordinal game approaches a binomial distribution as the number of
strategies of one player goes to infinity, and that it approaches the Poisson
distributien with mean 1 as the numbers of strategies of two or more players
go to infinity. Then, we extend our research to weakly ordinal games and
study the correspondent limiting distributions in a *random" n-person weakly
ordinal game, As comparedto the results for the n-person strictly ordinal
game, we find that ties in the payoffs of some players in the n-person weakly
ordinal game increase the expected number of N.£. when the number of
strategies of only one player goes to infinity, but, surprisingly, the
distribution of the numb.er of N.E. in the n—person weakly ordinal game
approaches the same Poisson distribution when the numbers of strategies of

two or more players go to infinity.

2. General Mode!
We now describe how we model 3 "random” n-person strictly ordinal

game. Consider an n~person strictly ordinal game with Players 1, 2, ..., n,

where Player k has my strategles and every player has a strictly ordinal
preference over all of the M (=T my ) possible outcomes. We shall identify
the outcomes as 0y, Oy, ..., OM. In our model, we assume that (a) for

each player, the ordinal payoffs associated with Oy, 02, ..., Opm are the

result of a random drawing of M numbers from 1, 2, ..., M without
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replacement, and (b) the ordinal payoffs to each player are independent. We

use the convention that the higher the number associated with an outcome,

the more the player prefers it. if we let s, denote Player k's strategy and
P81y 25 voes Sy vuvn s,) denote his ordinal payoffs, then a set of

strategies (sy, 83, ..., 8§’y ..., §4) 15 2 N.E, of the game if and only if

P8¢y $2y cony S’y 0y 8p) = Mg: Pp (81, 87, <oy 8Ky -10y Sp'), for all

k. We shall also constder an analogous model for a weakly ordinal game by

varying assumption (a)—for each player, the ordinal payoffs associated with
01, 07, ..., Oy are the result of a random drawing of M numbers from 1, 2,

«oey M with replacement.

Inthis paper we study the distribution of X, the number of N.E., as the
number of strategies of different players goes to infinity. We present
results for both the strictly and weakly ordinal game. We begin our
research with the simple case of the 2-person strictly ordinal game, and
then generalize our results to the n—person strictly ordinal games, Finally,
we study the corresponding problems for the n—person weakly ordinal games.

We note that Assumption (b) is appropriate for games in which the
players’ evaluations of the outcomes are independent of each other. Both
Assumptions (2) and (b) are natural and simple suppositions that
researchers make when asked to find the number of N.E. in an apparently
unstructured n—person game. Using our model, we are able to obtain 2
number of results that are both mathematically interesting and of value to
researchers seeking the number of N.E. in an n—person game, since our work

permits them to know ahead of time approximately how many N.E. they should
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expect to find. We would also ke to note that not 211 of our results require
assumptions (a) and (b), and all of them stil1 hold if assumption (3) Is

relaxed appropristely, as we discuss later. For the moment, we adhere to

assumptions (a) and (b) for the sake of simplicity.

3. Two-Person Strictly Ordinal Games

Consider two players, Players 1 and 2, who have respectively m, and
m, strategies, and who both have strictly ordinal preferences over the m, x
mz outcomes of the game. Without 1oss of generality, we can assume that m,
< Mg Let us label the strategies of Players | and 2 by i and j respectively,
where 1 < i s my, and | < J< my, and et (s,,5;3) = (i,}) be componentwise the

strategies chosen by Players 1 and 2. Let us denote the ordinal payoffs of

(1,]) to Players 1 and 2 by Ay and By; respectively, and assume that Ayj and

BU are each independently obtained by a random drawing of m, x m; numbers

from 1 to m; x m, without replacement. We further define the folloMng

indicator functions:
I[Ai'_]] =1 if Al'] = Mlax {Au}
=0 otherwise
By = 1 if By = Max {B
[Byy] iy = Max {By)
=0 otherwise
Let Ir‘j = I[AU] X HBU}. Then
Iy =1 if (i,j) is a patr of N.E strategies
=0 otherwise
end I = Z} Iy =1 ifthereis a N.E. associated with strategy

=0 otherwise
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with the aid of the above notation, we are ready to present our

resuits.

Proposition 1: The maximum number of possibie N.E. is Min {my, m}.

Proof: Consider 1 ; femylefamg tciamgandl < js my, wherei={

andj=§. If{{,]')is a pair of N.E. strategies, then ({',j) cannot be 2 pair of

N.E. strategies, since Player 2 has strictly ordinal preferences over 21l of

the outcomes. Stmilarty, (i,1') cannot be a pair of N.E. strategies. Hence,

if we fix the strategy of one player, there fs at most one N.E. associated with

this fixed strategy, and so¢ an upper bound for the maximum number of N.E. is

Min {m,, ma}. The following example (with its N.E. highlighted in boldface)

illustrates how this upper bound can easily be achieved:

Sg\Sz i pd 3
1 k6,6) | (4,4) | (3,3)
2 1z, ¢5,5) | (1, 1)

Q.t.D.
Proposition 2: The expected number of N.E. is 1.

Proof: Let P(i,]) be the probabtlity that (1,j) 1s a pair of N.E. strategies.

Then E[iﬁlu] ‘15E[Iii] -%P(hj). We know that P(i,j) = P{Player 1's

ordinal payoff is greatest when he chooses 1| Player 2 chooses j) x P(Player

2's ordinal payoff is greatest when he chooses j [ Player 1 chooses i) = 1/myx

1/m,. Hence, the expected number of N.E.isiz P(1,§) = mymax 1/{mymy) = 1.
¥

Q.£.D.
Proposition 3¢ The probability distribution of the number of N.E, approaches

the binomial {(m,, 1/m,) distribution as the number of strategies of Player 2
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approaches infinity, and the number of strategies of Player 1 remains finite.
Proof: Let %3 l[Bij] = 3\1 , for eachj, sothat I lj =my. Then P(Ij =1{A) =
Aj/myandP(Lj=0tA) =1~ Aj/my, where A = (7). Let X be the number

of N.E. and @, (t) be its moment generating function. Then

P (1)
= 3 Py (t)P(A)
 Pxia

=3 ‘Pz]jm(t)’P(l)

Since Ij and Ij- (j=§') are conditionally independent given a particular A, we

see that

P, (1)

= Z0M Py (V) 1PV

=21 et/ m, - Ag/my+ 1) 1P(A).

