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1. INTRODUCTION

This paper considers the linear regression model with intercept, multiple
stochastic regressors, and errors with undefined means. This model is of
interest from a robustness perspective, because it represents a polar case.
The least squares (LS) estimators generally are inconsistent in this model.
It is shown, however, that this inconsistency is restricted to the estima-
tion of the intercept, if the regressors are highly variable. For example,
if the regressors and errors exhibit the same degree of variability, as
measured by their maximal moment exponents, then the LS slope parameter
estimators are consistent, Further, in some cases, thelr rates of conver-
gence to the true parameters exceed n_l/2

The results given below are sufficiently general to incorporate time
series, cross-section, panel data, seemingly unrelated, and multivariate
regression models. Somewhat surprisingly, the results are obtained without
any assumption on the temporal dependence of the errors. In this regard,
some interesting new results also are obtained for LS estimation of linear
regression models with well-defined error means. In addition, some of the
preliminary results apply to dynamic linear regression models,

The paper is organized as follows: The remainder of this section moti-
vates consideration of the model referred to above, discusses the relevant
literature, and outlines the results of the paper. Section 2 presents the
basic consistency and fate of convergence results for the case of M-depen-
dent regressors. The rate of convergence results are shown to be sharp, in
soﬁe contexts. Section 3 extends the results of Section 2 to models with
infinite-order moving ;vefage repressors with heterogeneous innovations and

1



2
heterogeneous moving average coefficients. Section 4 considers cases where
somé regressors are highly variable while others are not. Section 5 provides
some Monte Carlo results that illustrate that the qualitative asymptotic re-
sults carry over to finite samples, and that compare the LS estimator to a
classical robust regression estimator. The final section, Section 7, draws
conclusions based on the results which precede it. An Appendix provides
proofs of the resuits given in the paper.

The statistical literature on robustness has developed from the analy-
sis of the location model, i.e., the problem of estimating the "center” of a
distribution, see Huber (1964). In the location model, there are many ways
of exhibiting the lack of robustness of the least squares (LS) estimator to
fat-tailed errors. A dramatic method is to consider a polar case, viz.,, the
case of errors with undefined means. For this model, the. converse to the
strong law of large numbers implies that the LS estimators are not even con-
sistent, In less fat-tailed error cases, it has been shown that the LS esti-
mators are consistent, but are relatively inefficient asymptotically.

The location model is of limited interest in econometrics. Many tech-
niques that were introduced and justified theoretically for the location
model, however, have been extended to regression models, both linear and
nonlinear, e.g., see Huber (1973), Maronna and Yohai (1981), Krasker and
Welsch (1982), Koenker (1982), Bierens (1981), and Andrews (1983). Thus,
the robustness literature is of relevance to econometrics. Robust regres-
sion techniques have been designed to work well wﬁen the errors have fat

tails, and the evidence suggests that such phenomena do occur with some eco-

nomic data (e.g., see Koenker (1982), Andrews (1983), and Judge et al.

(1980, Ch. 7)).
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For numerous reasons, a prime one being analytic tractability, theoret-
ical Justifications for various robust regression procedures are not as well
developed as their analogues for location models, e.g., see Huber (1973,
1983) and Krasker and Welsch (1982). Thus, appeals to the analogy with the
location model are fairly common (at least at an informal level).

This paper addresses one aspect of such analogies, wviz., the question
of consistency of LS when the errors have undefined means. The purpose of
analyzing this question is three-fold. First, following a long traditiocn in
mathematical analysis, we believe that in order to understand some phenomena
over a wide range of circumstances, it is extremely useful to understand its
behavior in polar cases. For considerations of robustness, the polar case
of concern is the case in which the errors have undefined means. Second,
the polar case may be of iﬁ;erest in and of itself., That is, in some re-
gression applications the assumption of undefined error-means may be appro-
priate. Third, we are interested in the extent to which analogies between
the location model and the regression model are appropriate. And, if they
are not appropriate in some respect, we would like te know which features of
the regression model are important in explaining the differences. The anal-
ysis below seems to provide useful results for each of these three purposes.

One might expect that the properties of LS in linear regression with
undefined error means would have been worked out in the robustness litera-
ture some time ago. In fact, this is not the case. Only recently have some
properties been investigated, see Kanter and Steiger (1974), Chen, Lai and
Wei (1981), and Cline (1983). And it is interesting to note that in none of

these papers has the issue of robustmess been a prime motivating factor.2

Chen, Lai, and Wei (1981) consider the linear regression model with
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fixed regressors and independent identically distributed (iid) errors. As a
by-product of some general consistency results, they find that LS slope co-
efficient estimators are consistent even if the errors have undefined means,
provided the regressors exhibit sufficient variability (see their Corollary
4).

In econometrics, the regressors in linear regression models often are
random. For present purposes, it is more appropriate to analyze the regres-
sion model treating the regressors as such, than to condition on the regres-
sors and treat them as fixed. The reason is that the consistency results
depend crucially on the behavior of the regressors, and the former method
forces ome to relate their behavior to underlying assumptions on their joint
distribution.

Cline's (1983, pp. 115-121) results for undefined error means apply to
a linear regression model with a single stochastic regressor, no intercept,
and iid, mutually independent, regressors and errors. His results include
those of Kanter and Steiger (1974, Lemma 4.3)., Cline shows that if the re-
gressor and error are in the domains of attraction of stable random vari-
ables (rv’s), and the regressor is sufficiently highly variable, then the LS
slope estimator is consistent. In addition, he derives the asymptotic dis:
tribution of the LS estimator (for the case of univariate regression through
the origin, when the regressor has smaller maximal moment exponent than the
error) and finds it to be given by that of a ratio of dependent stable rv's.

In this paper, we present consistency results (including rates of con-
vergence), for the undefined error mean case, which are considerably more
general than those referred to above. We consider a linear regression model

with multiple stochastic regressors and an intercept. The errors and
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regressors may be temporally dependent and non-identically distributed, and
need not be mutually independent. Thus, our results apply in both time
series and cross-sectional contexts. 1In fact, in the time series context,
no assumption at all is placed on the extent of temporal dependence of the
errors,

The consideration of an intercept reflects the almost universal use of
intercepts in econometric applications. A consequence of using an intercept
is that we get different rates of convergence than those found by Cline
(1983). Also, by considering multiple regressors with possibly infinite
second moments, we face an identification question that does not arise in
the single regressor model considered by Cline. On the other hand, we do
not derive limit distributions here, as is done by Cline. Our methods of
proof differ considerably from those of Kanter and Steiger (1974), Chen,
Lai, and Wel (1981), and Cline (1983).

The consistency results depend on the relative magnitudes of the maxi-
mal moment exponents of the regressors and the errors. For example, if the
regressors and errors have equal maximal moment exponents, as might be ex-
pected if the errors contain left out variables, then the LS slope estima-
tors are consistent. The conditions for consistency require at least the
second moments of the regressors to be infinite, when the errors have unde-
fined means.

Rates of convergence to the true parameter are given and are shown to
be sharp in some contexts. These rates are found to be very fast in some
cases. For example, if the regressors and errors are Caﬁchy. then the rate
is 1:1_l . If the regressors are stable with exponent a and the errors are

Cauchy, then the rate is n—l/a , for any a ¢ (0,1) . Thus, the rate is



arbitrarily fast, for a arbitrarily small.

This paper also considers the case where some regressor variables have
infinite second moments, while others have finite second moments. Consis-
tency of the LS slope estimators for the parameters of the more highly vari-
able regressors is established, under certain conditioms.

An interesting by-product of the results for the case of undefined
error means is a new result for the case of well-defined error meéns. Sec-
tions 2-4 show that under no assumptions regarding the temporal dependence
of the errors, the LS slope estimators are consistent, if the regressors
have infinite second moments (and well-defined means). Thus, the errors may
contain a time invariant random component, or, the errors may evolve in such
a fashion that their future conditional distributions depend strongly on
their past realizations.

