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1. INTRODUCTION

A basic tool of modern econometrics is a uniform law of large numbers (LLK).
It is a primary ingredient used in proving consistency and asymptotic norm-
ality of parametric and nonparametric estimators in nonlinear econometric
models, Thus, in a well-known review article, Burguete, Gallant, and
Souza {8, p. 162] introduce a uniform LLN with the statement: "The follow-
ing theorem is the result upon which the asymptotic theory of nonlinear
econopetrics rests.” 5o pervasive is the use of uniform LLNs, that numer-
ous authors appeal to an unspecified generic uniform LLN (e.g., see [1, 2,
11, 17, 22, 29, 32])}. Others appeal to some specific result (e.g., see
{4, 5, 7, 8, 10, 12, 16, 33, 34, 35]). The purpese of this paper is to
provide a generic uniform LLN that is sufficiently general to- incorporate
most applications of uniform LLNs in the nonlinear econometrics literature.

In summary, the paper presents a result that can be used to turn state
of the art pointwise LINs into uniform LLNs over compact sets, with the
addition of a single smoothness condition--either a Lipschitz condition
or a derivative condition. The latter is particularly easy to verify, and
is implied by common assumptions used to prove asymptotic normality of
estimators, Thus, the additional condition is not particularly restrictive,
In contrast to other uniform LLNs that apnear in the literature, the one
given herc allows the full range of heterogeneity of summands (i.e., non-
identical distributions), and temporal dependence, that is available with
pointwise LLNs.

To fulfill the role of being a generic uniform LLN, we require a can-

didate uniform LIN to satisfy several conditions., First, it must be



sufficiently general to cover most estimation procedures c¢onsidered in the
nonlinear econometrics literature. Second, its conditions must be easily
verifiable, Third, it must be flexible enough to accommodate underlving
random variables {rv's) that exhibit the entire spectrum of heterogeneity
and temporal dependence that permit pointwise LLNs to hold. That is, a
generic uniform LLMN should not be tied to particular assumptions concerning
heterogeneity or temporal dependence. This allows it to be applied in as
wide a variety of stochastic environments as possible.

Given these conditions, the advantage of having available a generic
uniform LLN needs little explanation. It has use in a wide variety of
static and dvnamic nonlinear econometric modelling contexts.

None of the uniform LLNs in the literature satisfy all of the criteria
specified above for a generic uniform LLN. Whence the results presented
in Sections 2 and 3 below. Before considering these new uniform LLNs,

-however, we discuss various unifbrm LLNs that are available in the liter-
ature, and how their properties relate to the criteria listed above.

The most general uniform LLNs (in some respects, at least) are Banach
space LLYNs (e.z., see [9, 18, 20, 23]) and empirical process uniform LLNs
(e.g., see [30]). These results are quite abstract, and henca, often
impose conditions thiat are difficult to verify, at least in comparison
with the special purpese uniform LLNs that are available, They generally
are context specific, and impose particular assumptions regarding hetero-
geneity and temporal dependence., In addition, available results are not
as general with respect to conditions such as temporal dependence, as are
pointwise LLNs for rv's. For example, Vapnik-Cervonenkis-tvpe uniform
LLNs for empirical processes are much more highly developed for independent

situations than for dependent situations.



A number of special purpose uniform LLNs are available in the econo-
metrics and statistical literature for use with nonlinear models (e.g.,
see Jennrich [21], Malinvaud [25], Gallant [14], Bierens [6, 7], Amemiya
[3, Theorem 4.2.1] and Ranga Rac [31]). These uniform LLNs have conditions
that are relativelv easy to verify, and are applicable to most parametric
estimators considered in the econometrics literature {at least for certain
stochastic environments). For our purposes, however, thev are restrictive
in several respects.

First, they apply only to functions of independent identically dis-
tributed (iid) or stationary rv's (see Jennrich [21], Amemiya [3, Theorem
4,2.1], and Ranga Rao [31]), to variables that behave just like stationary
rv's (see Burguete, Gallant, and Souza [8] and Gallant [14]), or to rv's
whose average marginal distributions converge weakly to some fixed distri-
bution in the limit (see Bierens [6, 7], Jennrich [21], Malinvaud {25],
and Ranga Rao [31]). Such assumptions restrict the degree of heterogeneity
and/or temporal dependence of the underlying rv's. Furthermore, such re-
sults do not allow the functions of the rv's to depend upon the observa-
tion subscript. This characteristic can be restrictive. For example, it
precludes applications to maximum likelihood (ML) estimators in heterogen-
eous (i.e., non-identically distributed) situations.2 In addition, these
uniform LLNs are context specific, They impose particular assumptions
with respect to heterogeneity and asymptotic weak dependence. The param-
eter spaces for these uniform LLNs are restricted to be subsets of Euclidean
space, except in [31]. This precludes their application in nonparametric
contexts,

Two other special purpose uniform LLNs that appear in the literature
are those due to Hoadley [19, Theorem A,5] and Amemiva [3, Theorem 4.2.2].

