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ABSTRACT

The asymptotic theory of regression with integrated processes of the
ARIMA type frequently involves weak convergence to stochastic integrals of the
1

form f WdW, where W(r) is standard Brownian motion. In multiple regressions
0
and vector autoregressions with vector ARIMA processes the theory involves
1

weak convergence to matrix stochastic integrals of the form [ BdB', where B(r)
: 0

1s vector Brownian motion with non scalar covariance matrix. This paper
1

studies the weak convergence of sample covariance matrices to [ BdB' under
0

quite general conditions. The theory is applied to vector autoregressions

with integrated processes,
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1. INTRODUCTION

Let {yt)g be a8 multiple (n-vector) time series generated by:

(l) yt = Ay['_-l + ut H Tt = l, 2, e
(2) A=1, 3
(3 Yo = random with a certain fixed distribution.

Under very general conditions on the sequence of.iﬁnovations, {ut}r, in (1),
t'lﬁzyt converges almost surely to standardized vector Brownian motion
t-’ﬂZB(t) on C"[0,®]. The covariance matrix, 0, of B(t) depends on the

gserial covariance properties of {ut};. If the sequence {ut}T is stationary

with spectral density matrix f“u(l) satisfying fuu(O) >0 (">" here gignifies
positive definite) then O = wauu(O). Strong invariance principles of this

type have been proved recently be Berkes and Philipp (1981) and by Eberlain

(1986).

Wweak invariance principles follow directly from these strong convergence
results as shown by Philipp and Stout (1975). In this case, it is usual to

definc the partial sum process St = Itiuj and construct the following random

n
element of D [c,1]:

'lb “lb . . .
XT(r) = T S[Tr] =T Sj-l’ (3=-1)/T < ¢ < 3/T

Then as T ¢+ =

(4) xr(r) ; B(r)

where B(r) is vector Brownian motion on c"{0,1) with covariance matrix fi. In
" (&) we yge the symbol "+" to signify weak convergence of the associated

d
’fobibjlity measures, Billingsley (1968) provides en extensive discussion of



such weak invariance principles in the scaler case (n=1) and gives many useful

applications.

One major time series application of (4) is to the theory of regression
for integrated processes. If {ut}r is generated by a linear process suchfas a
finite order stationary and invertible vector ARMA model then ¥y is known as
an integrated process of order one {Box and Jenkins (1976)). We are often
interested in the asymptotic behaviour of statistics from linear least séuares
regressions with integrated processes. Thus, from the first order vector
autoregression of y, on Ye-1 1n {1) we obtain the regression coefficient

matrix

N T T -1
= r t
A (f ytyt_l)(f Yea1¥e-1) -
Here, A is a simple function of the sample moments of Y¢+ To the extent that
Yy behaves asymptotically 1like vector Brownlian motion, we might expect the

asymptotic behaviour of A to be described by a corresponding functional of

Brownian mozion.

To be more precise consider standardized deviations of A about I.:

) 4T 5 T -1
- = t !
) TG-D =@ Tuy paT iy, gy 7

T
-2
By simple calculations we may write the sample second moment T z yt-lyé-l as
1

a quadratic functional of the random element XT(r), at least up to a term of
op(l). That is,

5 T

i
T f Yeo1¥eo1 = é Xp(r)Xp (r)'dr + o (1)

Result (4) and the continuous mapping theorem then establish that



T 1

(6 25y _y'_, + | B(r) B(r)'ar

t-17¢t-1

1 d 0

as T 4 =,

In a similar way, we might expect that
-lT 1

(7) T Tuyl, * [ @B(r) B(r)'

1 d O

at least when {ut)T is a sequence of square integrable martingale differences.
However, unlike (6}, (7) cannot be obtained by a simple application of (4} and

the continuous mapping theorem. The reason is that we cannot write the sample

T
-1
covariance matrix T I uy._,as a continuous functiomal of the randonm
1 1
element XT(r). Moreover, the 1limit process f dBB' (we shall sometimes
4}

suppress the argument of integration in integrals of this type) is a matrix

stochastiec integral and, since B{(r) is almost surely {vector Wiener measure)

i

of unbounded variation, [ dBB' cannot be considered as the (mean square) limit
0

of a Riemann Stieltjes sum. Furthermore, when the innovations u_ are not

t

martingale differences E(uty;_l) # 0, in general, and there is no reason to

expect (6) to hold.