Let E be the event that hj < 1forallj. Then

P(E) = mp{mp=1){ma-2) * = = (my—m¢+1)/my,™1 | and

as mp = o0 , P(E) — 1, which means )‘j =0or 1. Together with T )\j =

my , it follows that
ml.ZI;;nm‘Px(t)
=3[ (et/my-1/my+ 1) Mt )-P(A)

= (el/my- 1/m;+ 1) M,
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which 1s the moment generating function of the dbinomial distribution with

parameters myand 1/my .

Q.£.D.
Proposition 4: The probability distribution of the number of N.E. approaches
the Poisson distribution with mean | as the numbers of strategies of both
players approach infinity.

Proof: We know from the proof of proposition 3 that
Pxialt)

= Pzyalt)

=T (et /my=A/my+1).

= exp {log [ T (et?\j/m = N/my+ DY)
=exp{Z{log( (el-1) A/ my+ DI

= oxp (Z {[(e! 1) Ay/my] - (1/zx(et-|)1j/m,]2+ (173 (et 1) ?\j/m113

- +++}},for-e ctslog2.

We note that
Py (V)

< oxp {Z [(el -1) D\j/rm]}

= exp(el-1), (1)

and Py, (1)
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2 oXp {z{(et—s)xj/md-uz[(et—r)xj/m,}?}. (2)
Let A be the event that ?\j < cm1”3 for all j, and A’ be the event that 3\1 2

cm,”3 for at least one j , where ¢ iIs a constant, then

Py(t)
= B [Pype (D]

= Exealfya (V1 P(A) + ExgalPy (D] PIAY.

Note that P(A')

sm [ rmy) Si-1ump™

q,F m/3]

andlet my=my =1 . ThenP(A’)

q n-q
cn‘“[“](”") (-1/q)

< 11("1“:"1 1/3){ 1/[01'[”3]‘]

< néen3) .

(1) and (2) == 0 < Eya1Pyy (1)) s exp(et-1). Therefore asm — o,
EaealPya ()] -P(A) = 0

From (1) and (2), we also know that E o[ Py;y (1)]-P(A) is bounded below

by Eqealexp {Z [(et~1) A= 1721(et -1) Ajlmz}}-P(A) and above by

exp(el-1)+P(A) . Since these bounds both converge to exp(el-1) as n—
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%o, 1t follows that ExealPypp (1)1 -P(A) — exp(el-1) 2s 7 — 0 . Thus,

mlngn*w‘pX(t)
= exp(el-1),

which is the moment generating function of the Poisson distribution with mean

1.

G.E.D.

At this point, it is helpful to cultivate an intuition for why the above
resuits hold., We shall first pinpoint the elements that were crucial in
obtaining the results for the Z-person strictly ordinal game and then try to
generalize them for the n-person strictly ordinal game. We shall quickly
see that the insights used to solve the simpier problems ¢an be transferred
to the more complex ones in a straightforward manner.

In the 2-person strictly ordina! game, we solve for the maximum
number of possible N,E. by observing that if we fix the strategy of one
ptayer, then there is at most one N.E. associated with that fixed strategy. A
similar observation is helpful in figuring out the maximum number of possibie
N.E. for any n-person strictly ordinal game. We note that if we fix the
strategies of n—1 players, thenthere is at most one N.E. 2ssociated with that
combination of fixed strategies, since &1l the players have strictly ordinal

preferences. Hence, an upper bound for the maximum number of possible
N.E. is Min { Jlt"‘k’ alzmk, see Enmk} . Unfortunately, it is not so easy to
show that this upper bound can be achieved, but we will later do so via a

constructive proof, We note that this result concerning the maximum number



-13-
of possible N.E. is true for any n-person strictly ordinal game, because the
observations that lead to the conclusion are not based on any assumptions on
the way that the ordinal payoffs are generated.

Inthe 2-person strictly ordinal game, we calculate the expected
number of N.E. under the two assumptions stated in our model by making use
of the observation that E{number of N.E.] = total number of outcomes x P(an
outcome is aN.E.). The same argument remains valid for the n-person
strictly ordinal game, and when we apply it, we find that the expected number

of N.E. is still 1,

inthe 2~person strictly ordinal game, when we match every strategy,
i, of Player 1, with the best response, s(i), of Player 2 (i.e., the strategy
that gives Piayer 2 his most preferred outcome), we may find that several
strategies of Player 1 are associated with the same strategy of Player 2.
Consider performing this métching when Player 1 has a finite number of
strategies, but Player 2 has infinitely many strategies, which are all egually
likely to be the best response for any strategy of Player 1. Now, in{uitively,
the probability 1s 1 that each strategy of Player t is assoclated with a distinct
strategy of Player 2, since it is impossible that among an infinite number of
strategles, the finite number of best responses do not come from distinct
strategies. We then observe that the N.E. of the game must come from one
of the (1,s(1)). The probability that any of them s a N.E. is the same as
P(Player 1's ordinal payoff is greatest when he chooses i |[Player Z chooses

s(i)), which by the symmetry of the way the ordinal payoffs are generated,

equals 1/my . If we let X; be the event that (i,s(i)) is a N.E., then we can
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identify X; a5 a Bernoulli random variable with mean 1/m,, and 2‘ Xjas e
binomial random variable with parameters m, and 1/my. The above

insight provides us with the distribution of the number of N.E. when the
number of strategies of only one player goes to infinity.

To generalize proposition 3 for the n—person strictly ordinal game, 21l
that we have to do is to match every combination of strategies of Players
1,2,..., i1 with the best response of Player n. Without loss of generatlity,
we can assume that the number of strategies of Piayer n goes to infinity and
the numbers of strategies of the rest of the players remain finite. {f we
mimic the argument for the 2-person strictly ordinal game carefully, we can

show that the distribution of the number of N.E. in the n—person strictly
ordinal game is binomial with parameters kqn my and I/Jlnmk . Notice that

our proof of proposition 3 is not as direct as the one we just suggested, but
a proof based on our discussion is included in the appendix (p. 41}. In
addition to employing the properties that we just discussed, our proof 2lso
utilizes properties of moment generating functions. The advantage of this.
approach is that it is also applicable in proving proposition 4.