Similar consistency results, that do not require any assumption on the
temporal dependence of the errors, are given in Andrews (1985¢c), for the
case of LS with integrated regressors. In these models, the regressors have
finite, but exploding, variances, and ;he errors may have exploding means
and/or variances. In contrast, the regressors.and errors considered in this
paper are not exploding in any sense. Stationary models are special cases
of the models considered here. A distinct difference between the results of
this paper, and those for models with integrated regressors, is that in the
present case the "signal" from the regressors does not dominate the "noise”
from the errors as the sample size increases. In fact, the consistency re-
sults given here include stationary models in ﬁhich the regressors are less
variable than the errors (as measured by their maximal moment exponent) for

every observation,



2. CONSISTENCY AND RATE OF CONVERGENCE RESULTS
Consider the linear regression model

(1) Yi = <, + Xiﬂo + Ui , i=1, ..., n,

0 and Ui are real-valued, and X

RK—valued. g and ﬂo are unknown parameters. OQur attention will focus

where Yi , ¢ and ﬁo are

i
on the estimation of ﬁo .
First, we introduce some notation: The symbol SE denotes "stochas-

tically less than or equal to." Thus, the rv's W, and W, satisfy

1 2
W, LW if andonly if F_ (wv) = F. (w) , Yw ¢ R, where F._ (w) and
1 2 Wl Wz Wl
FW (w) are the distribution functions (df’s) of W1 and W2 s, Yrespec-
2 :
tively. The maximal moment exponent of a rv W is defined to be

sup{{ = 0 : E|W|§ <=}, If E|W|§ = o (< w) for all ¢ >0, the maximal

moment exponent of W 1is defined to be 0 («) . Thus, the maximal moment
exponent of every rv is well-defined, and lies in [0,»] . The symbol " A "
denotes the minimum operator. That is, a A b = min{a,b}) . The symbol

Amin(A) denotes the smallest eigenvalue of the matrix A .

0f the errors, Ui , and the regressors, Xi , we make the following

assumptions (each of which is discussed below):

ASSUMPTION C1: |Ui| S2U, vi, for some rv U with maximal moment

exponent p > 0 .

ASSUMPTION C2: |xi SE X, vk=1, ..., K, vi, for some rv X with

ol

maximal moment exponent r > 0 .



ASSUMPTION C3: |XikUi| Sg G, Vk=1, ., K, ¥i , for some rv G

with maximal moment exponent greater than or equal to 1 Ap AT .

ASSUMPTION C4: The sequence of rv's {Xi} is M-dependent.

(By definition, {Xi] is M-dependent if Xi and Xz are independent
whenever [i - Z| > M . For example, Mth-order moving average sequences are
M-dependent.)

Assumptions Cl and C2 allow heterogeneity of the errors and regressors,
but prohibit explosive behavior. Since p and r may be any positive num-
bers, we consider cases where the errors and regressors have undefined means
or variances, in addition to cases where they are well-defined. As discussed
in the Introduction, the cases of primary interest, for present purposes
are those with p €1, i.e., those with undefined error means.

Note that it is always possible to construct rv's U and X that sto-
chastically dominate lUiI , ¥i, and Ixikl' Vk , ¥Yi respectively.

For example, take U to have df given by F,{u) = inf F {u) , where
U =1 Ul

FlU I(u) is the df of |U1| . Hence, the strength of Cl and C2 lies in the
i

assumption that p and r are not zero.

Assumption C3 controls the dependence between the regressors and the
errors, For identification of ﬁo » some condition such as €3 clearly is
needed. It is satisfied, for example, if the regressors and errors are in-
dependent. C3 is a much weaker assumption than independence, however, since
it only requires control of the dependence of the tails of the rv's Ui and
Xi . More specifically, for any constant b , assumption C3 applied to the

rv's Ui and Xik is equivalent to the same condition applied to the rv's

Uil(IUi|> b) and xikl(lxik|> b) . Thus, only the tail behavior of U,



and Xik determines whether C3 is satisfied.

To illustrate the generality of C3, suppose ({(U,) and (X,) satisfy

i i

Cl and C2, respectively, and are mutually independent, and [Zi] is an
identically distributed sequence of normal rv's, independent of [ﬁi} and
lii} . Let {Ui} - {ﬁi + Zi} and {Xi} - [Xi + Zig} , for some constant
K-vgctor d . Then, (Ui} and {Xi} satisfy Cl, C2, and C3, even though
the regressors Xi and the errors‘ Ui have a component in common.

To compare C3 with more standard assumptions in the literature, con-
sider a model where E|U1| <« and E]Xik!2 <w , Vkwl, ..., K, Vi
Common assumptions used to prove consistency are: E(Uilxi) =0 a.s., and
ElUixik‘ <o . In fact, the latter condition often is a consequence of the
stronger assumptions E|Ui‘2 < « and E|Xik|2 < o . The assumption C3
holds in this model if just the second condition, E‘Uixikl <o, is im-
posed. The assumption of conditional mean zero is not required.

Assumption C4 (i.e., M-dependence of the regressors) allows applica-
tions to time series models. Since this assumption can be somewhat restric-
tive, however, it is relaxed in Seétion 3 below. Note that no assumptions
are placed on the temporal dependence of the errors,

Next we introduce an idenfification condition that is analogous to theé
usual full rank condition on the regressor matrix. To do so, it is neces-
sary to state several definitions and introduce some notation. A non-
degenerate rv W has a stable distribution if for all constants a, beR,

there exist constants g, h ¢ R such that

(2) L(aW1 + be) = L(gW + h) ,
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where Wl and W2 are independent rv's with the same distribution as W

3

and L(+) denotes the distribution (or law) of a rv.
A distribution F (or a rv with distribution F ) 1is said to be in

the domain of attraction of a stable distribution § 4if there exist con-

stants {c_} and {b_} such that
n n

-1 d
(3) c, ZTWi - bn ——— WO as n -+ @ ,

where {Wi} are iid with L(Wi) = F , and L(WO) -5 .4

Let X ¢ DA(a) denote that the rv X 1is in the domain of attraction
of some stable distribution with characteristic exponent a . (There is a
family of such stable distributions, both symmetric and asymmetric, when

a<2 .) If X ¢ DA(a) , for some a < 2 , then the maximal moment expo-

nent of X is a .

Now, consider the common identification condition for iid linear models

with stochastic regressors:

(4) EXiXi exists and is positive definite.

This condition is not appropriate for our purposes, because it requires the

regressors to have two moments finite. It is equivalent, however, to
. 2 K
(5) E(¢'X)" ¢ (0,@) , V¢ e R with (¢ =1,
and the latter holds, omnly if
K .
(6) |g'xi| € DA(2) , V¢ ¢ R with || =1,

e.g., see Feller (1971, Corollary XVII.5.1, p. 578). (Note that the
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converse does not hold, i.e., (6) does not imply (5). Thus, (6) actually is
a weaker condition than (5).)

For the case of regressors whose maximal moment exponent is less than

two, the natural analogue of (6) is the condition:

N l¢'X;| € DAG®) , W e R with [¢] =1,

for some a € (0,2) . This is the condition we adopt, although we
generalize it teo allew the elements of the regressor vector to be in differ-

ent domains of attraction and to allow heterogeneity over i = 1, 2,

ASSUMPTION C5: ({X,) satisfies: V{ e RX with el =1,
S
¢ %, ] Exg . ovi,

for some real-valued rv X_ ¢ DA(a) , where 0 < a < 2

c

For purposes of illustration, we give two examples of regressors that

satisfy C5. First, suppose the regressor vectors are identically distrib-

uted and the regressor elements xik are mutually independent, for
k=1, ..., K, and Xik € DA(ak) , for some @ € (0,2] , vk =1,..,, K.
Then, C5 holds with a = max{ak k=1, ..., K} . Analogous non-identic-

ally distributed examples are easy to construct.
Alternatively, suppose the regressors are identically distributed, and

€ DA(a

the distribution of Xi is such that each element Xi for some

k) ¥

, and each sub-vector of Xi , comprised of

k
o € (0,21 , vk=1, ..., K

elements that are in the domains of attraction of distributions with the

same characteristic exponent @ is in the domain of attraction of a full
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multivariate stable distribution with characteristic exponent o .5 In

this case, C5 also is satisfied with a = max{ak t k=1, ..., K}

A

The LS siope estimators f of ﬂo are defined by

n

- (s - ) o, - )

where (¢) denotes some generalized inverse.

Our first result for the LS estimators is the following:

”

THEOREM 1: Under assumptions Cl-C5, the LS slope estimators f of ﬂo in
model (1) satisfy:

A

{(a) p -~ ﬂo as n—-+®© a,s., if

2p when p

A

l and r

v
b

a < 2p/(14+p(1l/r - 1)) when p<1l and r<1

2 when p

v
[

provided r > 2a/(2+a)

(b) if r = a (as occurs, for example, if the regressors {Xi} are

identically distributed and each element Xi € DA(a) ), then

A

g~ ﬂo a5 n = o a.s., provided

k

p/(1-p) when p < 1/2
a <4 2p when 1/2 <p <1

2 when p>1
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(c) nf(ﬁ - ﬁo) -0 as n-+« a.s., for all § >0 such that

([ 2/a — 1/p when p<1l and r>1
2/ - 1/p+1—-1/r when p<1l and r <1

£ 2/a — 1 when p21l and rz21 ,
L 2/ = 1/x when p21 and r<1

provided r > 2a/(2+a)

The proofs of Theorem 1 and all of the results that follow are given in

the Appendix.