These uniform LLNs permit indenendent non-identically distributed (inid)



sumpands. Hoadley's uniform LLN fulfills manv of our criteria. Its con-
ditions are relatively easy to verify. And, although it is stated only for
inid rv's, the same argument as used in its proof can be applied to rv's
that satisfy any pointwise LLN. Unfortunately, it does not fulfill our
first criterion of general applicability. One of Hoadley's assumptions
implies that for many {or most) applications of interest, the underlying
rv's must be uniformly bounded. This requirement is quite restrictive.
(See the Appendix for an explanation of the boundedness requirement, and

a8 discussion of its restrictive nature,)

Amemiya's [3, Theorem 4.2.2] uniform LLN for inid rv's is stated as
an addendum to his iid uniform LLN. He notes that it is a special case
of Hoadley's [19, Theorem A.5] uniform LLN, and hence, does not prove it
formally, but only describes the appropriate modification of the proof of
his iid result, For independent rv's, at least, Amemiya's Theorem 4.2.2
would appear to be stronger than our results below in certain important
respects. The discussion in the Appendix, however, shows that his Theorem
4.2,2 actually is not a special case of Hoadley's result, due to the bounded-
ness restriction mentioned above, Also, it does not appear that the modi-
fication that Amemiya suggests to the proof of his iid result is sufficient
to establish his inid Theorem 4.2.2. (See the Appendix for further dis-
cussion.)

To conclude, none of the uniform LLNs currently available in the liter-
ature fulfill the criteria that we have specified for generic uniform LLNs.
The uniform LLN presented in Section 2 below is designed to rectify this
situation. In Section 3 we present a second uniform LLN. This result
utilizes a weaker smoothness condition than the generic uniform LLN of

Section 2, but it restricts the degree of hetercgeneity of the summands



somewhat, The weaker smoothness condition allows for isolated discontine-
uities, such as occur in the defining equation of Manski's [26, 27] maxi-

mum score estimator for discrete choice models.

2. A GENERIC UNIFORM LAW OF LARGE NUMBERS

This section presents a uniform LLN that is designed to be flexible,
easy to verify, and sufficiently general to cover most applications of
interest, We take as a basic assumption the fulfillment of a pointwise
LLN. Compactness of the parameter space and a single smoothness condition,
either a Lipschitz condition or a derivative condition, are all that are
required to transform the pointwise result into a uniform result.

One can adopt any pointwise LLN--there are quite a number for depen-
dent rv's. No additiogal restrictions are imposed regarding heterogeneity
.or asymptotic weak dependence of the underlying rv's. Both weak and strong
LLNs can be generated. The uniform LLN applies to both finite dimensional
and infinite dimensional parameter spaces, The latter arise in nonparametric
contexts. The proof of the result uses a well known technique, viz,,
direct finite approximation te.g., see Pollard {30]), and follows the
approach of Hoadley [19], up to a peoint.

We now introduce some notation: Let {Wi t:i=1,2,...} bea
sequence of W-valued rv's defined on a probability space (R,8,P) , where
W is an arbitrary set. Consider functions Qg ¢ fo a +'R1 s
i=1, 2, ..., such that qifwi, 8) is a rv for each 8 € 6 (i.,e.,
qi(wi, 8) 1is B-measurable for each 6 € 6 ), where & is a metric space
with metric d . (Below, we discuss applications where the parameter

8 is both finite dimensional and infinite dimensional.) Let B(8,p} be



the open ball around & of radius p (i.e., B(8,p) = (TeEa: d(8,8) <o} ).

Define

aj(¥;, 8, o) = suplq;(W;, ) : B €B(e,0)} , and
(1
Guy (W3, 0,0) = inflq, (W, ¥ : § € B(8,0)} .

We say that a sequence of rv's, such as {q;[Wi. 8, p) ti=1,2,...1},

satisfies a strong (weak) LLN if

n
1 . . ,
n L (G05. 8, 0) - EQf(M;, 0, 0)) >0 as n
(2
a.s. [P] (in probability under P ).