Finally, we would also like to know the distribution of the number of
N.E. as the numbers of strategies of more than one player go to infinity. in
the 2-person strictly ordinal game, it would be easy to find the limiting
distribution when both m, and m, go to infinity if we knew that the limit

exists. Then all that we would have to consider is what happens to the

binomial {m,, 1/m,) distribution when m, goes to infinity, since _ Lim
My, Mgtee

P(th m2= X) = H%Hzfﬂw P(th m2= X), if ml{_}%r” P(xmh m2= x) exists
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{see, for example, Gelbaum and Olmsted, p. 117). We know that Lim Lim
M) o8 T 900

P(Xm,, m, = X) = ¢~ !/x! (by the DeMoivre ~Laplace limit theorem), and so if
the limit exists, then the distribution of the number of N.E. approaches the
Poisson distribution with mean 1 as the numbers of strategies of both players
go to infinity. Unfortunately, we do not know that the limit exists, and so we
cannot use the result of proposition 3. However, we can solve for the
limiting distribution by formulating the probiem in the same way as we did in
the proof of proposition 3, and then identifying the moment generatihg
function in the limit as that of a Poisson distribution with mean 1,

The proof for proposition 4 can easily be generalized for the n-person
strictly ordinal game. The notation for the n—person case is quite
cumbersome, but the way the techniques works can be sufficiently well
demonstrated by {llustrating the proof for n= 3.

Alternate proofs for propositions 3 and 4 by way of considertng the
distribution of the number of N.E. when the numbers of strategies of the

players are finite can be found in Powers (1986), pp. 8~10 and 21-24 .

4. n-Person Strictly Ordinal Games

Consider n players, Players 1, 2, ..., n, where Player k has my
strategies, and each player has strictly ordinal preferences over the m, x my
X *** x mpoutcomes of the game., Without loss of generaltty. we can assume
that my< mys =«+ < mp. Leth=(sy, S ..., Sp-2), =8y 2ndj =5, 50

that (h,i,§) specifies a particular combination of strategies of the first n-2
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players with the strategies of Players n~1 and n, and let h be called 2

"compound strategy.” Furthermore, let Apy = ((Apij) s (Apijl, .ty

(Amj)n_z) derote componentwise the ordinal payotfs of (h,1,j) to Players 1,

2, vv.y 2, and Bhij s ij denote the ordinal payoffs of (h,i,j} to Players

n~1 and n, respectively. As inthe case of the 2-person strictly ordinal

game, we assume that (Ahtj)“ (x=1,2, ..., 2), Bhij and ij are all

independently obtained by a2 random drawing of T my numbers from 1 to T my

without replacement. In an analogous fashion, we define the following

indicator functions:

l[(A(s" ]' !l

32,,..,so(',...,sn_z,'lgj))“

A (S 1,800y 800 seeerSp=2+ 1) o

= Max{ (A(s,,
Sox

) ]

sg....,sw...,sn.z.hi) o

(A, j))“] =0 otherwise

By eersSpcreeerSp-2sts

I[Bhi'j} =1 fif [Bhl'j] = HFX {Bhu}

={ otherwise

I[ij'] =i |if [chij'] = Mjax {ChU}
=0 otherwise

1)) s and

Lot HAnyd = TIHACs) 550y Sper o0 80-2

Ihij = I[Ahij] ' I{ij] X I[Chij}-

Then lmj=1 if (h,1,]) 1s s N.E.
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=0 otherwise
and Ihj = F lhij =1 i{fthereis a N.E. associated with strategy (h,{)

=0 otherwise

With this notation, we are ready to present the generalized resuits
concerning the number of N.E, in the n—person strictly ordinal game.

We have argued in section 3 that an upper bound for the maximum
number of possible N.E. is min {le‘ My s kEZ My coes anmk]' We shall soon
prove that this upper bound can be achieved, but before we proceed to the
rather laborious proof, we would like to Indicate the spirit of the proof by
providing two examples of ordinal games (with their N.E. highlighted in
boldface) that achieve the upper bound for the maximum number of possible

N.E. Consider first the following 3x4 (Z-person) strictly ordinal game with 3
( = min {3,4}) N.E.:

51\Sy 1 2 3 4

1(12,12)] (9,9) (8,8) {(7,7)
2 1(6,6) [C11,11)| (5,5) (4,4)
31(3,3) (2,2) |[(10,10) (1,1)

We can construct a 3x4x5S (3-person) strictly ordinal game with 12 ( = min

{4x5, 3x5, 3x4}) N.E. and position them in the following manner :

S1\83 1

2

3

4

1 K60,60,60)

(48,48,48)

(47,47,47)

(46,46,46)

2 }(45,45,45)

(59,59,59)

(44,44,44)

(43,43,43)

3 [(42,42,42)

(41,41,41)

(58,58,58)

(40,40,40)

s3=1



S\§3y 1

2

-‘e—

3

4

1 1(39,39,39)

(57,57,57)

(38,38,38)

(37,37,37)

2 1(36,36,36)

(35,35,35)

(56,56,56)

(34,34,34)

3 1(33,33,33)

(32,32,32)

(31,31,31)

(55,55,55)

S1\Sy 1

2

3

4

1 {(30,30,30)

(29,29,29)

(54,54,54)

(28,28,28)

2 |(27,27,27)

(26,26,26)

(25,25,25)

(53,53,53)

3 K52,52,52)

(24,24,24)

(23,23,23)

(22,22,22)

§1\53 1

2

3

4

1 1{21,21,21)

(20,20,20)

{19,18,19)

(51,51,51)

2 {(50,50,50)

(18,18,18)

(17,17,17)

(16,16,16)

3 ((15,15,15)

(49,49,49)

{14,14,14)

(13,13,13)

51\32 1

2

3

4

1 1(12,12,12)

(11,11,11)

(10,10,10)

(9,9,9)

2 | (8,8,8)

(7,7,7}

(6,6,6)

{5,5,5)

31 (4,4,4)

(3,3,3)

(2,2,2)

(1,1,1)

S3=2

$3=3

s3=5

Proposition 5: Let f(n) be the maximum number of possible N.E. in an

n-person strictly ordinal game. Then foralin22, f(n) = min{ k!l‘mk,

Ak -

L

Proof: Since we have assumed, without 1oss of generality, that mygc mps =
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—1s . ves = .
£ Mp-1, it follows that min { le'“k'xl% My ooy T my) anmk We now
proceed to prove the proposition by tnduction.