COMMENTS: 1. The Theorem yields consistency and rates of convergence for
the LS estimators of slope parameters for cases where the errors have unde-
fined (p < 1) and well-defined (p-> 1) means, The crucial factors are
the relative variabilities of the regressors and the errors, as measured by
r and o, and p , respectively. Parts (a) and (b) and Figure 1 show
that consistency m;y hold even if the errors have undefined means, and are
more highly variable than the regressors, i.e., p <1 and p<r<a.
Part (c) and Figure 2 show that very fast rates of convergencé occur in cer-
tain contexts. In particular, no matter how small the maximal moment expo-
nent p of the errors, the LS estimators may have a faster rate of conver-
gence to f, than the standard rate o l/?

2. For the case of well-defined error means (p > 1) , the consistency
results generalize existing results for models without trending regressors

by avoiding assumptions on the temporal dependence of the errors, and by

avoiding the assumption that the errors have conditiocnal mean zero given the

regressors.
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3. The length of the interval [r,a] indicates the variation in the
maximal moment exponents of the different elements of the regressor vector
Xi . 1If each element has the same moment exponent, then we often have
r=oa . (This is necessarily so in the case of identically distributed re-
gressor vectors.) The condition r > 2a/(2+a) in parts (a) and (¢) is a
restriction on the length of [r,a] . Figure 3 indicates the admissible
[r,a] fanges for the results of the Theorem.

4. Bounded influence estimators (see Maronna and Yohai (1981) and
Krasker and Welsch (1982)) are, at best, nl/z-consistent in the above
context. Hence, the LS estimators may exhibit faster rates of convergence
than bounded influence estimators, even when the errors have undefined
means. On the other hand, if the regressors are m«t highly variable, then
LS will be inconsistent whereas bounded influence estimators still will be
consistent. (In addition, bounded influence estimators may be more stable
than LS (see Andrews (1986b)), and may perform better than LS under differ-
ent forms of model failure.)

5. The proof of Theorem 1 makes extensive use of a result of

Loeve (1955, Theorem 29.E.1, p. 387), see Lemma A-1 of the Appendix,

The next result shows that even though the assumptions of Theorem 1 are
quite weak, the bounds on the rates of convergence, and on the values of

a , are best possible when the errors have undefined means and r = o :
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THEOREM 2: In Theorem 1 above, and Thecrems 3 and 4 below, the upper bounds

on a and £ are sharp for the case r«a » 1 and p <1 . That is, in
these cases, the replacement of the strict inequality " < " by a weak in-
equality " < " in any of the expressions bounding the values of « and ¢

in parts (a), (b), or (c) renders the corresponding result false.

COMMENTS: 1. The proof of the Theorem proceeds by producing counter-
examples to the Theorem when " < " 1is replaced by " < ". These counter-
examples are not pathological. Rather, they consist of quite standard
models, In particular, they assume mutually independent, iid regressors and
errors that are in the domains of attraction of stable laws.

2. The proof uses some results of Cline (1983) concerning the domain of

attraction of the product of two rv's.

3. INFINITE ORDER MOVING AVERAGE REGRESSORS

In Section 2 we considered the case of M-dependent regressors. Unfor-
tunately, the assumption of M-dependence can be restrictive. For example,
it precludes the case of autoregressive or ARMA regressors. In this section
we relax this assumption by considering regressor vectors that are infinite
order vector moving averages with heterogeneous innovations and heterogene-

ous moving average (MA) coefficients. That is, we suppose the regressors

-]

are of the form X, = Z A, .,e. , Wwhere the A,. are K x D non-random
i =0 1j71-] ij
coefficient matrices, and e, : i=...-1,0,1, ...} is a sequence of

random innovation D-vectors. Under the assumptions introduced below, the
infinite sum converges absclutely with probability one, so Xi is well-

defined. Infinite order moving averages allow for a rich array of temporal
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dependence of the regressors. This is illustrated in the stationary finite
variance case, by the general results for Wold decompositions.

0f the innovations, [ci] ., and the moving average coefficients,

[Aij} , we make the following assumptions (which are discussed below):

ASSUMPTION D1; {ci} is a sequence of independent random vectors,

ASSUMPTION D2: "‘i" Sg E, Vi, for some rv E with maximal moment

exponent r > 0 (where |+| denotes the Euclidean norm).

ASSUMPTION D3: ({e;) satisfies: V{ e R® with el =1,
o7 _
lere] 2, v,

for some real-valued rv E_ ¢ DA(a)

c ., Where 0 <a <2 A 2r .

ASSUMPTION D4: [Aij] satisfies: "Aij" < Mj ., Y¥i , for some constants

L]
Mj » J~0,1, ..., that satisfy T (M )b <o, for some b<rtAal.

=0 3

ASSUMPTION DS: {Aij} satisfies: For some j and some § >.0

Amin(Aiinj) =26, Vi,

5T &

, for some rv. ¢ with maximal moment exXponent greater than

ASSUMPTION D6: |e, . ,U,| , ¥&=1, ..., D; ¥j=0,1,2, ...,
i-j, 271

¥i =1, 2,

or equal to 1 Ap Ar , and D4 holds with some b< 1l ApAT .

(Note that ci-j 2 denotes the £th element of ¢, ., .)

=]
Assumptions D2 and D4 allow the regressors to be non-identically dis-
tributed. The condition on the decay rate of the dominating constants M.j

of the MA coefficients is stronger than the standard assumption
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-]

T M )2 < o ., The stronger condition is used to establish almest sure
j=0 3 .
convergence of I Aijzi-j (and is used elsewhere in the proof of Theorem 3
j=0
below).

Assumptions D3 and D5 are identification conditiong that combine to
imply C5. These assumptions could be replaced by C5 In the results that
follow, but it is preferable to impose conditions that are as primitive as
possible., Thus, all assumptions are placed on the underlying innovations
and MA coefficients rather than on the regressors themselves. D3 can be
motivated in the same manner as C5 above.

To see the content of assumption D5, consider the case where Aij does
not depend on i . For example, this occurs with stationary regressors. In
this case, D5 holds if and only if AjAj is positive definite for some j
This condition is used to ensure sufficient independent variability of each
of the elements of the regressor vector Xi .

Assumption D6, like assumption C3, is used to control the tail depen-
dence between the regressors and the errors. Clearly, it holds if the

errors and the regressor innovations are independent, It is a much weaker

assumption than independence, however, as the discussion following C3 indi-

cates,

o0

To see that I [A..[|-]¢, .| <= a.s., and hence, that X, is well-
. j=0 ij i-j i

defined, take b as in D4, i.e.

© b
nL_fouaij I ley n]

, b<ral . Then,

|

o]
]
~
=
~

o

3

(8)

IA
‘M
~
=
o

o
fi
Fa

8
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using D2, D4, and the inequality (v+w)b < vb + wb for v=20, w=20,

. o
and 0 =<b=<1. This implies immediately that = "Aij"'uei—j" <« a.s.
0

With the above assumptions replacing assumptions C2-C5 of Theorem 1, we

have:

THEOREM 3: Suppose the regressors are of the form 3 Aijei-j in model
j=0

(1). Under assumptions Cl and D1-D6, the LS slope estimators fp satisfy

the convergence results of parts (a), (b), and (c) of Theorem 1.

COMMENT: This result applies in a wide variety of time series contexts. No
assumptions are placed on the temporal dependence of the errors, and the re-

gressors can be infinite order moving averages with heterogeneous innova-

tions and MA coefficients.

4. REGRESSION WITH SOME REGRESSORS HIGHLY VARIABLE

AND OTHERS LESS VARIABLE

This section considers regression models in which different regressors
exhibit differing degrees of variability. Such situations arise quite fre-
quently in economics. An obvious éxample is the case of regression with
random regressors as well as a seasonal dummy. For the case of errors with
- undefined means, we show that the LS slope parameter estimators of highly

variable regressors are consistent, even in the presence of less variable

Iegressors.

Consider the model

(9) Y, = XiBy +Zj@y + U, i=1, ..., n
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X, e R™, Z, ¢ RL , and U, ¢ R . The regressors

where Y, € R ,
i i i i

{xi, Zi} are split into two groups depending upon whether their maximal
moment exponent is less than two, or greater than or equal to two. The re-
gressors {xi} constitute the highly variable regressors, and are taken to
satisfy the same assumptions C2-C5 as in Section 2 above, or D1l-Dé as in
Section 3 above. The regressors {Zi] are less variable. They may contain
non-random variables, such as an intercept or a seascnal dummy, as well as

random variables. Assume the regressors {Zi} satisfy:

assuMpTION C6: [z, | S8z, vi, for some rv z e L’

ASSUMPTION C7: {ZiZi :1i=1,2, ... ) satisfy a strong law of large num-

bers. That is, is%(2.Z' - E2.2') 22 0 a.s.
n 1 i"i i"i -

ASSUMPTION C8: For some & >0 , X . lEnEZ.Z' 2e>0, for n large.
min{n 1 171

. S < S
ASSUNPTION C9: |2, ,U, I G, ¥E=1, ..., L, vi,and |z, % | 3 G, .
v =1, ..., L, VvVk=1, ., K, V¥i, where G1 and G2 are rv's with
maximal moment exponents greater than or equal te 1 Ap and 1 A Y , re-
spectively.