Consider the following conditions:

Al {q;(wi, 8, p})} and {q,i(Wi, &, p)} satisfy a strong (weak) LLN,

for all p sufficiently small, for all 8 € & (where p may depend on 8).

A2 & 1is a compact metric space,

A3  For each 6 € 0 , there is a constant «t > 0 such that d(%,8) <t

implies
lqi(Wi. " - a5 (W, 8) | iBi(h'i)h[d(?.B)] » vi, a.s. [P],

where Bi W+ and h :R* +7* are non-random functions such

n
that B.(W.,) is a rv, 1im l-z EB.(W.) <o . h[y] ¢ h[0] = 0 as
itti n, i*"i
N =]

y~+0, and t, B, , and h may demend on 6 .

Qur generic uniform LLN is the following:



THEOREM 1: For {qi(wi’ 8)} as defined above, if Al-A3 hold, then

n
1 .
(a) zzg Eizltqi(wi’ 8) - Eq,(W., &) »0 a8 n~= as. [P] (in
probability wider P )}, and
1 ¢ -
{b) E-E Eqi(wi, 8) <ie comtinuoues on 0 , untiformly over n >1.
o i=l

The proof of Theorem 1 uses

LEMA 1: For {qi(wi, 8)} as defined above, ©F A0-A3 hold, then conelu-
siong (a) and (b) of Theorem 1 hold, where A0 is given by
1 B
A0 For all 8 €@, lim sup ?{I (Eq¥(W,, 8, p) - Eq;(W., 8))| = 0
e+0 n>1'"i=] it

and likewise with q;(wi, &, o} replaced by q*i(Wi, 8, p) .

The proofs of Theorem 1, Lemma 1, and other results below are given

in Section 4.

COMMENTS: 1. Theorem 1 is proved by showing that A3 immlies AO. Thus,
Lemma 1 is a stronger result than Theorem 1, and hence, may be of indepen-
dent interest. For example, by using a condition that differs from A3
but implies AD, a second uniform LLN is given in Section 3 below. On the
other hand, assumption A3 is more primitive than A0, and hence, more
easily verified, since it places assumptions directly on the functions
{a; (st

2, The conclusion of part (b) of the Theorem is important for common

proofs of consistency (e.g., see [5, 10, 16, 35]), because a fixed limit

n
1 : .
of HizlEqi(hi, 8} need not exist.



3. The Lipschitz condition A3 is implied by the following derivative
condition, which is simpler, and which mav be easier to verify in some

cases:

A4 @ is a convex subset of RP ; qi(wi, 8) is totally differentiable
in & in a neighborhood of ¢ (or, a fortiori, has continuous partial
derivatives in © in a neighbothood of 8 ) a.s. [P], VB € 0,
¥i ; and

<o

n
Tﬁl E sup“ 2 1. (W., 8)
s “121 = FLR AN

Replacing A3 by A4 in Theorem 1 gives the following:

CORODLLARY 1: For {qi(Wi, 8)} ag defined above, iFf Al, A2, and A4 hold,
then conclusiong (a) and (b) of Theorem 1 hold.

4, The smoothness conditions A3 and A4 are quite convenient, because
they usually are implied by assumptions invoked to prove asymptotic
normality of estimators that are based on optimization procedures, whose
optimands are functions of the average %jlqi(wi, 8) . For example, in
the nonlinear regression context, assumption 7 of Domowitz and White [10]
and assumptions 2 and 6a of White and Domowitz [35] are more than enough
to imply our derivative condition A4 for the least squares function

ag(W;, 8) = (¥; - g;(X;, 8))°

s Where "i = (Yi, xi) and the model is
Yi = gi(xi, 60) * Ui + In more general contexts, Burguete, Gallant, and
Souza's [8] assumption 6 for their class of least mean distance estimators
of nonlinear models, and assumption 8 for their class of method of moments

estimators of nonlinear models, and Gallant and White's [16] assumption 8

for estimators in dynamic nonlinear models, imply our derivative condition



A4 for the relevant summands {qi(wi’ 8} .

5. The assumption A2 of compactness of © , and the assumption of

convexity of © in A4, need not hold for the parameter space of interest,
call it T . In many cases, the functions qi(w,e) can be extended
naturally from ® to sets containing 3 . Thus, it suffices to find a
compact ser ¢ that contains 3 , and for which Theorem 1 applies.

(If A4 is to be adopted, then the chosen ¢ also must be convex.)