(1) Whenn=2, we know from proposition | of section 3 that f(2) =

min{m,, my}, which is equal to min {kzl‘ mk’kIE my}.

(1) Assume f(n-1) = min { kglmk'kl.&mk’ rerpl My)= k-1 Mk~ This

means the maximum number of possible N.E. in the (n-1)-person strictly

ordinal game, where Player k has my strategies, is f(n-1} . If Player k

tabels his strategies with the numbers 1, 2, ..., my, then the preceding

statement implies that we can find a collection of f(n-1) ordered
{(n-1)-tuples, where the kM entry of each element represents the strategy
of the kth player, and every element in this collection differs from every
other in at least 2 entries (since every player has strictly ordinal

preferences over all of the outcomes). Let us denote such a collection by
Qn-1. We shall now show that from Q.- we can construct a collection of

f(n) ordered n—tuples, such that the additional entry s a strategy of the nth
player and every element in this collection differs from every other in at

jeast 2 entries.

First of all, let Q- = {a“), a(Z). ,af("")}, where each
element in Qp-1 is an ordered (n—1)-tuple. We shall construct Qp in the

~ following manner (addition is done in modulus mq_;):

(1) 1
(2) 1

2 (1) a D) D) e
2,(2) 2(2) a2

-1
2n-1
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2,(3) a(3) 25(3)

L1 (1)), (1)) o

2,1 a1 a1
a,(2) 2,(2) 25(2)
2 (3) 2,(3) ay(3)

a{f(rm1)) o (f(n=1))  , (t(n-1)) ..

a1 agl 1) ay(1)
2,(2) 2,(2) 2,(2)
2 (® 2,(3) ay(3)

L) L (la-1)) (1)) L.

2, (1) a(1) a(1)
2,(2) 2,(2) 2,(2)
2,(3) ap(3) ay(3)

2 {101 o (fn=1)) H (K1) ...

an_l(f(n'l)) 1
an-I(l)” 2
an_l(2)+1 2
aﬂ“1(3)+1

an-l(f(n-”)” 2
an_1(1)+2 3
an_l(f(n'1))+2 3
oot e mpy - Mn-1
a-1\2) 4+ mpy - ! Mp-1
3y (3 + gy - Mn-1

an T D) e mp -1 mpey

In order to facilitate our discussion, we organize the elements in Qp

by identifying all elements having the same last entry as one group, and
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within each group, we denote an element by its row number in the group. We
first note that Q has f(n-1) x mp_y = lenmk = f(n) elements, since m; < m,
£ < Mmpoy £ Mp. For any two elements in this collection we can make the
foliowing observations:

(1) if they are from different rows within the same group, then they differ
from each other In at least two entries, since every element in Q,_; differs

from every other in at least two entries.

(2) If they are from corresponding rows in two different groups, then they
differ from each other n the (n=1)th and nth entries.

(3) if they have different row numbers and are from two different groups,
then we note first that they differ from each other in the nth entry. We also
know that any two elements from the same group differ from each other in at
least two entries (see remark (1)), and so we can claim that two elements
with different row numbers from different groups must differ in at least one

more entry besides the nth,
We conclude that Qp, is a collection of f(n) elements, where the entries

of each element represent componentwise the strategies of Players 1, 2,
..., N, and every element in this collection differs from every other element
in at least two entries. We note that the f(n) elements give permissible
coordinates for N.E. in an n—-person strictly ordinal game. We now argue
that in an n—person strictly ordinal game it is possible to have f(n) N.E. to

fill all of these f(n) positions, This can be reatized in at least one way, if all

players prefer the oulcomes of strategies represented by the elements in Qp,

to the outcomes of strategies not represented by etements in Q,. This proves
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that f(n) Is a lower bound for the maximum.number of N.E. in an n-person
strictly ordinal game, and since we have shown in section 3 that f(n) is also
an uppefr bound, we are done.
Q.E.D.
We now establish that proposition 3 in section 3 holds in a2 more
general setting, namely, in the n—person strictly ordinal game,

Theorem 1t The probability distribution of the number of N.E. approaches the
binomial { TT m,, /11 m,) distribution as the number of strategies of Player
k=n k=n

n approaches infinity and the numbers of strategies of the other players
remain finite.

Proof: We first prove the case where n=3, and then indicate how the proof
can be generalized for n > 3 by correctly identifying the corresponding

variables,

Let ? I[CMJ] = Apy » for ail (h,j) , sothat hz’j Ahj = mmy . Then

P(Inj = 11) = Ay/ (mymz) and P(Ipy = 01R) = 1 = Api/ (mym2) ,
where A = (Ap;) .

Let X be the number of N.E. and ‘Px(t) be its moment generating function,

Then

9.(1)
= 3 Py (1)P(R)
Z P

=z ‘thjm(t)"?(l) .
Since Ihj and Ih-J' (h=h and j=j) are conditionally independent given a

particular A, we see that
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. (1)

=z[n ‘pihjll(t) I'P(A)

=z(n (et?\hj/(m,mz) - Apy/ (mymz) + 1) I-P(R) .

Let E be the event that 3 7‘hj < 1 forallj. Then

P(E) = m3(m3-1}(m3-2) * * * (m3~mymp*1)/m3{MM2) | ang

as'm3 — oo, P(E) = 1, which means that xhj =0 or 1. Together with

P }‘h} = m;m, , it follows that

mL3i_r’n':‘° Py (1)

=3[ (el/(mmy) - 1/(mymy) + 1){MiM2) L.p(a)

= (el/(mymy) - 1/(mymy) + 1)(Mim)

which is the moment generating function of the binomial distribution with

parameters mymy and 1/{mim,) .

For the proof of the thecrem whenn > 3, simply replace my with m x

Mz X* * * XMp2, My with mp_{ and m3 with m, .
Q.E.D.
We now present our most interesting result so far for the distribution
of the number of N.E.:
Theorem 2: The probabiiity distribution of the number of N.E. approaches
the Poisson distribution with mean 1 as the numbers of strategies of two or

more players approach infinity.
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Proof: As inthe proof of theorem 1, we begin by demonstrating the proof for

ne=73. We know from the proof of theorem 1 that

Pxia (1)

= Prpplt)

=11 (efpy/ (mymp) = Apg/ (mymg) + 1)

= exp (log [ 1 (e"Apy/ (mymy) = Ayy/ (mymp) + 1)1}

=exp {Z[log ( (et-1) ?\m/(mtmz) +1) 1

= exp {Z {[(e! 1) Apy/ (mymg)] = (172X (et =1) Apy/ (mymp)}2 +

(l/3)[(et—l)?\m/(m,m2)]3 -}, for-o0ctslog2.