Assumption C6 is the basic condition that classifies a regressor as
being "less variable." For random regressors, assumption C7 requires some
form of asymptotic weak dependence of {Zi} , such as ergodicity, strong
mixing, or infinite-order moving average form. For fized regressors, €7 is
satisfied trivially, since ZiZi - EZiZ£ , ¥i

Assumption C8 is a standard identification condition for the parameter
vector &, . It is possible to relax this assumption to allow for lack of

identification of ﬂo . This relaxation, however, lengthens the proof of
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Theorem 4 below considerably. Hence, for brevity, we adopt the assumption
as stated. (Note that C8.cannot be dispensed with entirely without changing
the rate of convergence results, In particular, for the results given
below, C8 can be relaxed to the extent that it holds with the vector Zi
replaced by some one of its elements.)

Assumption C9 is analogous to C3. It limits the degree of tail depen-
dence between the less variable regressors, and (i) the errors and (ii) the
highly variable regressors.

The LS estimators of ﬁo in model (9) can be written as
0 5 - (srx; - Sin,zy stz e oy, - Snzyalnap Ty

where (-)_ denotes some gényralized inverse. These estimators satisfy the

following consistency and rate of convergence results:

THEOREM 4: Under assumptions Cl-C9, or assumptions Cl, D1-Dé6, and C6-C9,
the LS slope estimators B of ﬂo for the model (9) satisfy the results of

Theorem 1 parts (a), (b), and (c}) with 3 in place of B .

As stated in Theorem 2 above, the rates of convergence given in this -
Theorem are sharp for the case of undefined error means (p < 1) and
r = a . When the error means are undefined, the LS estimators of the param-

eter vector of the less variable regressors, QO , generally are inconsis-

tent.
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5., MONTE CARLO RESULTS

This section presents some Monte Carlo results for the LS estimator and
a well-known robust estimator, viz., the Huber M-estimator (see Huber (1973,
p. 815)). The results indicate that the general qualitative results for LS
obtained above in an asymptotic framework carry over, more or less, to fin-
ite samples. The Monte Carlo results also provide comparisons of LS with a
robust procedure. These comparisons show that, although LS may perform
quite well in estimating a slope coefficient when both the regressors and
errors are thick-talled, as compared to a thinner-tailed situation, LS m#y
perform much worse than other available procedures,

We consider the simple linear regression model

(11) Y, =co+XBy+U, , 1=1,...,n,

where c0 and ﬁo are scalar parameters, and (Ki} and {Ui} . are se-
quences of mutually independent iid scalar rv's. Since LS and the Huber M-
estimator are equivariant, we can take ¢y = ﬂo = 0 without loss of gener-
ality (e.g., see Andrews (1986a)). The distribution of the regressor Xi
and the error Ui is taken to be symmetric stable with characteristic expo-
nent o equal to 2.0 (normal), 1.5 (Holtsmark), 1.0 (Cauchy), or 0.5. (The
same distribution is taken for Xi and Ui .} The sample sizes investi-
gated are 25, 50, 100, and 200. Fifty thousand repetitions are used.

The Huber estimator considered here is the classical Huber M-estimator

which solves for (c¢,B8,0) the equations:
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=Y (1, - ¢ - X,0)/0) [3;] -0

i
(12)
=Y, - ¢ - X,8)/0)/2 -
1Pt i &
where ¢ 1is a scale parameter, ¢‘(u) = min{x, max{(-x,u)) , &« = 1,35 ,

g - (n—2)-f¢i(u)%¢(u)du , and ¢(u) 1srthe standard normal distribution.
This estimator does not downweight outlying regressor values, and hence, is
not a bounded influence estimator (cf., Krasker and Welsch (1982)).

Our interest is focused on the estimation of the slope coefficient

ﬁo . We describe the distributions of the LS and Huber M-estimator of ﬁo

th

using their 75th, 857", and 95th percentiles.6 Since both estimators are

symmetric about the true parameter value zero in this case (see Andrews

th’ 15th, and Sth

(1986a)), the negatives of these percentiles give the 25
percentiles, respectively. The [25%, 75%] interval is the interquartile
range--a common measure of dispersion. The (5%, 95%] interval is a measure
of thickness of tails. The [15%, 85%] interval is intermediate between the
two.

The first set of Monte Carlo results concerns the LS estimator of ﬁo )

see Table I. These results illustrate the following points:

1. The LS estimator has the bulk of its probability mass (as measured

th

by its 75 or 85th percentile) more concentrated about the true value, the

smaller is the value of « (i.e., the greater is the variability of the re-
gressor and error). This is true for all sample sizes considered. The rel-
ative increase in concentration with declining a increases with the sample

size. This is to be expected, given the faster rate of convergence to zero

as n = « for smaller a ~values.
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2. The LS estimator has thicker tails (as measured by its 95th per-
centile), the smaller is a . This holds for all sample sizes. In addi-
tion, the relative increase in tail thickness with declining o decreases
with the sample size. Again, this can be attributed to the faster rate of
convergence to zero as n + o for smaller values of a .

3. The LS percentiles decline as the sample size increases at poughly

the rate suggested by Theorem 1, viz., nfl for a=0.5 and a=1.0,
n-z/3 for a=1.5, and n_1/2 for a=2.0 .7 For e=1.0 and o =
1.5 this decline is somewhat slower than n_1 and n-2/3 , respectively,

whereas for a = 0.5 it is somewhat faster than n-l .

Table I shows that depending upon the shape of one’s loss function, one
might prefer the behavior of LS with a = 1.0 (Cauchy) over a = 2.0
(normal) for samples as small as twenty-five., A tradeoff exists between the
concentration of the bulk of the density abéut the true wvalue, and the
thickness of its tails. For larger sample sizes, this tradeoff moves in-
creasingly in favor of the performance of LS with smaller a values.

To conclude, the results show that not only does the LS estimator not
perform disastrously in some cases in which the errors have undefined means,
but it actually may exhibit superior performance in comparison with cases in
which the errors are normally distributed. (Of course, if the distribution
of the regressor is held fixed for these comparisons, the results are quite
different. When the error is comprised of left out variables, however, it
often may be reasonable to assume that the regressors and errors display
similar properties, such as similar tail behavior, as is crucial here.)

The second set of Monte Carlo results compares the LS estimator of ﬁo

with a robust regression estimator, see Table II. This Table illustrates
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quite clearly the desirable features of the Huber M-estimator in the present
context. It is much more concentrated about the true value, and has thinner
tails, than the LS estimator (as indicated by the numbers in parentheses)
when @ = 1.5, 1.0, or 0.5. Only in the case of normal regressors and errors
is the LS estimator preferred over the Huber M-estimator, and in this case
the difference between the two is quite small.

From the above results, we conclude that the LS estimator of the slope
coefficient does not perform poorly with thick-tailed regressors and errors,
in comparison to its performance with thinner-tailed variables. Other pro-
cedures, however, perform very much better with thick-tailed variables than
with thinner-tailed ones. In consequence, the performance of LS relative to

other available procedures is poor when the errors and regressors are thick-

tailed.

6. CONCLUSIONS

The main conclusions of this paper are summarized as follows:

1. When assessing the performance of estimation procedures, analogies
between the regression model and the location model can be misleading. In
the location model, least squares is inconsistent- if the errors have unde-
fined means. In the regression model, however, least squares may be consis-
tent for some of the parameters, even when the errors have undefined means.

2. In the linear regression model, the performance of least squares de-
pends crucially on the relative variability of the regressors and the errors
--regardless of how fat are the tails of the error distributions. TUnder
classical assumptions §n the errors, the importance of this relative wvaria-

bility has been recognized widely. It follows immediately from the
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. : . 1.n
asymptotic covariance matrix of the LS estimators, viz,, 11m[§zl
' =+

EXixi]_laz
The present results show that its importance carries over to the case of
undefined error means.

3. The performance of least squares in models with fat-tailed errors
may not be nearly as poor in regression models as in location models. This
does not imply that LS is necessarily a desirable procedure in the case of
highly variable errors and regressocrs. Other procedures may perform much
better (as the Monte Carlo results indicate). Nevertheless, the use of LS
in this context is far from disastrous--in contrast to the location case.
On the other hand, if the errors have undefined means and the regressors are
not highly variable, then LS can perform just as poorly in the linear re-.
gression model as in the location model.