In the scalar case (n = 1, A =a, Q= mz) the problems described in the

previous paragraph are easily resolved. We simply write

2 T 2 T t-1
ST =1 u, + 2T ( I us)ut
1 2 1

and, then, under quite general conditions, as T ¢4 =

1 T

- 1 T
(8) T Iy
1

=1 -
= e 2aan? -1 puly 4o ) - /2y Pead? - o)

u
t-1"t 1 d



where W(r) denotes standard Brownian wmotion on c[0,1] and whe:e
2 .y 7"} g E(u). Here T g 2 ot a b itable strong 1
W, Oy : u ). ere l u  * wy 8.8, by a suita strong law

for weakly dependent time series (e.g. Mcleish (1975)). In view of the

1
formula [ WdW = (l/2)(l-‘(l)2 = 1) and the fact that wW(r) = B(r) (here the
0

symbol "=" signifies "has the same distribution &s") we deduce that:
T 1 2 2
(9 T Iy u o+ f BdB + (1/2) (0" - w.)
] t-1"t d 0 0

This reduces to the formula suggested above in (7) only when m2 = wg.

Thus,in the scalar case, we obtain the following 1limit law for the

autoregressive coefficient:

- 1 2 2., 2
(10) T(a ~ 1) » {] BdB + (1/2)(w" - ug)}/{f B(r)"dr}
¢ 0 0

(10) is proved in Phillips (1986a) and it generalizes the simple formula,
1 1

2
f BdB/[ B dr, that was first suggested by White (1958) for the case where the
0 0

innovation sequence is iid N(O,wz).

When n > 1 the argument that was used above to deduce (9) no longer

applies. In fact, partial summation of the outer product STS% yields:

T T-1 ¢t-1 t-1 t-1
S, S! =T wuu' + £ (I udu!+ I uwu(l u)d
T°T 1 tt 2 1 5"t 2 t 1 s

so that, in place of (8), we now obtain:

1 T

T
' ' - " -1 '
AD T ] e y) SRR =T Dugsl 4o ()

+ B(1)B(1)' - @

4 0



T
where no = 1imT+m T 1 I E(utué). Determination of the limit law of the matrix
T 1

T I yt*lué ie not possible from (11), although the Jjoint 1limiting
1

distribution of its diagonal elements may be deduced. However, the latter is

insufficient for many problems of central interest, such as the lifmiting

distribution of the regression coefficients (5).

The purpose of the present paper is to obtain the matrix analogue of (9)
directly. Our approach permits a wide class of possible innovation sequences
and our main result is directly applicable to the study of regression
statistics such as (5). It should also be useful in other contexts where weak

1
convergence to the matrix stochastic integral f BdB' 1g needed.

0
2.  MAIR RESULTS

We shall require {ut}T to satisfy conditions which are sufficient to

ensure the validity of (4), 1In particular, we impose:

ASSUMPTION 2.1

(a) E(u,) = 0 all t;
Bte . o .
{(b) SUpi,tEIuit' { = for some B > 2 and € > 0;
(¢) n = limT+wT—1E(STS+) exists and is positive definite;
(d) {ut}T is strong mixing with mixing numbers e that satisfy
s 1-2
(12) 1o 8¢
,

If {ut}f is weakly stationary then (¢) is, in fact, implied by the mixing
condition (d) (theorem 18.5.3 of Ibragimov and Linnik (1971)). 1In this case,

we obtain:



(13) fi=E(uu!)+ I E{u,u))+ I E(uul)
i A b LT

= ﬂo + Ql + ni, BaY.

Under Assumption 2.1 we have (Herrndorf (1984}, Phillips (1986b)):

LEMMA 2,2 li_{ut); is a sequence of random n—vectors that satisfy Assumption

2.] then as T ¢+ = XT(r) + B(r), vector Brownian motion with covariance matrix
d
Q.