We note that
Pyt

5 exp {2 [(et ") ?\hJ/(m;mz)]}

= exp{el =1) ,
and (me(t)

2 exp {Z[(et-1) ?\hj/(mlmz)]- 172[(et -1) ?\hj/(mmz)]z} .

(1)

(2)

Let A be the event that Ay, ¢ cmy'/3 for all (h,§), and A’ be the event that

Ahj 2 cmz'/3 for at least one (h,j), where c is 2 constant. Then



‘Px(t)
= Ez[‘?xm(t )3

= EKEA[‘PXiA(t)]‘P(A) + EJLEA'WXIA(”}'NA') .

Note that P(A')

mz
i Mymsz T

(™M) (1/m3) Y 1-1/mg) ™29
q=lEm,i/3] 9 ’ }

and let mp=m3 =T . ThenP(A’)

£ MM

(MY (/)8 ca-1/q)Me
B3] 3 (/M) a-1/m)

s myn{n-en 3 1/1en 13
< mym@/len 3N

(1) and (2) ==> 0 < Exealfy |5 (1)] < exp(el-1). Therefore, as m ~— o,
ExealPya(t)I-P(A) =0,

From (1) and (2), we also know that EMA[‘PXQ(U]-P(A) is bounded below
by Egea {exp (Z (et -1) ?\m/(mm)] ~1/2{(et -1) J\hj/(mm)]z}}-P(A) and

above by exp(et-l )-P(A) . Since these bounds both converge to exp(el-1) as

T| = %, it follows that EMA{(me(t)]-P(A) = exp(et-1) as T — o0,

Thus, mz’Ltinrr;_m‘Px(t)

= exp(el-1) ,

which is the moment generating function of the Poisson distribution with mean
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1. Since the result holds for all my, it holds as mq goes to infinity, and thus

we have proved the theorem for n= 3,

For the proof of the theorem when n >3, simply replace m; with my x

My X* " XMp_ >, My with me_y and m3 with m, .
Q.E.D.

we would like to make two remarks about Theorem 2:
(1) For the Poisson distribution with mean 1, P(x{) = 0) = 0.3679, P(x(M) =
1) =0.3679, P(X(M) = 2) = 0.1839, P(x(M) =3) = 0.0613, .... Thus, we can
see that P(X(") »3) = 0.0190, so that even though there are infinitely many
possible outcomes when the numbers of strategies of two or more players go
to infinity, the chance is very small that there are more thanthree N.E. We
also note that it is not so rare to have a N.E.
(2) Insection 3, we gave an intuitive argument why the result of the theorem
holds when the numbers of strategies of two players go to infinity. Actually,
a stronger result than the one that we anticipated holds, since the result is
also valid when the numbers of strategies of more than two players go to
infinity.

Now we turn to weakly ordinal games. Instead of stating the results
for the 2-person weakly ordinal game first, we proceed directly to the
mperson weakly ordinal game. As inthe case of strictly ordinal games, we

present the results first and then provide the intuition behind them.

5. n-Person Wesakly Ordinal Games
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we use the same notation as that in the n—person strictly ordinal
game, but this time we consider n players who may have weakly ordinal

preferences over the possible outcomes. Again, without loss of generality,
we assume that my< my< **+< mp, andlet (5,85, ..., sp) be
componentwise the strategies chosen by Players 1, 2, ..., n. Let us denote

the ordinal payoffs of Player k by pk( $1s82: ...y Sp), and assume that

independent of the payoffs of the other players, these py( 54,85, ..., s,) are

obtained by & random drawing of M (= Tim } numbers from 1 to M with

repiacement.

This model of a “random” n—person weakly ordinal game is 2 natural
extension of our mode) of a “random” n—person strctly ordinal game. The
drawing with replacement simulates having ties among payoffs for a piayer,
Let 2{n) be the number of N.E. in this weakly ordinal game. We know that
given the strategles of the rest of the players, there are possibly more than
one maximal outcome for each player, where a maximal outcome is an
outcome that yields the most preferred ordinal payoff given the strategies
chosen by the rest of the players. Hence, we anticipate a greater number of
N.E. in this game than that in our strictly ordinal game, and this belief is
confirmed by our next lemma,

Lemma: E[z¢M] 2 1.

Proof: Fix the strategies of all but Player x, and consider the oné or more
maximal outcomes for Player k. ldentify one of these outcomes as the

"designated” maximal outcome and the rest, if any, as "undesignated”
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maximal outcomes. Then define

1 1 (54, Sz, «.+y Sp) glves Playerk a
designated maximaj outcome

lk(st, 52, trey sn)'-' [ )
0 otherwise

1 If (s, $2, ..., Sp) glves Player k an
undesignated maximal outcome

Jc(s4y 820 ¢ ..y 8) = [
0 otherwise

and let
18, S35 +2.s Sp) =Ulk(s‘, 83y ++es Sp)

sy 82y +0uy 8p) =D[Ik(s1. S2y «eny Sp) + I8 520 v 0vy Sp)) -
D[lk(s" 825 »+es S0l -

We recognize that

S0y +vvy 8o) = X{N) the number of N.E. in the strict]
(81, Sz, :z-u Sp) Isy 52 n) ¢ humbe n the strictly

ordinal game, and we know that Elx{n)] = 1 (section 3). Let us also define

= yin) (n) -
(51, 52, E, 5p) J(sy, 83, ..., 5p) =Y\, Since Y'™) ts 2 non—negative

random variable, it follows that E[Y{")] 2 0. We can see that 2(n) = x(n) 4
v(n) and so Efz(N)) = Ex(My+ L v(ndy, 1, for all my, my, ceryMp.