4. When the regressors are highly variable, the justification for the
use of bounded influence estimators cannot rely solely on the existence of
fat-tailed errors. It needs to be supplemented by some failure of the
model, such as measurement errors in the regressor variables or incorrect
functional form. This follows because LS estimation may be preferable to
bounded influence estimation, even when the errors have undefined mesans, due
to the faster rate of convergence of LS for (sufficiently) highly variable
regressors.

5. Regardless of the temporal dependence in the errors, the LS slope
parameter estimators are consistent, if the regressors are highly variable.

This holds even if the errors are highly variable.

Cowles Foundation for Research in Economics, Yale University
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APPENDIX

This Appendix provides proofs of Theorems 1-4 given in Secticns 2-4
above. First, we consider the proof of Theorem 1. The proof is broken into
several parts for ease of reading, and to allow the use of these parts in
the proofs of Theorems 3 and 4 below.

We introduce an assumption that is shown below (in Theorem A-2) to be

weaker than assumptions C4 and C5:

ASSUMPTION C45: lim nVAmin(E;xixi) >0 a.s., for some <« < ¥(p,r) ,
n-+o

-1 r>z1, p2z21

, I R ¥4 rx1l, pxg1l
wh re «(p,r) 1-1/p - 1/r when r<l, p<r’

1 -2/r r<l, p2>2r

Assumption C45 requires the regressors to exhibit a certain degree of
variability. Cenditions of this sort, on the eigenvalues of the sample
second moment matrices of the regressors, are common in recent analyses of
consistency of LS in dynamic and non;dynamic regression models, e.g., see
Anderson and Taylor (1979), Christopeit and Helmes (1980), and Lai and
Wei (1982a,b). Such assumptions are satisfactory when the regressors are
fixed. When the regressors are stochastic, however, it is highly desirable
to replace them by more primitive assumptions on the underlying distribution
of the regressors. Whence our use of the primitive assumptions C4 and C5 in

the text above, rather than C45,

With assumption C45, we have the following consistency result:
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THEOREM A-1: Under assumptions Cl-C3 and C45, the LS slope estimators j
satisfy

(a) B~ ﬂo as n- o a,s,, and

(b) n‘f(,@-po)-o as n-w® a.s., for all £ <w(p,r) - 7 ,

[ -1 rzl, pz1
-1/p rxzl, p=<1
where v(p,r) = { when
l1-1/p - 1/xr r=<1, p=1
L -1/ r<1, pz1

The proof of Theorem A-1 follows that of Theorem 1.

COMMENT: Theorem A-1 holds without any assumption on the temporal depen-
dence of the errors or the regressors. (Thus, even the zero-one result for
the LS estimator, see Andrews (1985a), does not apply in this context.) All
that is needed is that the regressors display sufficient variability to sat-
isfy C45. 1In consequence, this result incorporates dynamic models, i.e.,
models with lagged values of Yi entering as elements of Xi . One just
needs to verify assumption C45 (although this may require considerable ef-
fort). Since our focus in this paper is on the standard linear regression’
model, we do not Qerify this condition, nor replace it by more primitive
conditions, for dynamic regression models, but only for standard regression

models. (See Andrews (1985b) for some related results for the dynamic re-

gression model.)

Next we show that assumptions C4 and C5 imply that C45 holds with a

particular value of v :
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THEOREM A-2; Suppose {Xi} satisfies assumptions C4 and CS. Then,
n ry PR -
n Amin(ZTXiXi) © &a.8., ¥Yp > =2/a .

COMMENT: The procf of Theorem A-2 makes use of results of Derman and

Robbins (1955) and Miller (1967).

Theorems A-1 and A-2 combine to establish Theorem 1:

PROOF OF THEOREM 1: By Theorem A-2, C45 holds with any

Y € (-2/a, v(p,r)) . Hence, C45 holds if +(p,r) > -2/a . By definition of
7(p,r) and w(p,r) , this oceurs iff w»v(p,r) > -2/a and 1 - 2/r > -2/a .
Since the upper bound on ¢ in part (c) equals wv(p,r) + 2/a , the state-
ment ‘of part (¢) only has content if u(p,r) > -2/a , as desired. Also,
the condition 1 - 2/r > —i}a is equivalent to r > 2a/(2+a) , which is
assumed. Thus, using Theorem A-1, part (c) holds.

Part (a) follows from part (c) by determining conditions on a and p
such that the upper bound on ¢ is positive. Part (b) follows from part
{a) by noting that (i) a > 2a/(2+a) always holds,

(11) & < 2p/(1 + p(l/a -~ 1)) 1iff a < p/(l~-p) , (iii) p/(i-p) £ 1 iff
pLl/2, (iv) 2p>1 iff p>1/2 , and (v) p/{(1-p) < 2p if

p<1l/2 . Q.E.D.

We now turn to the proof of Theorem A-1. Four lemmas are used in its

proof. The first lemma is due to Loeve (1955, Theorem 29.E.1, p. 387). It

is used extensively.
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LEMMA A-1 (Loeve): Let [Bi: i>1}) and B be rv's such that lBi[ SE B,

vi , and B e 1%, for some d e (0,1) , then

n /4 ani 2220 a.s.

1

The proof of this Lemma uses a classical truncation argument, an L2 mar -

tingale comvergence theorem, and a moment inequality (see Loeve (1953) or

Chatterji (1969)).

l r_-]-'- [
Let M - zT{XiUi - n??xizgui » and VQn = Amin(zrllxixi nz?x,z“xi)

LEMMA A-2: Suppose (i) 1im nVMn -« 0 a.s., for some v , and
1-+o

(ii) lim ann >0 a.s,, for some r . Then, the LS slope estimators p
I

satisfy
nu_f(ﬂ - ﬂo) 220 a.s.
LEMMA A-3: Suppose C2 and C45 hold, then

im ann >0 a.s,, Yr >+, for v as in C45.

n+o
LEMMA A-4: Suppose Cl-C3 hold, then

nan L ) a.s., Vv < uv(p,r)

The proofs of these three lemmas follow that of Theorem A-1.



PROOF OF THEOREM A-1:

(A.1)

A5

Lemmas A-2, A-3, and A-4 give

ny_f(ﬂ - ﬁo) 2o a.s., for all v < v(p,xr) and r > v ,

i.e., for v-r < v(p,r) — v , which establishes part (b). By C45,

v(p,r) — v 2 y(p,x) = v >0, so part (a) follows. Q.E.D.

PROOF OF LEMMA

A-2:

A

The LS slope estimators B solwve

r 1 T
(A.2) [zrfxixi - Ez;xizrfxi] (B = Pg) =M, or

(A.3) M—pﬂg-cﬁ-%r%mﬂ-%n

vhere §_= (8 - B [z‘l’xlx' %1 X, z“x ](,a - ,BO)/H,B - ﬂo" . Note that

Q2 ﬁnﬁ % [s:.“x xX; - % ’l‘kizrl‘x'i]g = Q . Hence, using assumption (i),
Cl¢ =1

we get

(a.8) 0< T

In view of assumption (ii), this yields n

desired.

PRCOF OF LEMMA
have

n7Qn
(A.3)

where 1 1is a

A-3:

>n’

¢:fieh=1

v

m

n'Q, < n'l8-8,1Q, = 0788y M /68,1 T 0 aus.

A
Y—-T "

8~ ﬂO" =20 a.s., as

Q.E.D.
It suffices to consider the case where 7 = vy . We

! ] ' Y r l )
inf ¢ [z?xixi]g -n g'ﬁ?ﬁ-l ¢ [nzll..’xiz?.xi]c

2710 |
ln(znx X3 ) n’l |nZ?XiE?Xill !

K-vector of ones, and |A| denotes the matrix of absolute
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values of the elements of A . Using C45, we get lim nYQn >0 a.s., Iif
I+

we can show

(A.6) n7/2'1/223xi % 4 a.s., for y as in C45.

let s =(r Al) —¢, for & >0 arbitrarily small. By C2,

|X1k| SE X ¢ L% . Lemma A-1 now gives
(A.7) n‘l/szgxi 220 a.s.

Thus, (A.6) holds if -1/s > v/2 - 1/2 . For the case r > 1 , we have
g =1-¢, so =1/s 1is less than, but arbitrarily close to, =1. Thus,
-1/s 2 v/2 - 1/2 holds, if -1 > +v/2 - 1/2 , or v < -1 . The latter
follows from C45 by definition of +« . For the case -r <1 ,
v/2 - 1/2 < (3~2/t)/2 — 1/2 = ~1/r 1implies «/2 ~ 1/2 £ ~1/(x—¢) = -1/s ,

for e sufficiently small. Hence, (A.6) holds and the proof is complete,

Q.E.D.

