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EXTENDED ABSTRACT

This paper considers optimal median unbiased estimation in a linear
regression model with the distribution of the errors lving in a sub-class
of the elliptically syvmmetric distributions. The generalized least squares
(GLS) estimator is shown to be best for any monotone loss function, i.e.,
any loss function that is nondecreasing as the magnitude of under-estimation
or over-estinatjon increases. This includes bounded asymmetric loss func-
tions. For the same loss functions, a restricted GLS estimator is shown
to be best when the estimand is known to lie in an interval. For the case
of normal errors, a best median unbiased estimator of the error variance
a2 is given, for the cases of restricted and unrestricted parameter spaces.
This estimator differs from the sample variance 52. Incomparison with best
méén unbiased estimators of regression and variance parameters, the best
median unbiased estimators considered here take advantage of restrictions
on the parameter space, and are optimal with respect to a much wider class
of loss functions--in particular, both bounded and unbounded loss functions.
The choice of median unbiasedness, as opposed to mean unbiasedness,
is not crucial when deriving an ontimality result for the estimation of
Tegression parameters when the model has elliptically symmetric errors,
provided the parameter space is unrestricted, or is restricted onlv by linear
constraints. The reason is that many estimators considered in the litera-
ture have symmetric distributions about the estimand in this context, and
hence, are both median and mean unbiased if their expectation exists.
{Proper Bayes and shrinkage estimators are the two main classes of esti-
mators that do not have symmetric distributions and are neither mean nor

median unbiased.}
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On the other hand, if the parameter space of the regression parameters
is restricted by nonlinear constraints on the parameters, then the mean
unbiasedness condition becomes much more restrictive than median unbiased-
ness. This occurs because estimators that take advantage of the restrictions
on the parameters generally are (mean) biased. !ledian unbiased estimators,
however, can be adjusted to take account of restrictions without losing
their property of median unbiasedness. Thus, our use of the condition of
median unbiasedness, rather than mean unbiasedness, is of little consequence
when the parameter space is unrestricted, and is a distinct advantage when
the parameter space is restricted by nonlinear constraints on the parameters.

The class of error distributions that we consider consists of distri-
butions that are.consistent with elliptical Symmetry for anv samnle size.
Such distributions are rotated variance mixtures of multivariate normal
dis;ributions (and hence, include multivariate normal distributions). An
example of a situation in which a non-normal elliptically symmetric error
distribution may arise is the following. Consider the classical regression
model based on an agricultural experiment., Supnose the dependent variable
is érop yield, and the independent variables include fertilizer treatment,
The error may be comprised of several factors including differential land
quality. The seed for each plot is taken from the same stock. The quality
of this stock may be viewed as the outcome of a random draw (with different
points in time or different geographic origins of the stock vielding dif-
ferent draws)., Conditional on the stock of seea used, it mav be reasonable
to assume that the errors have a normal distribution. Different stocks
of seed mav interact differently with the environment to yield different
conditional variances of the errors. To make inferences that are valid

for the population of seed stocks, then, one needs to treat the errors as
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a variance mixture of normal distributions.

As a second example, consider a regression model with economic variables
where the observations correspond to different firms in an industry observed
at the same point in time. Suppose the errors are identically distributed
across firms, and the state of the macro economy affects the size of the
error variance for each firm. It may be reasonable to assume that the errors
have normal distribution conditional on the state of the macro economy,

If so, then one needs to treat the errors as a variance mixture of normals
if one wishes to make inferences that are valid for different points in the
business cycle.

These examples suggest that there are a number of situations in which
it may be reasonable to assume that the errors have non-normal elliptically
symmetric distributions. Of course, there are manv additional situations
for which the assumption of normalitv is appropriate.

The-contents of this paper are organized as follows. Section 1 brieflv
reviews recent results by Kariya (1985) and Hwang (1985) that are related
to the results given here. Section 2 shows that the GLS estimator is the
best median unbiased estimator of the regression parameters for quite gen-
eral loss functions, when the parameter space is unrestricted. Of note
is the fact that this result holds without moment restrictions., Thus, the
errors may have multivariate Cauchy distribution. Section 3 shows that
a restricted GLS estimator is best median unbiased for a linear combination
of the regression parameters, when that linear combination is restricted
to lie in an interval. Certain other linear combinations of the parameter
vector may be subject to arbitrary additional restrictions. Section 4 pre-
sents best median unbiased estimators of the error variance 02 , as well

as monotone functions of 52 , when the errors are normally distributed.
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if 02 is constrained to lie in a finite interval, the best estimator is

a censored version of its unconstrained counterpart. When 02 is constrained
only to be positive, the best median unbiased estimator is always larger

than the best mean unbiased estimator 52 , and is approximately equal

to s2 calculated with its degrees of freedom reduced by .66. The final

Section S gives proofs of the results, These make use of results due to

Lehmann (1959) and Pfanzagl (1979).