6, In some cases, one needs a uniform LLN for averages of the form
'n
1 ~ - } - N P
ﬁiilqi(wi' v, 8) , where + - Yg 3 n~ , 4,3, or in probability.
This often arises in problems where preliminary estimators are employed
{e.g., see [8]). Although it may be obvious, we point out that the appli-

cation of the above Theorem with parameter (v,8) and parameter space

'x@, where [ is some compact neighborhood of Yb and @ 1is compact,

gives the desired result,

7. Assumptions A3 and A4 avoid the boundedness implication of Hoadley's
(19, Theorem A.5] assumption (b), by avoiding conditions that have to hold
uniformly over i > 1 a.s. [P] . (See the Appendix for a discussion of

Hoadley's assumption (b).)

8. The use of uniform LLNs for infinite dimensional, non-Euclidean
parameter spaces is growing in the econometrics literature as more non-
parametric estimation and testing techniques are introduced (e.g., see
Elbadawi, Gallant, and Souza [1ll], Epstein and Yatchew [12], and Gallant
[15]). Theorem 1 above can be applied in such cases, As compared to some
other uniform LLMNs that apply to infinite-dimensional parﬁmeters, e.g.,
see Ranga Rao [31], Theorem 1 has the advantage that it imposes no re-

strictions on heterogeneity or temporal dependence, other than those needed

for pointwise LLNs.



10

9, The fact that the rv's {q;(wi, 8, p)} and {q*i("i’ 8, o)}
of assumption Al are suprema and infima of {qi(wi’ 8)} over neighborhoods
of © , introduces no particular difficulties in applying standard point-
wise LLNs, One can apply pointwise LLNs directly to {q;(wi, 8, p)} and
{q,i(wi, 8, p)} . Or, if one desires a more concise statement of assump-
tions, it suffices to place sufficient moment and weak dependence conditions

on the dominating rv's {q,(W.)} = {sun|q.(W., 8) [} to ensure that
1t 1 eebll .

{qi(wi)} satisfy a LLN? Such conditions on {qi(wi)} are commonly used
in the literature (e.g., see Bates and White [, Assumption a,5i), Bierens
[7, Lemma 3], Burguete, Gallant, and Souza [8, Theorem 1], Domowitz and

White [10, Theorem 2.5], Gallant and White [ 16, Theorem 6, Assumption b]),

To illustrate this method, suppose

.B1 {Wi} are strong mixing with mixing numbers a(2) , & =1, 2, ...

»

that satisfy a(2) = o(z'“/(“'l)) as L+ = , for some a>1,

B2 sup Eqi(wi)E <w . for some £ > q .
ix1
See [4, 5,10, or 35] for the definition of strong mixing, which is a con-
dition of asymptotic weak dependence. Note that o = 1 requires
a(f) =0 for all & large, i.e., "m-dependence' of {Wi} .
Given Bl and B2, Mcleish's [28] Theorem 2,10 implies that
{q; (W;, @} , {a.;(W;, 8, o)}, and {q](W;, 8, o)} satisfy strong LLNs

for all 8 €0 and p > 0 . Thus, we have:

COROLLARY 2: For {qi(wi’ 8)} as defined above, if Bl, B2, A2, and either
A3 or A4 hold, thenm the conclusion of Theorem 1 holds, and the convergence

in part (a) of the conclusion holds a.s. [P] .
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An attractive feature of Theorem 1 above is that one can generate
analogous corollaries with the strong mixing assumption Bl renlaced by
an assumption of ergodicity, or stochastic stability (see Bierens [7]),

or anv of a number of other mixing conditions.

3. A SECOND UNIFORM LAW QF LARGE NUMBERS

In Section 2 we stated a generic uniform LIN that holds for any se-
quence of random functions {qi[wi, 9)} that satisfies pointwise LLNs
and a smoothness condition. We argued that this smoothness condition is
quite convenient because it is implied by common assumptions used in the
literature to establish asymptotic normality. This argument notwithstand-
ing, there may be cases where cne does not wish to place as strong a
smoothness condition on the random functions as A3, but one is willing
to place more restrictions on the heterogeneity of the ﬁarginal distribu-
tions of {W;} than are needed for pointwise LLNs.

In this section, we present a result that accommodates this tradeoff
of assumptions. A noteworthy feature of our result is that for the special
case of stationary ergodic sequences of random functions {q(wi, 8)}
{where q{-,*) does not depend on i }, it employs weaker conditions
than those special purpose uniform LLNs that appear in the econometrics
literature, Its conditions allow qi(wi, 8) to have some discontinuities
in 6 . This permits applications to such estimators as Manski's [26, 27]
maximum score estimator (in both stationary and non-stationary contexts).