PROOF OF LEMMA A-4: By assumption C3, [xikuil 5% g e LIPFATI=E  gor all

e>0, VYk, Vi, where p*¥=p Al . By Lemma A-1, this implies

(A.8) nszgxiui B2 0 a.s., V¥s < (-1/p*) A (-1/1)
A forriori, we have nyETXiUi o , Yv < v(p,r) , because

vip,r) £ (=1/p*) A (-1/1)
Since p* <1 , Lemma A-1 gives

(4.9) o L/PFeghy W 4

191 ., Ve >0
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If r <1, we also get n'l/r"z“x 20 a.s

. .8., Ve >0 . Thus, for
171

r<1,
(A.10)  n Y/P*Ll/r=Zegny om0 v s

Stnee ¥ <1~ 1/p* - 1/r, (A.10) gives o' %z 20 a.s., as
desired, by taking ¢ sufficiently small.
If r>1, then for all £ > 0, condition C2, Lemma A-1 and (A.9)

yield
(A.11) nf(1+£)2TXi =0 a.s., and n-l_l/p*-zszﬁxiZ?Ui 20 a.s.

Now, v < -1/p* implies wv-1 < -1 — 1/p* - 2¢ , for some ¢ sufficiently

small. Hence, n”ﬁzgxizgui o a.8., which completes the proof. Q.E.D.
We now prove Theorem A-2. Tts proof uses the following lemma:

LEMMA A-5: Suppose {Vi] are non-negative, M-dependent rv's and Vi SE v

for all i , for some v V ¢ DA(a) , where 0 < a £ 2 . Then

n”z?vi 2w a.s., ¥x > -l/a .

PROOF OF THEOREM A-2: Using C4 and C5, apply Lemma A-5 with Vi - (f’Xi)z

to get: VY{ ¢ RK with "gﬂ =1 and k > -2/a ,

sy gy D00
(A.12) ¢’ (n z?xixi)g a.s.

This implies [nKZ?XiXi} o0 a.s. (e.g., see Wu (1980, Theorem 1)).

Thus,
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(A.13) A W% 37 B2 0 a.s., and AL (02X B3« a.s.,
max 1711 min 17171

as desired. Q.E.D.

PRCOF OF LEMMA A-sz It suffices to consider the case where x < 0 . The
summands of ETVi are non-negative, so it suffices to prove the result with
E?Vi replaced by a sum that only contains every (M+1)St term of the se-
gquence {Vi :i=1, 2, ...} . That is, we can assume [Vi} is an indepen-
dent sequence without loss of generality.

The proof now proceeds in a somewhat similar fashion to that of Derman

and Robbins (1955, Theorem 1), also see Miller (1367). For any c > 0

n

P(n‘z“v < ¢) € P(max V, < n_nc) = II P(V, < nfxc)
11 i= i
i<n i=1
(A.14)
—— - i+ka -a, , -
< [P(V <n c)] < exp{-n(l = P(V £ 0 "¢))] = exp[-n "% *L(n “c)] ,
since V ¢ DA(E) implies that P(V > x) = x-aL(x) , where L{+) 1is a

slowly varying function, e.g., see Feller (1971, Corollary XVII.5.2, p.

578). The last inequality follows by the result: If z ¢ {0,1] , then

< e—n(l-z)

, see Galambos (1978, Lemma 1.3.1). Thus, we have

(-] [- ] - -
(A.15) T RSV, < e) < E expl-nt L@ o) ] < =
n=1 n=-1

since 1 + xa > 0 £

, Lx)>x for x large and any ¢ > 0 , and for
présent purposes x < 0 . The first Borel-Cantelli Lemma now gives:

Ye > 0,
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(A.16) P(an?Vi < ¢ for infinitely many n) = O .

Thus, P(lim nEETVi -«x) =1, as desired. Q.E.D.
o

This concludes the proofs of Theorem 1 and all the results used in its

proof. Next we prove Theorem 2;

PROOF OF THECREM 2: We consider only Theorem 1 because the same counter-
examples given below apply to Theorems 3 and 4. Also, parts (a) and (b) of
Theorem 1 are derived from part (c¢), so it suffices to show that, under as-
sumptions Cl1-C5, part (c¢) of Theorem 1 does not ﬁecessarily hold if the
strict inequality, < , 1is replaced by a weak inequality, < , for the
case r=a»]1l and p< 1.

Toward this end, suppose (i) {X,} and (U are independent, iid

1 i

sequences of scalar rv's, (ii) Xi is in the domain of normal attraction of

a strictly stable rv with exponent o ¢ (0,2) , denoted X, ¢ DNA(a) , and

i
(1ii) Ui is a strictly stable rv with exponent p ¢ (0,1) . (By defini-

tion, a stable rv is strjctly stable if the constant h of equation (2) can
be taken to be zero. Also, a rv is in the domain of normal attraction of a
stable rv with characteristic exponent o« if it is in the domain of

l/a

attraction of the rv and the constants ch of equation (3) equal n

for 2ll n .)

For these rv's, conditions €3 and G4 clearly hold. By (ii) and (iii),
the maximal moment exponent r of Xi is a , and that of Ui is p
(e.g., see Feller (1971, Lemma XVII.S5.1, p. 578)). Thus, conditions €l and
C2 hold. Condition C5 holds with Xg = ]Xi| , because the conditions on

the tail probabilities of a rv that determine whether a distribution is in
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the domain of attraction of some rv imply: 1If Xi ¢ DA(a) , then
|xi| ¢ DA(a) {(e.g., see Feller (1971, Theorem XVII1.5.2, p. 577)). Thus,
[Xi} and {Ui] satisfy all the conditions of Theorem 1, and it suffices to

show:

£, Lo - 2/a-1/p when a > 1 and p <1
(A.17) P[n (ﬁ—ﬁo) — 0] <1, for £ =
l/a-1/p+l when o <1 and p < 1.

First, we establish several preliminary results. By assumption (ii),

(A.18) n71/°z§xi —24 W as n =+ «© ,

1

where Wl is a stable rv with exponent a . Also, using the conditions on
tail probabilities for a rv to be in the domain of normal attraction of some
rv (see Gnedenko and Kolmogorov (1954, Theorem 7.35.5, p. 181)), it is

straightforward to show that X, ¢ DNA(a) implies Xg ¢ DNA(a/2) . Thus,

i

(A.19) n-2/aEnX? wg* W a8 n > o,

17i 2
for some non-negative stable rv W2 . {(Using the fact that a/2 <1 , we
have taken the centering constants to be zero.) Note that the rv W2 is

positive with probability one, because stable rv’'s have continuous distribu-

tion functioms.

Combining these results, and using the continuous mapping theorem,

yields

-1
2/a 2 1 s d
(A.20) n [z“x. - nz;x.z?xi] -~ 1/W, as n==

171 i

14
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where l/W2 > 0 with probability one. By the definitiom of g , this

implies that nE( - B.) converges in probability to zeroc only if
0 g P ¥ ¥y

£-2/a 1
(A.21) n [z‘l‘xiui - Ez’l‘xizrl‘(.xi] L£.0 a8 no o .

We will show that (A.21) does not hold, and hence, nE(ﬂ - ﬂo) does not

converge to 0 in probability, or a forriorj, almost surely.

By assumption (1iii),
(A.22) n'l/"zrl‘ui g, W, as n-+w,

where WS is a stable rv with exponent p .

Under the assumptions, X.U, ¢ DAl{a A p)

1Y , by Cline (1983, Corollary

3.2, Part I1I, p. 80). Hence, there exists a sequence of constants
{cn :n=1, 2, ...} such that

-1 4
(A.23) c, E;XiUi —_— Wa as n =+ « ,

where W4 is a stable rv with exponent a A p (< 1)

Consider the case a <1, Then, £ - 2/a=1-1/a - 1/p . By (A.18)

and (A.22),

(A.24) al™l/e=l/p Loy ony 4w as no e
n 1 i"17i
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where Wl and W3 are independent. And, by Lemma A-1, Vs < a A p ,
n-l/s

z;XiUi 20 a.s. When a<1 and p<l, we get

l1-1/a -1/p <-1/s , for s sufficiently close to a A p . Thus,

(A.25) n1~1/a—1/p z?xiui LLies 0 a.s.
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Combining (A.24) and (A.25) shows that (A.21) does not hold, and so, (A.17)
holds for o <1 .
Next, consider the case a« > 1 . Then, & — 2/a = -1/p . By (A.18)

and (A.22),
a.26) 0 /P 2x ST Ba0 as nw e
Combining (A.23) and (A.26), we find that if