1. KARIYA'S AND HWANG'S OPTIMALITY RESULTS FOR GLS

The Gauss-Markov Theorem states that for the linear regression model,

Yy = XBO *uy E(uN) = 0, and Cov(uN) = 022 R (1

the generalized least squares {GLS) estimator,

A Sl "1, -1

B = (X'T X)) X'r'y, (2)
is the best linear unbiased estimator, in the sense that c'é minimizes
the mean squared error for estimation of c'BO for all fixed K-vectors
¢ , provided ¥ is known. Here X is an N x K fixed matrix of rank
K, I is a positive definite N x N matrix, and Bo € & .

Two extensions of this result have appeared recently in the literature,
see Kariya (1985) and Hwang (1985, Corollarv 3.2). In this section, we
briefly review these extensions.

A common criticism of the Gauss-Markov Theorem is that it only con-
siders linear estimators, This has little or no justification. In con-

trast, Kariya's (1985) recent version of the Gauss-llarkov Theorem allows

for nonlinear estimators. The class of estimators he considers is

Cl = {B|8(y) = C(e}y, C(e) is a K xN matrix-valued measurable function

of e such that C(e)X = I, for all e and E|/§}|? exists) ,

where e- is the N-vector of ordinary least squares (OLS) residuals, i.e.,
e=zy-Xb, where b = (X‘X)_IX'y is the OLS estimator. This class in-
cludes the class of linear'unbiased estimators. It contains both nonlinear
and biased estimators. A typical example of an estimator in Cl is the

-1
nonlinear feasible GLS estimator defined by C(e) = (X' 1x) x'# !, where
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the estimated covariance matrix £ depends only on the OLS residuals e .,
Kariya's optimality result for the class Cl is possible, because he
considers a smaller class of error distributions than is considered in the
Gauss-Markov Theorem. Let ?ﬁ be the class of distributions satisfying
" (1) such that when Uy is transformed into G% = E'lfzuN » the distribu-
tion of ﬁk is orthogonally invariant; that is, I{Tﬁh) = f(aﬁ) , where
I' is any N x N orthogonal matrix and JL(+) denotes the distribution
of =+ . Tﬁ is the class of elliptically syrmetric N-variate distributions
with two moments finite (see Kelker (1970) and King (1980)). It contains
the N-variate normal distribution, and N-variate exponential and t-distributions
with three or more deprees of freedom (see Lord (1954), Dunnett and Sobel
{1955), and Bennett (1961)).
Kariya shows that if Jﬁ(uN) €jF2 , then the GLS estimator is best

in the class Cl in the sense of mean squared error. 7That is, for any

Beé, andall c¢ Rc,

-1

2 . el e (3)

E(c'B-c'8)? > E(c'B - c'8)
As Xariya points out, this result has reievance whether or not I is known:
If I is known it yields a best estimator; if I is unknown, it vields
a sharp lower bound for the mean squared error of estimators in Cl .

Although Kariya's class Cl is more general than the class of linear

unbiased estimators, it is still quite restrictive. ‘It excludes a wide
variety of estimators in the literature that are unbiased in the present
context. Such estimators include maximum likelihood for unknown £ , robust
M-, L-, R-, minimum distance, spectral, and adaptive estimators (see Andrews
(1986) and the discussion in Section 2 below), In addition, Kariya's result

only establishes optimality with respect to the squared error loss function.



Hwang (1985, Corollary 3.2) extends the Gauss-lMarkov Theorem in a dif-
ferent direction from that of Kariya. He generalizes the criterion of
optimality considerably from mean squared error to risk under arbitrary
symmetric monotone loss functions (defined below). The squared error loss
function is of very special form, and exhibits the genéral qualitative
features of unboundedness and symmetry. In many circumstances, this loss
function is not very appropriate. Hence, it is important to see if the
optimality of the GLS estimator is sensitive to this particular choice of
loss function.

When the errors have multivariate normal distribution, it is known
that the GLS estimator ch is the best unbiased estimator of c‘So for
any convex loss function (see Lehmann (1983, Theorem 3.4.3, p, 189)). This
is a generalization of the standard UMVU result. It is quite useful, because
it allows for asymmetric loss functions of fairly flexible shape, and does
not impose linearity of the estimators. Unfortunately, the convexity con-
dition implies unboundedness of the loss function, which may be inapnropriate
in many circumstances,

Hwang's result, on the other hand, imposes symmetry of the loss func~
tions, but otherwise allows for quite general shape, including boundedness.
For estimation of c'BO » he considers non-negative loss functions
L(c'g -c‘BO) that are symmetric about zero and nondecreasing in
|c'8 -c'80] . {In fact, Hwang's (1985) results carrv through unchanged
for leoss functions L(BO, c'8 -c'BO) that are symmetric about zero in
their second argument and nondecreasing in |c'§ - c'80| , for each value of
their first argument Bo € RK . This extension can be important, because
the magnitude of the loss attributable to over- or under-estamation by a

fixed amount often depends on the true value of the parameter.)