0.E.D.
Proposition 6: The expected number of N.E, approaches

(1/m)(1/(1-e"1/M)), wherem= myX myX ...X M1, 25 the number of

strategies of Player n goes to infinity and the numbers of strategies of the
other players remain finite,

Proof: E[2¢N)]
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= (M) T {Mm )™M [m ) ™+ (m=1)P6T + (Mme=2) M+ 00 4
(Mimy~(m,-1)) ™1},

Let M = m, and let v be the index for Players 1, 2, ..., n-1, so that fm, = m

andimg=mT. Then

Efz(n)]

=m T{{m)™ My [(ma) ™!+ (m-1)M 1+ (my2)My= 14 oon s
(ma=(mm- 1) ™1 q {((m) " W{my) T+ (ma-1)T"T + (mm-2)0 0 4 - v et
(my-{mn-1))7"1])

= m [ Lemmy™" - B =)™ 1/m) T (-1 1), ang

Tli.Lr&EEZ(“)]

=m [Uj;(l-e)mv" dé)- {(1/m) E;l(l-i/(mq))“"] (where © is just a

dummy variable)
= m(1/m)-[(1/m) L1, z11 o (1U/(ma)T1]

= (1/m)(1/7(1-¢~ /MYy |
Q.E.D.

Since the solution to the last 1imit is not found in any table or textbook that we
have consulted, we have provided a proof for the relevant identity in the
appendix (p. 42).

Wwe would Hike to point out that (1/m)(1/(1-¢~1/M)) is a decreasing

function on m € {1,00), taking values between e/{e-1) (=1,5820) and 1. This
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is consistent with the result in our Lemma. Our next step is to study the
distribution of the number of N.E. when the number of strategies of Player n
goes to infinity and the numbers of strategies of the other players remain

finite,

Theorem 3: The moment generating function of the probability distribution of

2
the number of N.E.approaches ‘Pz(t) = (ll(l—e'?‘))'(e?‘ (et-1) - 8'7‘))”7‘ ,

where A= 1/m (m=myx MyX ...Xx My_1),28 the number of strategies of

Piayer n goes to infinity while the numbers of strategies of the cther players
remain finite.

Proof: Let W equal the number of maximal cutcomes of Player n for a given

compound strategy chosen by Players 1, 2, ..., n—1, iet M = Tim;, the total

number of possible outcomes, and let T} = m,,. Then

(m-1)

P(W=w)=M/M =M , for w =1, and

pw =w) = () =Y e =21 e e T for 0 cwen
=(0 M ™i=1" Y4 ez ooe s G-t
For any (84, 83 ..., 54), the probabiiity that Player k's strategy gtves him a

maximal payoff given the strategies chosen by the rest of the players is

M e =™ (14-2)™ 4 o4 1)m™L Let Rbe the event

mk-l

n-1
that this is true for Players 1, 2, ..., n=1. ThenP(R) =kﬂ_l(r1 +

M- s (m-2) ™y m™k
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Now, let Z; be the number of N.E. when the strategies of Players 1, 2

n-1 are fixed. Thenforl » 1,
P(2i=0)=P(W="1) [‘El] (F'(Ft})‘:(I-—P(R))‘rl—C +
-1 w
11}:cp(w = w) (2 (peryyS1-p(ryy™ S,
w’:

If we let A = 1/m, then as T -~ee,

Hm Pz =0 =0 f:lwwn Ao Ma1-e MLl -t
w=
= A2Le M /(iC1-e7 AN 1 2 (AW-L 7(w-L )1) - (1-n)W-C ]
- D\Z(e-?\./(u(;-e-?\) ))-eA(1-A)
= 220 e"\zl( Li(1-67A)), and
o0
P 2L -2 )\
HmPz=0 ICEID\ C o2/ Li1-672))]

o 2
= 1= (1/( l-e'l))-[cz l(:\Z)C oA/l
= 1- (1701-670)) - (1-6"7? )
- (oAl e N)/(1 - ey,
Hence, the moment generating function of the limiting distribution of Zj, 88

T2, is
tle?) = (62 - gh)/(1-0"0) 4 c’{_’-] (et a2 &A%/ Li(1-67M))

= (2= g M)/(1-67h) + (1/(1-e"Ny) (AP (611) - o)
= (1(1-e7M))(eA2let-1) L g2y

We note that

!'.Ii_’ngoﬂW]
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—(7- - _ )
* i (nAi " ”+3§‘w[3](1/n)“i(1-tmﬂ W ez Y s

C=(M-1) MY
=0 +WE;‘(1/(w-—1 ) AW - (e~ 7(1-e"D))

=M (1-e M) ¢ oo,

Thus, for a given compound strategy chosen by Players 1, 2, ..., n-1, the

number of maximatl outcomes of Player n is finite in the limit as 7|00 with

probability 1. Since the number of compound strategies is finite, it follows

that tn the limit 2s T~oc, the maximal outcomes of Player n for 21l compound
strategies chosen by Players 1, 2, ..., n—1 2re achieved with distinctly
different strategies with probability i. Therefore, the number of N.E. for

any compound strategy i {s independent of the number of N.E. for any other

compound strategy, and so the moment generating function of Z(“) = igzi s
the total number of N.E., is (E[etzil)lm = {{(I/(I—e’?\)]-[elz(et")
_ e'}‘]}”l '

Q.E.D.

It is regrettable that we cannot extract the exact probability

distribution from this moment generating function. However, we do know its
mean already, and we ¢an find out its variance and higher moments by using
the moment generating function.
Proposition 72 The expected number of N.E. approaches 1 as the numbers of
strategies of two or more players go to infinity.