Let a.e.[u] denote "almost everywhere with respect to the measure
u ., That is, a condition holds a.e.[u] if it holds except on a set

with u-measure zero. We introduce the following assumption:
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A5 (a) The marginal distributions of Wl, wz, «»o under P are each

doninated by a measure u .
L B
(b) ey z qi(w,e)pi(w) is continuous in & at & = 8* uniformly in
i=}

n a.e.fuz] , for each 8* € 8 , where pi(w) is the density of

Wi with respect to u .

n
(e) [ sup L7 supla (w,0)|p;(Wdu(w) <= .
n>l “i=1 8€Q

Discussion of this assumption foliows the next result:

THEOREM 2: For {q;(W,, 0)} as defined in Section 2, if Al, A2, and AS

hold, then conclusiong (a) and (b) of Theorem 1 hold.

COMMENTS: 1, Assumption A5 imposes a weaker smoothness condition than
A3, since it require# continuity, rather a Lipschitz condition, to hold.
On the other hand, each part (a), {(b), and (c) of AS restricts the degree
of heterogeneity of {"i} . For parts (a) and (b) this is not difficult

to see. For part (c), motice that if sup sup|q;(w,8)| <« , then (¢)
wEll HED

n
requires f sup'% E pi(deu(w) <« , Without the " sup " this always
n>1 “i=l n>1

holds, but with the " sup " it need not hold. For example, if Wi puts
n>l

probability mass one on the point 1/i , then

n o n o n -]
f sup % f pi(w}du(w) = E sun % E pi(l/t) = Z sup %-Z I(i=t) = E 1/t == |
n>l “i=l t=]l n>1 Vi=l t=1 n>1 “i=] t=]

Thus, part (c) also restricts the heterogeneity of {Ni} .
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2. 1f {Wi} is stationary ergodic and qi(-,-) does not dépend on
i, then AS simplifies to yield conditions that are weaker than those of
the following uniform LLNs: Jennrich [21] Theorem 2, Malinvaud [25, np.
967-968], Gallant [14] Theorem 1, Ranga Rao [31] Theorem 6.2, Bierens [7]
Lemma 2, and Amemiya [3] Theorem 4.2.1.

The simplification of AS that occurs is the following: AS5(a) is auto-

matically satisfied by taking 4 equal to the probability measure Pw of
1

Wl , A5(b) 1is equivalent to q(w,8) being continuous in & at & = &*

a.s. [P, ], V¥o* € 9, and A5(c) becomes E sup|q(W,, 8)]| < = . These
L1 g€p 1

conditions are weaker than those of the results listed above, because the
continuity of q(w,8) need not hold for all w , In comsequence, q(w,&)
can have isolated discontinuities, as occurs, for example, when q(w,6)}
corresponds to the defining equation of Manski's [26, 27] maximum score
(MS) estimator. None of the uniform LLNs listed above allow such'discon-
tinuities.5

To see that the defining equation of the !S5 estimator satisfies AS
in the general non-iid setting, consider the !5 estimator for the binary

choice model. 1In this case, the function qi(wi’ 8) 1is

Yil{Xie <0 + (1 - Yijl(xia > 0) , where wi = (Y Xi) , Y. 1is a zero-

i’ i

one response variable, and Xi is a vector of exogenous variables. Suppose
1 B

(1) {Wi} satisfies A5(a), (ii) f sup — E pi(w)du(w) <o , and {iii) Xi
n>l “i=1

has absolutely continuous distribution for all i . Since q{-,-) is

bounded, condition (ii) implies AS(c). Since q(-,+) does not depend

n
on i,and (ii) implies that sup % § py(W) <= a.e.{u] , AS5S(b) holds
. n>»1 Ti=1

if q(w,8) 1is continuous in & at 9§ = 9~ a.e.fu] , for each 8* € ¢ .

For given 8* , qi(w,8} 1is continuous at 8&* for all w = (v,x) for
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which x'e* # 0 . By (iii), the dominating measure 1 can be taken such
that the p-peasure of the set {w : x'e* = 0} is zero, and so, AS5(b) holds.
Thus, under assumptions (i)-{iii), assumption AS holds, By Theorem 2, then,
a uniform LLN can be obtained for the defining equation of the IMS estiﬁator
under any (additional) conditions that are sufficient for pointwise LLNs

to hold.