Hwang (1985, Theorem 2.3) shows that his class of loss functions is
sufficiently general that given two estimators c'§1 and c'§2 » the risk
of c'§1 is less than or equal to that of c‘§2 for all svmmetric mono-

tone loss functions if and only if
-~ s -~
8, -8yl ¥ |erB, - gyl 4

where ﬁg denotes 'stochastically less than or equal to." Thus, optimality
under Hwang's class of loss functions is a strong result., The only clear
deficiency is the restriction to symmetric loss functions,

To show the optimality of GLS under symmetric monotone loss functions,
Hwang assumes the errors have elliptically symmetric distributions and
maintains the restriction to linear estimators that is used in the Gauss-
Markov Theorem, In addition, he assumes that the estimators are either
median unbiased or (mean) umnbiased. In the former case, the error distri-
butions are not subject to any moment restrictions, i.e., .I(uN) € Fg .

(The superscript 0 denotes the assumed number of well-defined monents.

For distributions in Tg that have infinite variances, I does not satisfy
(1), since no covariance matrix exists. In this case, I 1is just the
characteristic matrix that achieves spherical symmetry in the transformed
coordinates.) In the latter case, the error distributions are assumed to
have one moment well-defined, i.e., aﬂ{uﬂ) € fﬁ . Thus, Hwang's error
assumptions are stronger than those of the Gauss-Markov theorem with respect
to the range of distributions with finite variances, but are more general

in terms of moment restrictions.

Under these assumptions, Hwang shows that the GLS estimator c'g of
c'BO is best in the class of linear unbiased (or median unbiased) estimators

for all symmetric monotone loss functions. Thus,
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It:'é-'::'ﬁ0 < Ic'B—c'BOI . (5)

for all linear unbiased estimators c'S .
This is an interesting result, but it suffers greatly from the arbi-
trary restriction to linear estimators. Also, the restriction to symmetric

loss functions may be objectionable.

2. A STRONG OPTIMALITY RESULT FOR GLS

Each of the optimality results discussed above is less general than
desirable due to the class of loss functions considered and/or the class
of estimators considered., For example, none of these results allows for
bounded asymmetric loss functions. Further, the results of Kariya and
Hwang arbitrarily restrict the c¢lass of estimators bevond the restriction
due to unbiasedness or median unbiasedness (which itself may be subject
to cr&ticism). The result we present here removes these restrictions.

For estimation of . c'Bo . given c € RK » Wwe consider loss functions
L(BO, c'8 -c'BO) that are subject only to the condition that loss is non;
decreasing in c'R - C'Bo for c'f - c'BU > 0, and non-increasing in
c'B - c'By for c'f - c'Bo < 0, for each value of its first argument
30 € RK + Such loss funcﬁions are called monotone, They are considered
by Lehmann (1959, p. 83) and Pfanzagl (1979).

For particular choices of monotone loss functions the risk of an esti-
mator c'3 is given by ‘P('dl S_c‘ﬁ -c'BO < dz) , for anv dl’ d2<i 0.
Thus, an estimator that is optimal with respect to the class of monotone
loss functions has distribution more concentrated about the estimand than
any other estimator considered. This is a strong optimality result,

The argument of Hwang (1985, Theorem 2.3) can be used to show that

for two estimators c'§1 and c'éz , the risk of c'@l is less than or



equal to that of c'§2 for all monotone loss functions if and only if
- T A -~ ST a
(e'By-esg, T (erB, a8y, and ()-8 X (erB, e, ()

where (-)+ and (+)_ denote the positive and negative pgrts of -,
i.e., for A€ R, (X)), = max{},0} and (A)_ = max{-:,0} . If an esti-
mator él satisfies (6) for all éz in a designated class, we sav that
§1 is stochastically best in this class of estimators. This is a stronger
result than optimality with respect to Hwang's stochastic condition (4).

A particular monotone loss function that may be of interest is the
function L(Bo, s) = 52/(1 +A52) , for A>0, where s =c'f - C'8y v
This loss function is bounded, yet for small A it is close to the common
squared error loss function except when s2 is large. Of course, the
(unbounded) squared error loss function is also a monotone loss functiom.