Proof: E[2{n)]



-33-
= (Mmy ) T {(Im )™M LMm )™t + (Mmp= 1) T+ (Imy=2) M1+ -o0 4
(Mmy=(Nmy=1)) M1},

Let T = Mpoy = Mp—yat = Mp_ye2 = **°= My, let v be the index for Players 1,

2, ..., n~u-1, and let y =Tim,,, so that Nimy= u'r[””. Then

grz(r)
=} ﬁ{(pﬂ”“‘)‘mv [ hmy-1a (upT-nyme-1 4 (i iozym-14
- +(J_,Tlu+l,(pnu+l_,))mv-|n .-nlﬁ'l{(pnu*l)-ﬂ [(Jmuﬂ -t e

(p-nu*’l_l )11-1 + (‘u:rlu*'l_z)'n-‘ o+ s 4 (unml-(pnu"‘l_1))n'1]}u+l

utlog
=p I GpnttH=t - }:1}.__0 (-7 (pmitty)ymy-1g.

i U"']_|
[(1/(umY)) '1}0 Q- (unt N1t ang
Lim £{z{M)]
1’1-’00
- wIf ! (1-8)myT gel- Lim [(1/( unm&w"u-u( W)t
= B, v 3 An (20 H7
(where © is just a dummy variable)

ay, KR Wy 1t
=p(1/u)-11f_§gx°{(1/(pn ))i=0 (1=i7(pn @ IOV,

‘u U'"L.]
Now, [(1/(pm¥)) 120 (t-i/(umutl))ya-tjut

gl "
stargm®)y g0 (VT
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o u+1
1[(1/(;111U))i=zo(e-i/(un ) )R- tyu+
e (/MUY 17(1-e~ (1 (G Tyt

= [/ (mem D/ Dyt
Using L'H opital's rule, we find that Lim (MU (1-e~ (DM Dy oy

Hence, %lgwo eiz{ry e, Together with our lemma, it follows that
Lim E[z{M] =1,
'q-ioo
Q.E.D.
Theorem 4: The probability distribution of the number of N.E. approaches the

Poisson distribution with mean 1 as the numbers of strategles of two or more

players go to infinity.

Proof: Let T\ = Mp_y = Mp_4y = Mp—ye2 = °°° = My, Then the following are

true:
("M«
1&._1@ EixtnN/]=1 (from section 3)
thg‘ Efz{n)y =1 (from Proposition 7 in this section).

since EZ(M)] = £lx(M) + £1¥(M], we conclude that Lym ErY(M1=0.
Using Markov's inequality and the fact that Y(“) 2 0, we see that for all € > Q,
(n)_ (n)
Lim, P(lY of2€) s l..l{_r‘rLOE[Y )€
= Lim P(Y(M -0l.€)=0

=> Lim PN -0]>€)=0
00

<==>vy(n) _P 59
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=>y(n) dist. yq
We know from Theorem 2 in section 4 that X{N) _dist.y x. where X ~

Poisson (1). Since Z{M) = x(n) 4 y(n) x(n) dist.y y angy(n) dist.y o,
we conclude by a standard convergence theorem (see, for example, Chung,

0. 92) that 2(n) _dist.y x,

Q.E.D.

in our weakly ordinal game, each player's payoffs for all outcomes are

obiained by a random drawing of M (=TImk) numbers from 1 to M with

repla_cement. For the sake of completeness, we would like to mention that if

the payoffs for Player k are obtained through a random drawing of M numbers
from 1 to Dy, where Dy is 2 finite constant, then as the numbers of strategies

of one or more players go to infinity, we would expect to see infinitely many
N.E. Actually, we are able to prove an even stronger resuit: the probability
that there are infinitely many N.E. is 1 as the numbers of strategies of one or
more players go to infinity. In order not to distract the reader from our

original model, we have put the proof of this result in the appendix (p. 43).

6. Intrepretation of the Results in n—-Person Weskly Ordinal Games
it is very curious that the limiting distributions of the number of N.E.
for the strictly and weakly ordinal n~person games are different when the
number of strategies of only one player goes to infinity, but are the same
when the numbers of strategies of two or more players go to infinity. In this

section, we shall try to explain this apparent oddity.
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Inthe n-person strictly ordinal game, the payoffs of different
outcomes for a particular player are ail distinct. Hence, there is always
only one maximal outcome for a player when the strategies of the rest of the
players are fixed. Now consider an n-person weakly ordinal game when the
number of strategies of Player n goes to infinity while the numbers of
strategies of the other players remain finite. Given any compound strategy

chosen by Players 1, 2, ..., k=1, k+1, ..., n, the probability that all of the

my ordinal payoffs are distinct for Player k (k=1,2, ..., n-1) goesto i,
since Player k's finite my ordinal payoffs are drawn with replacement from an

infinite collection of numbers: 1,2, ..., M(=myxmyx - xmp). Thus, in

the limit, there is only one maximal outcome for Player k when the strategies
of the rest of the players are fixed, and this is similar to the strictly ordinal
n-person game. However, this is true only for Player k, wherek=n, For

Player n, there is, with positive probability, more than one maximal outcome

in the limit when the strategies of the rest of the players are fixed, since in

this case, an infinite number of ordinal payoffs, m,, is drawn from M

numbers, where M is just a finite constant times mp. This crucial structural

difference destroys any hope of having the same results in both the strictly
and weakly ordinal games.
Next we consider the n—person weakly ordinal game when the numbers

of strategies of two players go to infinity, and the numbers of strategies of
the other (n-2) players remain finite, Consider Piayer k's my ordinal

payoffs given a particular compound strategy chosen by the rest of the
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players. Since Player k's my ordinal payoffs are drawn from M (= m;x m, x
*+* X Mp) humbers with replacement, and M approaches infinity at a faster

rate than my, the probability that Player k's my ordinal payoffs are all

distinct and that there is only one maxima) outcome goes to 1. We note that
this is true for all players, and that this structure is thus similar to the
structure _of the n—person strictly ordinal game. Hence, it is not surprising
that the limiting distributions of the number of N.E. are the same for both the
str'lctly and weakly ordinal games. We also observe that the foregoing
discussion Is equally relevant when the numbers of strategies of more than
two piayers go to infinity.

Lest anyone think that for each player the ordinal payoffs of all
outcomes become distinct as the numbers of strategies of two or more
piayers go to infinity, we would like to remark that this is not true. In fact,
even though the probability goes to one that there is only one maximal
outcome for Player k (k =1, 2, ..., n), for any given compound strategy
chosen by the rest of the players, the probabflity does not go to one that
there is only one maximal outcome for Player k for 2//7 given compound
strategies chosen by the rest of the players. This may seem paradoxical at
first, but it is piausible because the other players can choose from an infinite
number of compound strategies. We know from the proof of Proposition 7
that the expected number of N.E. generated from these undesignated maxima
goes to zero, and so we deduce that the undesiqnated maxima of the various

players are never matched up to form additional N.E.
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7. Relaxation of Assumptions

We recall that we have made two simplifying assumptions in our
models. They are in essence: (2) the complete symmetry of the ordinal
payoffs across outcomes for each player, and (b) the independence of
different players’ ordinal payoffs. We used assumption (b) to obtain aimost
all of our results {except Proposition 5, which hoids without any conditions),
but assumption (a) can be relaxed.

in our analysis of the number of N.E. in the n-person strictly ordinal
game, we took advantage only of the symmetry acress outcomes for each
Player k, given any compound strategy i chosen by all of the other players.
Therefore, the results of Theorem | and 2 still hoid if the ordinal payoffs for

Player k, given 1, are drawn randomly without replacement from a sample of
my or more distinct integers.