This result extends straightforwardly to the S estimator for multi-
nomial choice models (see Manski [26] and Amemiya [3, pp. 339-348]). Also,
under similar conditions assumption A5 holds for the defining equations of
the least absolute deviations estimator of various nonlinear models, when
it is defined as the solution to a system of equations.6 In this case, its
defining equations involve the sign function, and hence, exhibit discon-
tinuities,

3. Assumption AS(b) can be replaced by the following simpler, but
stronger, con_ditions: (1) :1:1; Pi(w) <o g.e.[u]l, and (ii) qi(w,e)
is continuous in & at 8 =;* uniformly in i a.e.[u] , Vvé* €0 .

The latter assumption (ii) is an analogue of Hoadley's [19, Theorem A.5]
assumption (b). Assumption (;l.i) circumvents the restriction to bounded
q(w,98) functions, however, that arises with Hoadley's assumption (b} (see
the Appendix).

4, Assumption A5(c) can be replaced by a traditional domination con-
dition such as: p,(w) < p(w) and |qi(w,6)| <q(w,®) , vi, a.e.[u],
for some functions p(w) and q(w,8) that satisfy

[ sup q(w,8)p(widu(w) <= .
pED
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4, PROOQFS

PROOF OF THEOREN-1: Given Lemma 1, it suffices to show that A3 implies

A0. VUsing assumption A3, we have

K = Tim sup = Ei(Eq (W;.8,0) ~Eq; (W,;,8))| < Tim sup = E Elqs(W;.8,0) -q; (W;,9} |

p*ﬂ n>1 “i=1 p=0 n>1 =1
(3 -
< Tim sup = | EB,(W,)-h[o] =
p+0 n>1 “i=1

The same argument holds with q¥(W., 6, p) replaced by Qg (W5, 8, 0)
Thus, AQ holds, @.E.D.

PROOF OF LEMMA 1: Part (b) follows straightforwardly from A0. To show part (a),
let Qi(e) = Eqi(wi, 8) . By AD, given ¢ >0 and & € 0 , we can choose

p(8) so small that for all n > 1,

<L
-n

=R

n
(4 =7 Q(8) -e < —Z Eq,; (W,,8,0(8)) <
i=l

n
[EQY(W,,8,0(8)) <
Mi=1 i=1

o
s

n
E Qi(a) +E .
=]

The collection of balls {B(8, 5(8)) : 8 € @} is an open cover of the

compact set © , and hence, by the Heine-Borel Theorem, has a finite sub-

cover {B(el, p(el)) : ¢ =1,,.,,L} . We now have: for all 9 € 0,

. 1§ 1§
n

il:at—f; L La](M,,8,,0(0,)) ~Eal(N,,8,,0(3)) ] +¢ .
i=1

The upper and lower bounds above are maxima and minima over finite numbers
of rv's, and hence, converge to ¢ and -¢ , respectively, by Al. Since

€ >0 1is arbitrary, the proof of part (a) is complete. &.EF.D.
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PROOF OF COROLLARY 1l: We just need to show that Ad implies A3, Since
® is convex and qi(wi, 8) 1is totally differentiable in & in a neigh-
bothood of €& a,s,[P] , the mean value theorem applies for each 8 € @

and we have: For all 8 € 6 and © € 0 s

“|[8-8)l a.s.lp],

(&) Jag0ny, B ~aqg00;, 9] < sup||35q1cw , %)

using the Cauchy-Schwartz inequality. Set h{y] =y and

, and we are done, 2.E.D.

By(W,) = sup”ae RO

PROOF QF THEOREM 2: Given Lemma 1, it suffices to show that A5 implies

AG. Under A5, we have

K = Tim supi{=
p=+0 n>1

Z ftayu,8,0) - qi(w.e))pi(w)du(w)’
1-1

I (ag00,8,0) - a0, )p; () | duC)
1:1

(N < Tim ]sup
p+0 n>l

Z (qf(w,8,0) - qi(w,BJ)pij)Hducw) =0,

- [[T= suwplt
1=1

p+0 n>1
where K is as in the proof of Theorem 1, the second equality holds by the
dominated convergence theorem using A5(¢), and the third equality holds by
A3(b). The same argument holds with q;{q,e,p) replaced by q,i(w,e,p)
Thus, A0 holds. &.F.D.
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APPENDIX

We now show how the uniform boundedness restriction in Hoadley's [19,
TheoremA,5] uniform LLN arises from his assumptions (in cases of particu-
lar interest). We adopt the notation of Section 2, For ease of exposi-
tion, we suppose {wi} are iid, and the functions {qi} do not depend
on i . Let o= RP be compact, Hoadley's uniform LLN applies to the
rv's {q(wi, 8)r and establishes the result of uniform convergence given
in part (a) of Theorem 1.