It is convenient to introduce a multiple (nxl) time series {zt(x)}T

generated by the model

(14) zt(x) = th_l(x) + u i t=1,2, ...
(15) F = exp{(x/T)G}
(16> zo(X) = Yo

Bere x is a scalar and G is an arbitrary nxn matrix. When x =70 the model is
equivalent to (1) - (3). Note that as T 4 =, F + In so that for fixed x # 0
zt(x) behaves, at least asymptotically, like an integrated process. Such
processes were introduced in Phillips (1986c) and were called "near integrated

time series”™,

Back substitution in (14) yields

oy ™

(17) zt(x) =

EXP{((t'j)X/T)G}uj + exp{(tx/T)G}y0
h|

1

Define



t
(18) it - (d/dx)zt(x) =G I exp{((t*j)x/T)G}((t*j)/T)uj
1

+ G(t/T) exp{(tx/T)G}yo

We now consider the asymptotic behaviour of sample moments of these processes.

LEMMA 2.3 Ei_{ut}; satisfies Assumption 2.1 and {zt(x)}; is a near inteprated

time series generated by (14) - (16) then as T 4 =

(a) T (02 (0) 2 Ol (LK (L)'
T, 1
(b) T f zt(x)zt(x)' ; G é LG(r,x)KG(r,x)'dr;
5T 1
(c) T I zt(x)zt(x)‘ + KG(r,x)KG(r,x)'dr
1 d ©
where

r
Kc(r,x) = [ exp{(r-s)xG}dB(s),
0

T
[ exp{(r-s)xG}(r-s)dB(s).
it

LG(r,x)

We also need:

LEMMA 2.4  If B(r) is wvector PBrownian motion with covariance matrix £ and

T
Jclr) = [ exp{(r-s)C}dB(s) then
0

1 1
(19) I ) =a+cC é Jo(r) (r)'dr + é 3 (r)I (r)rdrC’
1 1
+ f Jo(r)dB(r)’ + [ dB(r)J.(r)'
0 0

for anv nxn matrix C.



LEMMA 2.5 E{_{ut}: satisfies Assumption 2.1 and {zt(x)}; is 8 near integrated

process generated by (14) — (16) then as T 4 =

T 1
-1 e * . v 1
(a) T f {zt__l(x)ut + utzt_l(x) } ; G é Lt(r,x)dB(r)
1
+ [ [dB(r)LG(r,x)']G'
0
4T, 1
(b) T L zt_l(x)ué +G | Lc(r,x)dB(r)'
1 d 0
-1 T ' ~1 T '
() T f 2gy (Mol = T f Te-1Y%
1 1
s | K,(r,h)aB(r)" - [ B(r)dB(r)' .
d0 0

We are now in a position to establish our main result:

THEOREM 2.6 Ei_{ut}: is weakly stationary and satisfies Assumption 2.1 and if

{y }; is generated by (1) ~ (3), then as T 4 =:

t
-1 T 1
t t
(a) T T Yeo1¥ * f B(r)dB(r)"* + Ql,
1 d 0
-1 T 1
L] 7
(b) Tz _(u! » [X.(r,h)dB(r)' + 2
1 d 0
where
a7 -
= v = *
91 limT+=? I E(yt-lut) kfz E(uluk) .

COROLLARY 2.7 li_{ut}r is a2 sequence of stationary martingale differences

that satisfy Assumption 2.1 and if {yt}g is generated by (1) - (3) then as

T4ew

1
-1 (

4

B{r)d B(r)' .

—
[= T 3
o



Theoren 2.6 may be extended to include sequences {ut}T which are not
weakly stationary with some strengthening of the moment and mixing conditions
(b) and (d) of Assumption 2.l. The details are not given here since the case

of predominant interest is that of weakly stationary innovations in (1).

We may now deduce the relevant asymptotics for regression statistics such

gs (5). In particular, we have:

THEOREM 2.8 If the conditions of theorem 2.6 hold then as T 4 e

) 1 1 _
(20) T(A - 1) + { B(r)dB(r)' + ,}'{] B(r)B(x)'dr) ™"
d 0 0

Note that in the scalar case (setting Ql = ml) we have wz = “’S + 2m1, so that

(20} reduces, as we would expect, to the earlier formula (10).

3. PROOFS

Proof of Lemma 2,2 See Herrndorf (1984) for the case n = 1 and Phillips

{1986b) for the case n > 1.