(4.27) Tim c /P >0,
UL
then (A.21) does not hold, and hence, the desired result (A.17) does hold.
To show (A.27), we use an argument similar to that of Cline (1983, pp.
119-120). The norming constants for Ui e DNA(p) and XiUi e DA(p A d)

are n""/p and e respectively. By DeHaan (1970, p. 22) , cn/nl/P 220

iff C(t)/B(t) &2 0 , where C(t) = —zfou aF gy () + B(E) = ——j u dF (W ,

and F|XU| and FU denote the distribution functions of IXU] and U

respectively. By Cline (1983, p. 120), 1lim(l - F[XUI(t))/C(t) = (2-p)/p ,
t=e0

provided a > p . And by Cline (1983, Lemma 2.1, Part III, p. 71),

1im(1 - leul(c))/9(|ul >t) = E[X,|P . Thus,

=

P

P
i PE|X, |
B(t) 2-p

B(t) 7-p

(A.28) 1lim
oo

lim
=

2
1im & P(|U[ > t) _
t 2
J U dF,(u)
o
The right-hand-side of (A.28) equaling zero is a necessary and sufficient

condition for the weak limit of c;lZ?Ui to be normal, see Gnedenko and
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Kolmogorov (1954, p. 172). Since Ui ¢ DNA(p) , p= 2 , we have

lim C(t)/B(t) = 0 , which establishes (A.27). Q.E.D.

t—=m

We now prove Theorem 3. The proof is analogous to that of Theorem 1,
except that we first show that assumptions D1-D5, rather than C4 and C5,

imply C45. This is done in the following theorem:

THEOREM A-3: Suppose the regressors (Xi} are of the form

- ; - n PR
Xi jfoAijsi_j . Under assumptions D1-D5, we have n Amin(ZQXiXi) ®  gs

n—+o as., Vp>-2/a.
COMMENT: The proof of Theorem A-3 makes use of that of Theorem A-2.

PROOF OF THEOREM 3: To prove Theorem 3, we need to verify the conditions of
Theorem A-1, viz., C1-C3 and C45. Then the proof of Theorem 1 establishes
the desired rates of convergence for part (c).

By Theorem A-3, conditlon C45 holds. To get C2, let
lc{ i ie= ... 0,-1,0, ...} be an iid sequence of real-valued rv’s such

that c? has the same distribution as E (specifie& in D2), for all 1i .

Note that

(A.29) |Xik| < ||X1" -

i%i-j i

j=0 b

@
EAi
j=0

-]
N ST s M, eex
=) 3 =) J 1"3

Suppose r <1 . Then, for all s in (0,r) , the right-hand-side of

(A.29) is in i , Since for s ¢ (b,r) (where b is as in D4) we have

@© 8 o L)
(4.30)  E[ ey | < 2 MO%EGEE_ O - = )%t <@,
1m0 4 -3 jmp 3 ] j=0
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which establishes G2 (since it is clear that under D2 the maximal moment

o0
exponent of I M. e* cannot exceed r ). Now suppose r > 1 . Let [-
§=0 Ji-j s
denote the L° norm of a rv. By Minkowski’s inequality and the monotone
convergence theorem, we get
-] «© S I/S © @
(A.31) | = M e* - [ T M, e ] = I HM ex | = (M) ex| <=
j=0 ji-j §=0 ji-j =0 i-j's =0 j is
for all s in (1l,r) , wusing D2 and D4. Hence, C2 holds.
To show C3, take d less than, but arbitrarily close to, 1 Ap AT .
We have
- d_ o d d
(A.32 E X =EZ ||A..e. .U = Z (M) E|e, .U <o,
) I%; 0, 0° 0lI 15%1-1%) j_oc 30 Eleg 5usl
by the monotone convergence theorem, and assumptions D4 and D6. Q.E.D.

PROOF OF THEOREM A-3: It suffices to consider the case n = -2/a + § , for

some & > 0 arbitrarily small. Write

n -] L) o T
DX X =" S| 2 Tae el Arl+ T [nTZaA e el A
1=1|j=0 veo +3 -] X I S S R S i &
v
(A.33)
n ®
mwn' T C + X G,.
el 1 =0 2in
n oo
We want to show (i) |n” = Ciqf = 0 a.s., and (1i) Lim A_. (C,. ) > O
s i T Tmint "2in
1=l Ti+eo
a.s, for some j . This proves the Theorem, since C2jn >0, Vvi, ¥n .
To show (i1), let W,, = A..e. . . We claim that for the index j of

1] 1] +—]
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D5, {Wij :1=1, 2, ...} satisfies the conditions C4 and C5 on {Xi] for

Theorem A-2. Thus, Theorem A-2 gives

n
(A.34) Lim A . (Cp ) = Lin n"xmin[ ) wijwij] >0 a.s.,
bemed o i=1

as desired. Condition C4 follows immediately from D1. To show C5, consider

any { e R with fic] =1 . Let gy ™ Aijg ¢ R° and = nij/"nij” . Ve

have

Ig'wijl = |§'Aij£i-jl - “"ij“'|("ij/""'ij”)"i-—j|
(A.35)
= 51/2 1/25- ¢ DA(a) ,

cl{'ti_jl =4 ¢

using D3, since |n,, 12 - €Ay A1 2 Ay (A A7) 28>0, by DS, This
establishes C5.
To show (i), consider a single element of the K X K matrix Cli .

For notational simplicity we omit the extra subscripts. We have

’

L) x o -]
S
A.36 C..1 £ Z zZ A . A 22 Z MM ¥ e

Jrv Sy
where {cg} is as in the proof of Theorem 3, and where the stochastic in-
equality follows easily by a succession of conditioning arguments, using the
independence of [c?}
The rv on the right-hand-side of (A.36) is identically distributed for
i=1,2, .... Also, if r <1, then it is in LY for all q<r ,

since for q ¢ (b,r) (where b 1is as in D4) we have
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EL; ;MM: £% ]q< ; z: o, )4 M, YIE(ex )%E(ex 9
jovii- j i-v] = i-v

j=0 v=0 j=0 v=0 1-]
Jrev jrv
(A.37) )
@ 2
< Lz M )q] (2] <=,
oo

by D2 and D4. Then, by taking q arbitrarily close to r , Lemma A-1 and

[--]
the assumption o < 2r pgive the desired result n"gc,, 20 a.s., for

1=1 1i
n ==2/a+8 , where § >0 is arbitrarily small (for the case r <1 ).

Next, suppose r 2 1 . By D4 and the assumption a« < 2 in D3, there

o
exists a constant d <1 such that I (M ) <o and d > a/2 . For

j=0 3

r>1, the rv on the right-hand side of (A.36) is in Ld , Since

© @ d L @
ELE znu:_ji_v] < = 3 )% e ) e e

)
jw0 v=0 J j=0 v=0 1] 1=v
Jmv higd
(A.38) ° 2 9
< Lz (M) ] (E2%] <,
s 3 2 n-reo .
Hence, Lemma A-1 gives the result n’ I Cli —+ 0 a.s. (since d > a/2

i=1
implies =-1/d > -2/a , and so, =1/d > n = =2/a + §, for § >0 arbi-

trarily small). Thus (i)} is established, and the proof is complete. Q.E.D.

This completes the proof of Theorem 3 and its related result Theorem

A-3. We now prove Theorem 4. To do this, we first give an analogue of

Theorem A-1:
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THEOREM A-4: Under assumptions Cl-C3, C45, and C6-C9, the LS slope estima-

tors B of ﬂo for the model (9) satisfy

§

n*(B - ) TS0 as., VE<u(pT) -7 .

PROOF OF THEOREM 4: Theorems A-2 and A-4, and the proof of Theorem 1 com-
bine to give the desired results under assumptions C1-C9. Theorems A-3 and

A-4, and the proof of Theorem 3 do likewise under assumptions Cl, D1-Dé6, and

C6-C9. : Q.E.D.
PROOF OF THEOREM A-4: Define M = zgxiu z“x (2 (z z.2!) z ZU. , and
* - L - ] ' . .
Q* z?xixj.L z‘l’xizi(z Z,21) z:lzixi . It suffices to show that Lemmas A-2,

A-3, and A-4 hold with Mn -and Qn replaced by M: and QE .

The proof of Lemma A-2 goes through with M: and Q; in exactly the

same way as with Mn and Qn .
To show Lemma A-3, it suffices to consider the case where r = v . By

an argument analogous to that of (A.5), it suffices to show

'7 -1 ' ' n '
(A.39) H = z“x z! [zlzizi] 12X} 20 a.s.