To reach this conclusion, Hoadley assumes (among other things) that
{q(wi, 8)} are continuous in ® uniformly in i, a.s. [P] . This
assumption means that there is a set B € B with P(B) = 1 such that
for all w € B, givenany ¢ > 0 and Y € 9 there exists a § > 0 ,
which may depend on w , €, and 6, , such that 18 - elll < § implies
(8) D, = :t:z{lq(wiw, 8) - a(W, , 8} <&,
where Wiw denotes the value of Wi when the sample path w € @ is
realized. (Inspection of Hoa&ley's proof shows that the assumption actually
is used as stated above.)

The restrictiveness of this assumption arises because continuity of
q(wi, 2) uniformly over i a.s. [P] requires continuity of q(w,8)
uniformly over different values of w , since wiw changes with 1 ,

The typical sequence {Wiw ti=1,2,...}, for w€ B, forms a dense
subset of the support of Wi , and so, if q (w,8) 1is continuous in w

for each &, the above assumption is equivalent to assuming continuity

of q(w,8) in & uniformly over all w in the support of Wi. For the

functions q(w,2) and the Tv's Wi that are considered in the non-
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linear econometrics literature, this is a very restrictive assumption.

For example, for LS estimators of nonlinea£ regression models, the
function q commonly is taken to be q(wi, 8) = (Yi -g(xi, e))2 , where
Hi = (Yi, xi) and the model is Y, = g(xi, 8y) * U; (e.g., see {10, 35]).
In ML estimation, q often is taken to be the logarithm of the likelihood
function of an cbservation (e.g., see [5, 24 ]).7 In the regression case, q
is unbounded, and hence, Hoadley's uniform LLN cannot be applied, if the
errors have unbounded support (e.g., if the errors are normal) or if the
regression function is unbounded. In the ML case, q is unbounded
if the score function is unbounded (as occurs in models with nermal errors).
The functions q corresponding to numerous other estimators violate the
boundedness restriction implied by Hoadley's assumption,

To illustrate the boundedness restriction in a particular example,
consider the least squares estimator in the simplest of all regression

models, viz,, a regression model with only a constant term:

yi=9°¢U- i'l,o-c,n-

i L]

For this model Wi = (Yi, 1} and the criterion function q{(w,8) is taken

to be (y-e)2 . Again for simplicity, consider equation (8) for the case

-

81 = 60 . We have

2
(2 Dm = sup 2(60 -B)Uiu + (80 -8)

2
: zleo-e[-lu - (85-90)° .
i>1

iml

> sup

i»1
If the errors have unbounded support (as in the case of normality), then
the right-hand-side equals infinity for all w in & set with probability

one {for 8 # 60 ). This follows, because
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lim maxlUi] =« a,s. [P] , by results for extreme order statistics (e.g.,
n+ ji<n

see Galambos [13, Corollarv 4.3.1]}. Thus, Hoadley's continuity assump-
tion fails.

Those papers in the nonlinear econometrics literature that make use
of Hoadley's uniform LLN (e.g., [10, 35]) have been designed carefully
so that their results hold with any uniform strong LLN. In consequence,
the uniform LLN presented in Section 2 or Section 3 above can be used to
replace that of Hoadley in these papers, and the results of the papers
hold in the full generality that is intended. For such papers, then, the
restrictiveness of Hoadley's uniform LLN is a nuisance, rather than a
serious problem,

We now briefly discuss the inid uniform LLN of Amemiya [3, Theorem
4.2.2, p. 117], because this result appears to be stronger than our Theorems
1 and 2 in some respects. Amemiya's inid uniform LLN is given, more or
less, as a corollary to his iid uniform LLN. He states that the inid
result is a special case of Hoadley's uniform LLN, and in consequence,
does not give a formal proof, but only mentions the medification of his
iid proof that is needed. In view of the boundedness restriction that
arises with Hoadley's uniform LLN, we see that Amemiya's assumptions actually
are much weaker than Hoadley's, and hence, Hoadley's proof does not apmly.