In the case of the n~person weakly ordinal game, if the ordinal payoffs

for Player k, given any compound strategy { chosen by the other players, are

drawn randomly with replacement from a sampie of fid1*€) distinct

integers, where d = Max{m}, fyy > 0 and € > 0, then the results in

Proposition 7 and Theorem 4 still hold, However, the results for Proposition
6 and Theorem 3 do not remain the same, as suggested by our discussion in
the last section. Actually, the expected number of N.E, is 1 and the
distribution of the number of N.E. approaches the binomial distribution in
Theorem 2 . (The proof is analogous to that of Theorem 4.)

Some readers may be interested in allowing the number of possible

rankings of the outcomes by the players to be fM, 2 fraction of the total
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number of possibie outcomes in the weakly ordinal game. This extension
does not alter the results of Proposition 7 and Theorem 4. However, the

expected number of N.t. in Proposition 6 becomes
C/(im) ) (1/C1-e~ /M)y where m=myx myx *- - x Mp-1, and the result in

Theorem 3 changes in a more complicated way.

in all cases, a relaxation of assumption (a) is possible in that we need
for each player only symmetry among the ordinal payoffs of his outcomes for
a given compound strategy chosen by the other players, and fhe number of
possible rankings of the outcomes by the players to go to infinity at the right
rate. Furthermore, we speculate that in both the strictly and weakly ordinal
games, If the probabilities of each of Player k's (k= 1, 2,..., n) stretegies
to bring about his most preferred outcome, given any compound strategy i
chosen by the other players, goes to 0 as the numbers of strategies of more
than one player go to infinity, then the distribution of the number of N.E. is

still Poisson with mean 1.

8. Conclusion

In this paper, we have considered the number of N.E. in n-person
non-cooperative games in matrix form. Since we have chosen to study only
pure strategy N.E., In which only the ordinality or the ranking of the payoffs
matters, and since all cardinal games can be transformed into ordinat
. games, we have performed our study interms of ordinal games. Under two
very simple assumptions, we obtained a number of interesting results

concerning the number of N.E. in strictly and weakly ordinal games.



- a0~
Specifically, we found limiting probability distributions of the numbers of

N.E. as the numbers of strategies of some players go to Infinity. Our results
show that pure strategy N.E, are not uncommon in clzsses of n-person games

that satisfy our assumptions.



Appendix
f. r n i
Proposition 3: The probability distribution of the number of N.E. approaches
the binomial {m,, 1/m,) distribution as the number of strategies of Player 2

approaches infinity and the number of strategies of Player 1 remains finite.

Proof:

P(Xmy, my = X)

=P(Xm,, m, = x and Z; I[By} < ! Vj) + P(Xm,, m, = X and Z; 1Byl > 1 for at
least one §)

=P(Xp, mp= X1 L 1Byl s 1 V) PCZIByl < 1 V)) + P(Xpy, m, = x1 2 1(Byy)
> 1 for at least one J) P(Z; I[By] > 1 for at Jeast one j)

= [H;J (1/m )X (=17t )P Xma(mg1)(mg2) - - - (mg-meH1)/mM+ P("m,, m,

= x |1Z; I[Bﬁ] >1 for at least one j){(1-ma(mgz1)(mg2) - - - {mgyme+1)/m™).

Therefore, Hpg(xmh my = X)

=[n;'](|/m:)x(1'1/m1)m1_x (1) +P(Xpy, m, =%/ 2y 1[By] > 1 for at least one
$3:(0)

=[O (1/m)%(1-1/mmix

Q.t.D.

..4_1—
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2. We would like to prove that

(i)\l’.lr&ai(v)=ai for everyk =0,1,2, . . .,
(1) 0 < 2(v) < g4 for any v, i
Qe m
ang  (iii) 13 21 ¢ ¥
Vel e
tmply Lim .2 2ilv) = 523 .
Proof: Let Sv=:§(;ai(v) .
- v~1 - o
Then Sy, ¢ 2, 24(v) ‘i-—%a‘ =—>Lim Sy £ 2.8 . (1)
Fix N, and note that for all v 2 N,
vol -1
Sv=i% 3jlv) 2 2 2i(v), sothat
NZ 2y m— $a (2)
BBSv 2 (22 = HR S 2 2
(1) and (2) together imply that Lim VTl (v) = %a
s plythat GAB, (B2 1v) =52 -

Q.t.D.



- 43_
3. We would like to prove the following proposition:

If the ordinal payoffs of all outcomes for player k are drawn randomly
with replacement from 1, 2, ..., Dy, where Dy is a constant, then the
probability that there are infinitely many N.E. is 1 as the numbers of
strategies of one or more players go to infinity. |

Proof: Let T = Mp—yy = Mpeippy = Mpoyyp = *°° = Mp, 2N6 My = o0,

Fix the strategies of the first n-u-1 players, and let £, be the event that in
outcome h, Players n~u, n-u+!, n-u+2, ..., n obtain their most preferred
ordinal payoffs, Dp_\;y Dp-ye1s Dpmye2s «ov s Dpye

Since the Ey, are independent, and since I P(Ey) = U1/ (Dp-y Dpeyi g
Dp-y+2 ** *Dp)l = , it follows from the Borel-Cantelli Lemma that P(Ep
appears infinitely often) = 1,

Let Z{M),_ .| = the number of N.E. given that the strategies of the first
n-u-1 players are fixed, and let

pe ";f,*"'{[ o ™ (=) ™ (0=2) ™4 L+ 11D, ™). Then,

for all finite ', P(2(M) _ _; < 2)

= P(Z(")n_u_; < 7' | Ey, appears infinitely often)

= Lim é ({g]pq(l-p)w-q
wreo 4=0
=0,

Hence, P(Z(")n_u.., »2) =1

== P(2(N) 5 7') = 1, for all finite z' .
Q.E.D.
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