The class of error distributions that we consider is slightly less
general than the class fg of elliptically symmetric N-variate distribu-
tions centered at the origin. In most applications of the linear regression
medel, the properties of the errors are not specific to the sample size
under consideration. In particular, if an assumption such as elliptical
symmetry of the errors is reasonable for sample size n equal to some N ,
then it is necessarily reasonable for sample size n equal to
N-1, N-2, ..., 1, and usually also is reasonable for sample sizes
N+1l, N+2, ... . This being the case, it is not unduly restrictive to con-

sider the sub-class of error distributions of ,Fg given by
& = Blu €F c2u) €F forn=1, 2,...)
N Uy N n n L ’

I 1
where u, denotes the vector of errors (u(l)’ Uray ...,u(n)) when the



sample size is n ., That is, & contains all distributions of the first
N errors that can be generated by errors (u(l)’ gy ...,u(n))' that
have elliptically symmetric distributions for any sample size n=1, 2, ...

Distributions in & are called consistent elliptically symmetric
(CES) N-variate distributions, where the adjective "consistent" refers to
the fact that the distributions are consistent with elliptical symmetr)
for any sample size n . Since Gﬁ is not restricted by moment conditions,
it contains distributions with infinite variances and undefined means.

In particular, G& contains the N-variate normal, exponential, and
t-distributions, including the N-variate Cauchy distribution,

By Theorem 10 of Kelker (1970), I(uN) € GN if and onlv if the dis-
tribution of Z_I/ZuN is a variance mixture of N independent identically
distributed mean zero normal random variables (with non-negative mixing
density). Thus, CES distributions can be constructed and characterized
quite simply.

In comparison with the error distributions considered in the Gauss-
Markov Theorem, the class of CES distributions restricts the range of dis-
tributions with finite variances considerably. On the other hand, this
restriction weakens-the conditions of unbiasedness and median unbiasedness
substantially, as we now shall see,

The class of estimators that we consider consists of all median wnbiased
estimators. By definition, an estimator c'8 of c'B0 is median unbiased

if
P(c' > c'8y) > 1/2 and P(c'f < '8y > 1/2 . (7)

If P(c'8 =c'8)) =0, as is usually the case, then this condition sim-

plifies to P(c'§ > c!BO) = P(c'8 < c'Bo) =1/2 ,



In the present context, the class of median unbiased estimators is
very large--much larger than the class of unbiased or median unbiased
estimators in the Gauss-Markov set up. The reason is that Uy is symmetric-
ally distributed about the zero vector {i.e., I(UN) =I(-uN)) when it
has an elliptically symmetric distribution. Thus, all estimators B that
are odd functions of the errors have distributions svmmetric about B0 s
and yield median unbiased estimators c'§ of c‘SO , for all c € RK .
As shown in Andrews (1986}, this result applies to the majority of non-
Bayesian, non-shrinkage estimators considered in the literature. It holds
for a wide class of nonlinear estimators that are defined as solutions to
maximization problems or systems of equations, where initial estimators
may be employed. This includes iterated estimators., 1In particular, the
following estimators are covered: feasible GLS, quasi-maximum likelihood,
Huber M-, bounded-influence M-, L-, R-, minimum distance, spectral, band
spectral, GEM (see Andrews (i983)), adaptive, one-step asymptotically
efficient, and instrumental variable., Note that these estimators also are
mean unbiased provided their expectation exists.

Our main result is the following theorem. Its proof makes use of a
result of Lehmann (1959, pp. 80-83) for best median unbiased estimation in
monotone likelihood ratio families of distributions that are indexed by a
scalar parameter. A different proof of our result can be obtained by apply-
ing an extension of Lehmann's result due to Pfanzagl -(1979).

The term "unique" is used in the Thecrem to mean unique almost every-

where with respect to Lebesgue measure,



Theoren 1. Coﬁ#ider the model 'y = XBO Uy, where 85 € RK s X <dg
full rank, and I(u) € & . (a) The GLS estimator c'B is the wrique
best median wnbiased estimator of c'8y Jor ay given c € X in the
senge of wniformly minirum risk for any monotone loss funetion.. (b) Equiv-
alently, the GLS estimator c'f <is the unique stochastically best median

wbiased estimator of c'By » Jor oy given c € R .
The proof is given in Section $ below,

Comments: 1. The Theorem also holds if we restrict attention to errors with
multivariate normal distributions, The requirement of median unbiasedness
under the larger class of CES distributions is not driving the optimality
result by eliminating estimators from consideration.

2. The GLS estimator has infinite risk for some loss functions and
some error distributions in clﬁ . The Theorem still has import in these
circumstances, however, because it implies that every other median unbiased
estimator also has infinite risk.