With regard to the modification of his iid proof, Amemiya states that

the proof of the iid case can be generalized to the extent that

T T
1 ¥ gt(ei) and -1 ) sup|gt(e} - gt{ai)l (using his notation) can
t=1 t=1 8€@?

be subjected to laws of large numbers. By following this method of proof,

however, one also needs to show -that

T
H 2 1lim lim sup max 'I"l E E sup [gt{e) - gtfsi)\ = 0 , Under the assumptions

n+e T i<n =1 BEGE
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of his Theorem 4,.2.2, this does not necessarily hold, as the following
example illustrates,

For brevity, we adopt Amemiya's notation without comment. Let
m: R~+ [0,1] be a bounded, even, continucus function such that m(z) =1
for z=0, and m(z) =0 forall |z| > 1. Let {y.} bea sequence
of independent rv's with P(y, = 1/t) = P(y = -1/t) = 1/2 . Let
g(y,8) = m(e/yz)-sgn(y) . Take © to be a compact subset of R that
contains 0; {yt} , g(+,*) , and © satisfy the conditions of Amemiya's
Theorem 4.2.2, but H # 0 . To see the latter, suppose 0 is in e?. .

Let § equal ;v unless e, =0 . If 8, =0, take § %o be any

it

non-zers element of ef, . Then, we have

(1) swp |y, @) -8y, 850 2lalves O - gty D] = [1-0@/ydsmiyr | = 1,
a€al,
i

where the second equality holds for t sufficiently large. This implies

that H £ 0, as claimed. In addition, (10) implies that

n T |
¥ pr-l 1 sup Igt(e) - gttei)| >e) =1 for T largeand e <1 ,
i=} t=] n

GEGi

which also illustrates that Amemiya's iid method of proof does not apply.
To conclude, while Amemiya's Theorem 4,2.2 may be correct, its proof seems

to be lacking as yet, and hence, it does not dominate our rTesults.
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If the response variables and exogenous variables are assumed to be
unconditionally stationary, then this restriction does not occur.
The reason being, for a single observation the conditional log like-
lihood function of the response variables, given the current period
exogenous variables and all past variables, depends on the observa-
tion subscript only through the variables,

In other heterogeneous situations, it is possible to avoid index-
ing the functions by the observation subscript, by adding an element
to the underlying rv vector that captures the desired changes of the
function over observations. To apply the LLNs referenced immediately
above in the text, one then needs to assume that the average marginal
distribution of the elongated rv vector converges weakly to some fixed
distribution. This may be difficult to justify.

Note that q;(wi, &, p) and q,i(wi, 8, p) are measurable, because

we assume below that the metric space © 1is compact, and hence, is
separable. This implies that q;(wi, 8, p} and q*igwi’ 8, p) equal

supremum and infimum over countable sets, respectively.

For the same reason as in footnote 3, qi(wi) is measurable, It

also is finite a.s. [P] , by compactness of © (assumption A2},
and continuity of qi(wi, ) in & a.s. [P] {(assumption A3 or A4},

Amemiya [3, Theorem 9.6.2] shows that his iid uniform LLN {Theorem
4,2,1) can be extended to cover the maximum score estimator. But,
unlike Theorem 2 above, Amemiya's argument is specific to the case
at hand, viz., the maximum score estimator, and is somewhat lengthy.

The least absolute deviations (LAD) estimator can be defined as the
solution to a system of equations that involves the discontinuous

sign function, or as the solution to a minimization problem that in-
volves the continuous absolute value function. One reason for adopt-
ing the former definition, when proving comsistency, is that it

allows consistency to be established without any moment conditions

on the errors in nonlinear regression and nonlinear simul taneous equa-
tions models. Using the latter definition, one needs to assume that
the errors have one moment finite to apply the standard methods of
proof. This argument for the use of the system of equations definition
is enhanced by the fact that robustness with respect to fat-tailed
error distributions is an important attribute of LAD estimators,
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Hoadley [19] does not apply his uniform LLN to the logarithm of the
likelihood function in his proof of consistency of ML estimators.
Instead, he applies it to bounded rv's. Thus, his ML consistency
results are not affected by the boundedness implication of the assump-
tions of his uniform LLN.

His asymwptotic normality results, however, alsc use his uniform
LLN. For these results, he assumes that the matrix of second partial
derivatives of the score function are continuous in 8, uniformly
over i = 1,2,... a.s. [P] (see his condition N4). This can be quite
restrictive, For example, in a linear regression model with iid normal
errors and iid random regressors, it requires the support of the re-
gressors to be bounded.
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