Proof of Lemma 2.3 To prove (a) we note that

21 T hPAS -1
T f2 zT(x) = I exp{((1-3/T)x)6} [ dXT(s) +0 (T /2)
j=1 (3-1)/T P
T §/T _1
= I r exp{(l-s)xG}d.XT(s) + 0 (T /2)
i=1 (3-1)/T P

1 21
= | exp{(l-8)xG}dX (s) + O (T 12y
0 P

1
+ [ exp{(1-s)xG}dB(s) as T + =
d 0



10

in view of Lemma 2.2 and the continuous mapping theorem. 1In a similar way we

find that

y . ' 1
T 2z (x) + 6 [ exp{(1-8)xG}(1-5)dB(s)
t d 0

and result {(a) follows directly. To prove {(b) we write

T 1
= T° I [6 I exp{((d-3)/T)xG}((i-j)/T)u

-2
]
i=1 j=1 J

T L ]
T f ztzé
i _1/
[ wl expl((1-k)/T)xG'}] + 0 (17 2)
k=1 P
T /T i /T
= T f drfc = | exp{(r-s)xG}(r-s)dXT(s)]
i=1 (i-1)/T j=1 (j-1)/T
i k/T -1p
|z I X (t)’ exp{(r-t)xG'}] + 0 (T )
k=1 (k~1)/T P

Q="
O

-1
G exp{(r-s)xG}(r-s)dXT(s)dXT(t)' exp{(r-t)xG'}dr + Op(T 42)

[es Loy 1 O, b

r r
[G | exp{(r-s)xG}(r-s)dB(s)][[ dB(t)' exp{(r-t)xG'}]dr
0 0

1
= ]
G é LG(r,x)KG(r,x) dr

as required. Part (c) follows in a similar fashion.

T
Proof of Lemma 2.4 First define §&(r) = [ exp{~sC)dB(s) and note that
0
Jc(r) = exp(rC)e(r), Now by the multivariate Ito formula for stochastic

differentiation we have:
d{e(r)e(r)'} = de(r)e(r)’ + E(r)de(r)' + exp{-rC)fexp{-rC')dr .

Hence

[ R S

lexp(rC)d {E(r)E(r) " Yexp(rC*)]

1 1
J aB(r)I (2)* + [ J.(r)dB(r)' + @
0 c o ©
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leading to the result as stated.

Proof of Lemma 2.5 From (14) we obtain

z (x)z (x)' -2 _,(x)2 ()" = (xG)T-lzt_l(x)z
+ 17 G0z, (1) (x6") + 2 (0w

u' + 0 (T 1

+ S
vz (%) Yebe

and averaging over t we find

T_lzT(x)zT(x)' = (xG)T-2

— g =]
N

t-l(x)zt-l(x)'

-1

T
zt_l(x)zt_l(x)'(xG) + T I zt_l(x)u€
1

T

b

1

T 4T -1
Tuz (x)' + T Tuu'" +0{T )
I t-1 ottt P

Differentiating with respect to x yields:

-1 (%

T -
=ls =1 = = -2 > t My
(21) T “2p2p + T "2,2, = %GT f (zt—lzt-l tz, o _y2z.))
-2 T T
b v '
vl (2,120 * 2eo12)(36") o1 : 2e-1%e-1)
2T a4 T, .
r + L -+
MRS L 26" T ! (z,_yup *+ gz, )+ 0 (T

From Lemma 2.3 and (21) we now deduce that

T
-1 d ' '
(22) T f (zt-lut + u t 1) ; GL (1, x)K {1,x)

1
+ KG(],x)LG(l,x)'G' - xG{G g LG(r,x)KG(r,x)'dr
1 1
+ é Kc(r,x)LG(r,x)'er'} - {6 éLG(r,x)KG(r,x)'dx



12

1 i
+ é Kc(r,x)LG(r,x)'er'}xG -G é KG(r,x)KG(r,x)'dr

1
- é KG(r,x)KG(r,x)'er'

Now let C = xG in (19) and differentiating (19) we have (noting that JxG(r) =

KG(r,x) and (d/dx)JxG(r) = GLG(r,x)):