3. In some cases, the ultimate object of interest is not c'BO but
a nenlinear function of c‘SO s Ssay h(c'Bo) » because it has a particular
interpretation or meaning in an underlying theoretical model. For example,
we may want to estimate the logarithm of a regression parameter. If h(s)
is a monotone function, then given Theorem 1, it is not hard to see that
not only is h(c'g) median unbiased, but it is the bést median unbiased esti-
mator for any monotone loss function (under the assumptions of the Theorem).
This is a very convenient result, especially in light of the difficulties
0
Such estimators do not equal h(c'g) » 1in general, and may not even exist.

in obtaining best mean unbiased estimators of nonlinear functions of c'S8
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4, For bounded loss functions, the risk of the GLS estimator is finite
even when the errors have undefined means or infinite variances, e.g., as
in the N-variate Cauchy case. Thus, we get the interesting result that
situations exist in which the least squares estimator is strictly preferred
over a wide variety of robust.procedures, even though the errors may have
no nmoments finite, This result is possible, because the errors are not
independent, even if I = IN’ unless uy has normal distribution. The
optimality result depends heavily on the elliptically svmmetric form of the
underlying error distribution, as comparisons with results in the robust-
ness literature clearly atest.

5. The class of estimators considered in Theorem 1 is much more general
with respect to nonlinearity than is Kariya's (1985) class C1 . It does
not contain Cl » however, because Cl includes some biased estimators.
On the other hand, if the function C(e) that defines Kariya's estimators
is an even function of the OLS residuals e, then g = C{e)y is median
unbiased for ;ﬂ(uN) € fo . Since it is an odd function of the errors.
Given the assumed symmetry of Uy about the zero vector, the evenness of
C(e) arises quite naturally, and most (or all) estimators in Cl that
have been considered in the literature satisfy this property,

Nevertheless, for an optimality result it is desirable to avoid any
restriction on the class of estimators, if possible. If one wishes to in-
clude the biased estimators of Kariva in an optimality result, one can
proceed as follows: Consider the estimators of Theorem 1 of Andrews (1986)
where the assumption Al is relaxed by requiring the function r to be even
in only its first argument rather than its first three arguments, Call the

collection of such estimators Cz . The class Cz contains ¢ One

1
can show for 8o € RK and .1(uN) € Gﬁ , the GLS estimator é is the best
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estimator of 80 in the class Cz in the sense of uniformly minimum risk
for any symmetric convex loss function (see Andreﬁs and Phillips (1985)}).
This result generalizes Kariya's, because it considers much wider classes
of loss functions and estimators (although it imposes slightly different
error assumptions),. |

6. The result of the Theorem can be extended to allow homogeneous or
non-homogeneous linear restrictions on 80 , and to allow less than full
rank X matrix (provided identifying linear side conditions on B8, are
specified). If B0 is subject to inequality constraints, however, then
Theorem 1 no longer holds, but a restricted GLS estimator can be shown to
possess similar strong optimality properties, as the next section illus-
trates.

7. As stated, Theorem 1 does not cover the standard multivariate re-
gression model. It is not difficult, however, to use the proof of Theorenm
1 to establish an analogous result for this model. Such a result is impor-
tant because the multivariate regression model is of considerable interest
in econometrics, due to its application to demand systems, among others.

The multivariate regression model consists of T observations on g

equations, and can be written as

Y = A AO + u R

(Txg) (Txm) (mxg) (Txg)
where Y , Z , AD , and U are matrices of dependent variables, regres-
sors, unknown parameters, and errors, respectively. The parameter matrix
Ao may contain zeroes and redundant elements, and hence, is assumed to
satisfy vec(AO) = SB0 , where § is a gm=xp known selection matrix

(with p < gm ), Bo is the vector of basic unknown parameters, BO € rP .
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and vec(+) denotes the row by row vectorization operator, Equivalently,
this model can be written as y = XBO +u, where y = vec(Y) ,

X = (Ig®Z)S , and u = vec(l) . Write U= (v, ..., up)' . Suppose
the error vectors Uys see, Up are independent across observations, and
each error vector uj has some elliptically symmetric distribution with
g xg full rank characteristic matrix Qj and no probability mass at the
origin. (The vectors Ups eeey U need not be identically distributed.)
Let 8 denote the GLS estimator of B, given by equation (2) with

I s diag(nl, ey QT) . The above class of distributions of u does not
equal G;T » and hence, Theorem 1 does not apply. Nevertheless, it is
straightforward to alter the proof of Theorem 1 to show that the optimality
results {a) and (b) of Theorem 1 holg for the GLS estimator B in this

multivariate regression model.

3. OPTIMAL ESTIMATION WITH A RESTRICTED PARAMETER SPACE

In this section we discuss optimal estimation of c'BO when 8o is
subject to certain nonlinear restrictions. In particular, we consider the
case where c'Bo is known to lie in a (possibly infinite) interval that
does not depend on BO , and certain linear combinations of BO , de-
noted ciBO’ cass cﬁso » are restricted in any fashion not involving
c'Bo . A simple example is when we wish to estimate some element of By
subject to the sole congtraint that this element is positive or lies in
[o,11 .