Using C9, Lemma A-1 gives ngz¥xizi 220 a.s

And by C7 and C8, 12?212' has smallest eigenvalue bounded away from zero

., ¥g < (-1/1) A (-1)

for n sufficiently large a.s. Thus, ¥§ >0 , 5[lz§ziz ] B2 0 a.s.
Hence, Hn o a,s., if y=-1-2g+ 8 <0 . This holds for §

sufficiently small and g sufficiently close to (-1/r) A (-1) , since

v = y(P,r) =~ 26 = [(1-2/0)A(-1)] — 26 = L+2{(-1/e)A(-1)} - 26 s 1 + 2g — §

Next we establish Lemma A-4 with Mz in place of Mn . By the same
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argument as in the proof of Lemma A-4, nUE?XiUi P20 a.s. By Lemma A-1,

(.40)  n'Zz.U, 20 a.s., Vw<-l/px, vwhere pt=pAl.
Hence, nyug —+ 0 a.s., provided v -1~g~w+§ =<0 . The latter

holds for § sufficiently small, g sufficiently close to (-1/r) A (-1) ,

and w sufficiently close to ~1/p , because

v < v(p,r) — 26 5 [(1 - 1/p* = 1/r) A (=1/p*)] - 26

=1+ {(-l/r) AC-D)] = 1/p* =26 =1 +g+w=-5 .
Q.E.D.
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FOOTNOTES

1. I would like to thank Chris Monahan for excellent research assis-
tance, and Roger Koenker, Stephan Morganthaler, Charles Manski, and Jim
Powell for helpful comments. I am indebted to the Sloan Foundation and the
National Science Foundation for research support through a Research Fellow-
ship and grant number SES-8419789, respectively.

2. In addition, the results of Kanter and Steiger (1974), Chen, Lai,
and Wei (1981), and Cline (1983) have not been recognized in the robustness
literature. There are no robustness papers in the literature, that I am
aware of, that make reference to them.

3. Stable distributions are the only possible limit distributions of
normalized sums of iid rv's. The class of stable distributions is a four
parameter family with parameters for locatiom, scale, skewness, and kurto-
sis. Expressions for stable characteristic functions are well-known, e.g.,
see Feller (1971, p. 570). Their densities exist in closed form only for
special cases. The characteristic exponent of a stable rv, usually denoted
a , 1is the parameter that indicates kurtosis. It lies in the interval
(0,2]). 1If the characteristic exponent is less than two, then it equals the
maximal moment exponment of the stable rv. Examples of symmetric steble dis-
tributions are the normal (a = 2) and the Cauchy (a = 1) . See
Feller (1971, pp. 173-176) for additional examples. The normal distribution
is the only stable distribution with finite variance.

4. Necessary and sufficient conditions for a distribution F to be in
the domain of attraction of a stable distribution with characteristic expon-
ent a are well-known, e.g., see Feller (1971, Theorem IX.8.la, p. 313, or
Corollary XVII.5.2, p. 578). For the case a ¢ (0,2) , we have X ¢ DA(a)
iff the tail sum, 1 - F(x) + F(-x) , is regularly varying with exponent
—a (where F = L(X) ), and the tails are balanced. That is,

1 - F(x) + F(=x) = x °L(x) , Vx eR ,

where L{x) 4is some function that is slowly varying at infinity, and

E-%?§§§l = Q , for some constant Q ¢ [0Q,w]

A function L(x) is slowlv varyving at infinit

L(sx)/L(s) =21, wvx>0.

Examples of slowly varying functions include: functions that converge to a
positive limit, and all powers of log x . If L(x) is slowly varying,
then for all ¢ > 0 and all x sufficiently large,

x £ < Lix) < x° .
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5. For present purposes we adopt the definition of Gine and
Hahn (1983), and say that a distribution F on rRE is multivariaste stable
if: For all a, b e R, there exists ge¢ R and h ¢ RK such that

(*) L(3H1 + bﬂz) = L{gWw + h) ,

where Wl , Wz , and W are independent random K-vectors with distribu-
tion F . A multivariate stable distribution has a characteristic exponent
@ , and each of its marginal distributions is stable with characteristic
exponent e« . ({Conversely, if a multivariate distribution has all marginal
distributions are infinitely divisible, then it is multivariate stable with
characteristic exponent « , see Gine and Hahn (1983, Theorem 1).)

A distribution F on RK (or a random K-vector) is said to be in the
domain of sttraction of a multivariate stable law S 1f there exist real-

valued constants (cn} and RK-valued constants {bn} such that

12 d
c ZW, -b —W as n =+ = ,
no i n 0 _

where Wi are iid with L(Wi) =F , and L(Wo) =5

A distribution of RK is full if its characteristic function equals
one only when evaluated at the origin. Thus, a full distribution is not

concentrated on any lower dimensional linear subspace than the dimension of
the distribution.

The above definition of multivariate stable distributions can be gener-
alized considerably. One can consider multivariate distributions called
G-stable distributions, see Schmidt (1975) and Jurek (1982); also see
Resnick and Greenwood (1979), and DeHaan, Omey , and Resnick (1984). Such
distributions must satisfy (%) with a , b, and g given by K x K
matrices in some group of matrices G . By considering G-stable distribu-
tions and their domains of attraction, one can generate endless additional
examples of regressor sequences that satisfy CS.

€. The variance of the estimators is not a very informative measure in
this context, because the LS estimator has infinite variance when « = 1.5,

1.0, or 0.5, due to thick tails, even though its distribution may be tightly
concentrated about the true value,

7. For a=1.5, Theorem 1 does not yield a sharp result, and hence,
does not provide s rate of decline. For the present simple iid set-up with
independent regressor and error, however, the supremum rate of convergence

of the LS estimator can be shown to be n_2/3
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TABLE I

SELECTED PERCENTILES OF THE LEAST SQUARES ESTIMATCR OF ﬁo IN THE
SIMPLE LINEAR REGRESSION MODEL WITH SYMMETRIC STABLE REGRESSCRS
AND ERRORS BOTH WITH CHARACTERISTIC EXPONENT a

Sample Characteristic Percentiles of Least Squares Estimatora'b
Size Exponent :
n @ 75% 85% 95%
2.0 .14 (1.00) .22 (1.00) .35 (1.00)
25 1.5 .12 (.86) .22 {1.00) .47 (1.34)
1.0 .083 (.59) .21 (.95) .81 (2.31)
0.5 .048 (.34) .28 (1.27) 4.71 (13.46)
2.0 .096 (1.00) .15 (1.00) .24 (1.00)
50 1.5 _.080 (.83) .15 (1.00) .32 (1.33)
1.0 .046 {.48) .12 (.80) .46 (1.92)
0.5 .022 (.23) .13 (.87) 1.93 (8.04)
2.0 .068 (1.00) | .10 (1.00) .17 (1.00)
100 1.5 .054 (.79) .097 (.97) .21 (1.24)
1.0 .02 (.38) .068 (.68) .27 (1.59)
0.5 .010 (.15) .058 (.58) .95 (5.59)
2.0 .048 (1.00} .072 (1.00) 12 {1.00)
200 1.5 :036 (.75) .065 (.90) .14 (1.17)
1.0 .015 (.31} .039 {.54) .16 (1.33)"
0.5 .0047 {(.10) .028 (.39) A (3.67)

®The numbers in parentheses are the ratios of the percentile for the «a
value in question to the percentile for a = 2 (i.e., the normal dis-
tribution).

bThese are Monte Carlo results based on 50,000 repetitions using the stable
random number algorithm of Kanter and Steiger (1974, pp. 769-770), the
uniform [0,1] generator of Wichmann and Hill (1982), the inverse normal
algorithm of Beasley and Springer (1977), and the ROBETH regression package,



TABLE II

SELECTED PERCENTILES OF THE HUBER M-ESTIMATOR OF ﬁo IN THE
SIMPLE LINEAR REGRESSION MODEL WITH SYMMETRIC STABLE REGRESSORS
AND ERRORS BOTH WITH CHARACTERISTIC EXPONENT o

T2

S;?ple Characteristic Percentiles of Huber M—Estimatora’b
ze Exponent
n o 75% 85% 95%
2.0 .14 (1.00) .22 (1.00) .36 (1.03)
25 1.5 .10 (.83) .18 {.82) .35 (.74)
1.0 .059 (.71) .14 (.67) .46 (.57)
0.5 .022 (.46) .13 (.46) 1.87 (.4
2.0 .10 (1.04) .15 (1.00) .24 (1.00)
50 1.5 .063 (.79) .11 (.73) .21 (.66)
1.0 .030 (.65) 072 (.60) .23 (.50)
0.5 .0078 (.35) .044 {(.34) .58 {.30)
2.0 .070 (1.03) 11 {(1.10) .17 (1.00)
100 1.5 .040 (.74) .069 (.71) .13 (.62)
1.0 .016 (.62) .038 {.56) 12 {.44)
0.5 L0027 (.27) .015 {.26) .21 {(.22)
2.0 .049 (1.02) .075 (1.04) .12 (1.00)
200 1.5 .026 (.72) Q44 (.68) .083 (.59)
1.0 .0083 (.55) 021 (.54) 064 (.40)
0.5 .00096 (.20) .0055 (.20) .075 (.17)

*The numbers in parentheses are the ratios of the Huber estimator percen-

tiles to the least squares estimator percentiles, both with the same «

value,

bSé.me as footnote b of Iable I.
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FIGURE 2. Rates of Convergence n"" of Least Squares
for Case T = a in Theorems 1, 3, and 4.
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FIGURE 3. Admissable [r,a] Region for
Theorems 1, 3, and 4.