(23) GLG(l,x)KG(l,x)‘ + KG(l,x)LG(l,x)‘G'

1 1
[] L] L
G g RG(r,x)KG(r,x) dr + é KG(r,x)KG(r,x) drG

1 1
xG{G [ LG(r,x)KG(r,x)‘dr + | KG(r,x)LG(r,x)er'}
0 0

1 1
{G ({ LG(r,s)KG(r,x)'dr + g KG(r,x)LG(r,x)er'}(xG')

1 1
G f LG(r,x)dB(r)' + f {dB(r)LG(r,x)']G'
o 0

+

+

+

It follows from (22) and (23) that

T 1
-1 L ] ' - '
T f (zt-lut + utzt-l) ; G g LG(r,x)dB(r)

1
+ f {dB(r)L (r,x)']G"
0

as required for part (a).

To prove part (b) we note first from (18) that it = th where

t
w, =1 exp{((t-j)x/T)G}(t-j)/Tuj + (t/T)exp{(tx/T)G}yo.
1

Thus, from part (a) we have



13

T 4T
¥ L} t
G(T f wt_lut) + (T f utwt'l)c
i 1
+G Lo (r,x)dB(r)" + f dB(r)L (r,x)'G’
d 0 0
It follows that
4T 1
(24) tr{G(T I wt_lué)} +tr{G | LG(t,x)dB(r)'}
1 d 0

Since (24) holds for all matrices G we deduce that

1

t-lué + g LG(r,x)dB(r)'

-1

T w

e M

Result (b) follows directly.

To prove (c) we integrate with respect to x over the interval [O,h]. We

have

g Th, _
' =
T f é zt_l(x)utdx T

and

O

S|
K (r,h)dB(r)' -~ [ B(r)dB(r)'
G 0

1 Ih
G f LG(r,x)dB(r)'dx = f f GLG(r,x)dde(r)'
0 090
1
f
0

Part (c) now follows from (b) and the continuous mapping theorem.

Proof of Theorem 2.6 We work from part {(¢) of Lemma 2.5. First let G = fIn

for some f ¢ 0 and write



14

T T t-1
'1"-1 Iz (hu' = ¢ hf/TT ! I(r e(t j)hf/-ru Ju'
t-1 t jot
1 2 1
T-1 T
(25) = e ht/T I eShf/T(T ! I ut_sué) .
s=] t=5+1

Now let h = T/M. We shall allowM 4 = a5 T ¢+ « in such a way that M/T 4 0

(and, thus, h ¢+ =), (25) becomes:

T-1 T
e-f/H I esf/M(T-l T “t u;)
5=] t=g+l = °
But e-f/M + 1 as M 4 = and
T-1 T
(26) r Ml u _ul) + Q)
s=1 t=s+l s P

In fact, (26) is simply the Abel estimate of the component Ql of the scaled

spectral density matrix 0 = 2ﬂfuu(0) at the origin (see, e.g. Hannan (1970, p.

279))., We deduce that

-1 T -1 T
T f 2, (D =T Iy

u!
1tlr;

has the same asymptotic distribution as T + = (with h = T/M + =) as

a1 T
(27) Ql -T T yt_lué .
1
Now consider
Y (r-s)hf T (r-s)nf
K.(r,h) = [ e dB(s) = N(0, [ """ Mdsn)
0 0
= 80, ((*™™ - 1)/2nf)0)

Since f < 0 we deduce that

Kc(r,h) + 0
P
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gs h ¢+ =, We may also show that

1
(28) { Ko (r,h)dB(r)' + 0.
0 P

Now part {(c) of lemma 2.5 holds for all h, so that combining (27) and (2&)'

with part (c) we obtain

a7 1
T f YooY ~ 9 é B(r)dB(r)'

+
d

giving result (a) as stated. Note also that

4T Tt
" = '
lim,, T f Yeo1Y lim, T § sfl E(ut-sut)
T-1
- - 1
limT+m SE {1 s/T)E(ulu s+1)
[- -]
- 1
£ E(uluk) -

Part (b) of the Theorem follows directly from part {a) and part (c¢) of Lemz:

2.5.

Proof of Theorem 2.8 This follows as a consequence of Theorem 2.6, (&) ané

the continuous mapping theorem.
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