Suppese the only restriction on 8 is that c'B0 lies in a nonde-
generate interval strictly contained in R ., The best estimator of c'By

from a sub-class of mean unbiased estimators is the GLS estimator that

ignores the constraints, according to the Gauss-Markov Theorem, Kariya's
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(1985) results, or various generalized UMVU results. The reason is that
any attempt to improve the GLS estimator to take account of the constraints
results in a biased estimator. In this context, the mean unbiasedness con-
dition is overly restrictive.

On the other hand, estimators § of c‘B0 that are median unbiased
when no constraints are present can be adjusted quite naturally to take
advantage of the restriction that c'so lies in an interval, or any subset
of R, without losing their property of median unbiasedness. Whenever

§ 1lies outside the parameter space of c'8, set the adjusted estimator
(3)R equal to any closest value in the closure of the parameter space;
otherwise leave the estimator as is. The resultant estimator (ﬁ)R is
median unbiased for the restricted parameter space, and lies in its closure,
Thus, the condition of median unbiasedness is a relatively attractive con-
dition for restricting the class of estimators when the parameter space of
c'8y 1is restricted.

We now define the linear combinations (céBo, ...,ciBOJ of Bo that
may be subject to additional restrictions beyond that on c'so . Let
X = 2-1/2x . Since X is full rank K , c' is proportional to some linear
combination of the Tows of X . Say, ¢' = dii , where dl is an ortho-
normal N-vector, Take any K-1 orthonormal N-vectors dz, coes dK that
are orthogonal to d1 and are such that (dl, ""dK) span the column

space of X . Then, the vectors cj , j=2, ..., K are given by

cj = d;i » for j =2, ..., K. As a simple example, suppose I = IN ,

h

¢t = (0, ...,0, 1) , so that c'Bo = 3 and the Kt colum of X

oK ?

is orthogonal to its other columms. In this case, (B can

017 -+ Bok.1)
be restricted in any way (not involving B8,.. ) without affecting the
OK

optimality of the best median unbiased estimator of Box *
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The main result of this section gives a strong optimality property

for the restricted GLS estimator (c'é)R :

Theorem 2. Consider the model y = X8, + w, , when L(u) €& , X ’as
full rank, c'p, lies in a known (possibly infinite) interval I, that
doeg not depend on Bg » and the linear combinations (céco, ...,céBO)

of B8y are regtricted in any fashion not involuving c'By - Then, the re-
stricted GLS estimator (c'g)R s the unique best median wnbiased estimator
of ¢'By in the sense of wniformly minimum risk for any momotone loss func-
tion. Equivalently, it is the wunique stochastically best median unbiased

estimator of c'8y » for given c € R* .

The proof of this result makes use of the Theorem of Pfanzagl (1979),

see 8ection 5.

Comment: When the restrictions on BO ére such that the interval contain-
ing c'Bo depends on 30 , a uniformly best median Gnbiased estimator of
¢'8y, does not exist, We still can obtain a lowex bound on the risk of

a median unbiased estimator of c'so , however, by using the method of the
proof of Theorem 2. In particular, if we suppose (céﬂo, ...,ckso) are
known, then the interval containing c'BO is known, call it IC(BOJ , and
the stochastically best median unbiased estimator of c'BO is the restricted
GLS estimator (c'gjR , Testricted to the closure of IC(BOJ . The risk

2
of (c'B)R as a function of BO gives the desired lower bound.
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4. OPTIMAL ESTIMATION QF 02

In this section we specialize to the case of linear regression with

independent identically distributed normal errors with mean zero and var-

. 2 . . . 2 .
fjance o¢° . We consider estimation of ¢ and various monotone transfor-

mations of 02 , Such as ¢ and d02 , for some constant 4 # 0 .

First, we discuss the optimality properties of the most commonly used

2 2

el
estimators, viz,, s, s, and ds° , for ¢, ¢, and dcz , re-

spectively, where 52 = ﬁ%K(y-Xg)'(Y'-Xg) H%ESSR and g is the least
squares estimator. The use of 52 to estimate cz is justified in this
context by the fact that it is the best unbiased estimator in the sense of
uniformly minimum risk fer any convex loss function (see Lehmann (1983,
Theorem 3.4.1, p. 185)). This optimality property carries over the estima-

2 by ds2 » but does not hold for the standard error of estimate

tion of do
(SEE) s of o, since s is biased, If 02 is known to lie in a non-

. . . . + 2 . .
degenerate interval strictly contained in R , then s is still the

best unbiased estimator of 02 for convex loss, even though it ignores

the restrictions on 02 .

For squared error loss, the risk of s2 is uniformly dominated by
that of the biased estimator 52 = FSSR (e.g., see Rao (1973, p. 516)).
This result is not of great concern, however, since the symmetric squared
error loss function is usually quite inappropriate for estimation of o~ .
For example, it implies that the maximum loss from under-estimation is
bounded whereas that from over-estimation is unbounded. Furthermore, by
appropriate choice of asymmetric squared error loss function, 52 dominates

3% and any other scalar multiple of SSR .

We now consider an alternative to 52 and h(sz) for estimating 02
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and h(cz) , where h(+) is any monotone function. This alternative has
several desirable properties. Suppose 02 is known to lie in an interval

e
with endpoints a , b where 0 <a <b <« , Define the estimator <~ by

b z_b
«? = | SSR/m,_, when SSR/m , { € [a,b] (8)
a <a,

where By-K is the median of a chi-square random variable with N-K degrees
of freedom.

The estimator 12 has the following properties: (i) 12 is the best
median unbiased estimator of 12 for any monotone loss function. Equiva-
lently, it is the stochastically best median unbiased estimator of 52 .

In contrast to the optimality results for 52 » the above result includes
bounded asymmetric loss functions, (ii) The optimality result of (i} holds

even when BO is subject to restrictions, provided the parameter space

of Bo has a non-empty interior, (iii) 12 take advantage of the

3
restrictions on 02 . This is a distinct advantage of 1° over the best
d
mean unbiased estimator s2 + (iv) The estimator h(Tz) of h{c”) inherits

the same optimality properties as 12 » provided h(-) is monotone on

[a,b] . In particular, v and drz are best median unbiased estimators

of ¢ and d02 , Trespectively, for any monotone loss function. This result
not only guarantees the existence of a best median unbiased estimator for
many estimands h(cz) of interest, it also provides very simple expressions
for such estimators. Best mean unbiased estimators of h(cz) do not exist
for some functions h({-)

, and even when theyv do exist, they are more dif-

ficult to determine than the best median unbiased estimator.
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Results (i) and (ii) above follow by showing that the present problem
is covered by Pfanzagl's (1979) Theorem, and that the estimator 12 is
the optimal estimator defined in his proof. Result (iv) follows from (i)
and (ii) using the fact that both h(+) and the loss functions under con-
sideration are monotone.

Since it is natural to compare 12 and 32 , we might ask: In what
ways, and to what extent, do 12 and s? differ? To answer the first
part of this question, we note that m, . < N-K , because m, . and N-K
are the median and mean of a chi-square random variable, respectively.

2 2 2

Hence, 52 <b if and only if s” < 1" . That is, +t° 1is larger than 52

unless s2 takes a value larger than any value in the parameter space of
2
g° .
The extent to which _12 and 52 differ depends on two separate factors:
(i) whether a 1is positive and/or b 1is finite, and if so, on the proximity
of the true parameter 02 to one or other of the endpoints a or b,
and (ii) the size of N-K . When a > 0 and/for b <=, 12 is a censored

or doubly-cenéored version of SSR/mN-K . The closer is the true value of

02 to a or b, the greater is the extent of the censoring.

If a =0 and b ==, the only difference between 12 and s° is
in the multiplicative constants l/mN_K and 1/(N-K) . As N-K » = ,
(N-—K)/mN_K = 12/52 + 1, as expected. For degrees of freedom N-K equal
to 10, 20, and 30, o _x equals 9.342, 19.34, and 25.34, and 12 exceeds
s2 by 7.1, 3.6, and 2.4%, respectively. (See Thompson (1941) and Pearson
and Hartley (1958, p. 130) for tables giving the medians of chi-square
random variables with degrees of freedom less than or equal to one hundred.)
12 is equal to s2 with its degrees of freedom reduced by .66 when N-K
is in [8,50) and by .67 when N-K 1is in [50,100]. More sizeable differences

between 12 and s occur only if the parameter space is restricted.
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5. PROOFS

- 2
Proof of Theorem 1. The distribution of I 1/"uu cdn be decomposed into

a probability mass at the origin and an absolutelv continuous component.
Since the GLS estimator equals B8, if uy =0, we can assune u, has
no mass at the origin, without loss of generality. Then, Z’I/ZUN has
Lebesgue density f(an)’N/zexp(-[IL;NIIZ/Zw)dG(w) , where G(w) is a dis-
tribution on (0,=) and ||+|| denotes the Euclidean norm on Y. Let
W denote the scalar mixing random variable with distribution G(+) . Con-
ditienal on ¥V =w , the distribution of t, is multivariate normal with
mean 0 and covariance WL .

Condition on W =w , Let X =-£? z'l/zx . We can construct an N xN

orthogonal matrix D such that the first K rows of D span the column

space of X , and the first row of DX is proportional to c' . That

is, d]'_')‘f:yc' , for the constant y Hdi?i"dl”/ﬂcn , where d, de-

1

notes the first row of D written as a column. Transform the model byv

1 -1/2 e uw o
= Dz to get: y* = X*so + uﬁ , where

_ 1 -1/2 1 -1/2 _ 1 ,..-1/2 1
y*-WDX v, X*sY—mDE X, and uﬁ-ywﬁ U-N"“N(\Q‘,-Y—EIN .

pre-multiplication by

Define n = (nl, ...,nN)' = X*8g . By the choice of D, we have

(HK+1. ""“N) = (0, ...,0) , and ny = eiDYBO/Y = c'BO , where

e = (1, 0, ...,0)" . Thus, the estimand is ny -
Consider estimation of n; when the single obsgrvation yi ~ N(nl, l/Yz)

is observed, and 1/72 is assumed known, where y{ is the first element of

y* = (yi, ...,yﬁ)' . The family of densities of yi for Ny € R forms

a monotone likelihood ratio family, and the likelihood ratios are a non-

decreasing function of the continuous random variable Y1 - Hence, by the

confidence bound results of Lehmann (1959, Corollarv 3, p. 80 and p. 83)

for scalar parameters, the uninue uniformly minimum risk median unbiased
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estimator of Ny (based on observing yi onlv) is yi , for any monotone
loss function, over the class of non-randomized and randomized estinators.
(See Lehmann (1959, p. 81) for construction of the randonmized confidence
bounds needed to commare the risk of Vi with the risks of randomized esti-
mators.)

Now, any unconditionally median unbiased estimator 5(y,X) of c'BO
also is median unbiased conditional on W = w , because the conditional
distribution of uy is itself a CES distribution. We can write g(y,x)
as ?(y*, X*) . For nurposes of commaring the risk of ?(y*, X*) with that
of yi ., Suppose the vector (nz, ...,nk) is known. The independence
of yI and (y;, ...,yﬁ) , Dlus the knowledge of X* and the distribution
of (yi, ...,yﬁ) , implies that F(y*, X*) has the same conditional dis-
tribution as sonme rangomized estimator of n based on the single observa-
tion y7 . "Lehmann's result then implies that conditional on W = w , the
risk of yi is less than or equal to that of ?(y*, X*) . Since the optimal
-estimator yI does not depend on vy , the assumption of known Y 1is

innocucus. The optimality of yi holds for all w , so integrating out

w yields the ynconditional optimality of y} . This gives the desired

~ - 2
result, because ,i is the GLS estimator of c'B0 : Let y = 7%.2 1/“Y s
then yr = 1417 = ARXADHINF = XV T = crf L o

The above proof could be shortened somewhat by applying Pfanzagl's
(1979) Theorem, instead of Lehmann's result. This is not done, however,
because the proof given above is needed in the proof of Theorem 2 to attain
the stated generality of Theorem 2. In addition, the proof of Pfanzagl's
result is more complicated than that of Lehmann, because Pfanzagl considers
cases where the best estimator is randomized. Thus, the reference to the

simpler result of Lehmann may be helpful to the reader.
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The extension of Theorem i1 to include non-CES elliptically symmetric
distributions (as considered by Kariya (1985) and Hwang (1985)) is problematic
using the method of proof given above. Almost all elliptically symmetric
distributions can be written as variance mixtures of multivariate normal
distributions (see Chu (1973)). For non-CES distributions, however, the
mixing "densities" are somewhere negative. The risk inequalities that hold
for given variance values are reversed for negative values of the mixing
density, and hence, cannot be integrated up over the range of values of
the mixing density. Fortunately, as the discussion of Section 2 indicates,
the restriction te CES distributions is not seriocus. The elliptically svm-

metric distributions of greatest relevance are CES distributions.

Proof of Theorem 2, Proceed as in the proof of Theorem 1 to transform the

model such that ny is the estimand. The restricted estimator (yI)R is
median unbiased and equals (c'é)R by arguments given above.

Condition on W =w . The linear combinations (CEBO’ ...,ckso) equal
yﬁ?(nz, -«+sNg) . Thus, the restrictions on (ciBj, ..., c¢By) do not affect
the conditional distribution of yi or the parameter space I of n -
Hence, we can mimic the proof of Theorem 1 and assume w and (nz, ...,nK)
are known for the purposes of comparing the risk of an arbitrary (conditionally
and unconditionally) median unbiased estimator gty*, X*) with that of
(yI)R . ?(y*, X*) has distribution equal to that of some randomized esti-
mator of n for the case where only y; is observed. Thus, it suffices
to show that conditional on W = w , (YI)R is the unique best median
unbiased estiamtor of c'8y based on the single observation yI -N(n1, I/Yz) .

This follows by Pfanzagl's (1979) Theorem., n
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Pfanzagl's (1979) Theorem allows for nuisance narameters, and hence,

could be applied in the proof of Theorem 2 by treating (nz, ...,nK) as

nuisance parameters, This approach limits the restrictions on (“2’ ceea )
however, because it requires the assumption that the restricted parameter

space of (nz, ""“K) contains a non-empty interior.
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