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0. ABSTRACT

This paper develops an asymptotic theory for a first order autoregres-
sion with a root near unity. Deviations from the unit root theory are
measured through a noncentrality parameter c¢ . When ¢ < Q0 we have a
local alternative that is stationary and when ¢ > 0 the local alternative
is explosive, As c¢ approaches the limits of its domain of definition
(#») it is shown that the asymptotic distributions known to apply under
fixed stationary and explosive alternatives are obtained as special cases,
Moreover, when ¢ = 0 we have the standard unit root theory, Thus, the
asymptotic theory that we present goes a long way towards unifying earlier
theory for these individual special cases, The general theory is expressed

in terms of functionals of the Wiener process,
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1. INTRODUCTION

There has recently been a growing interest in the asymptotic theory
of autoregressive time series with roots on or near the unit circle,
Dickey (1976), Fuller (1976) and Dickey and Fuller (1979) developed statis-
tical tests for detecting the presence of a unit root in an AR(1). Sub-
sequent papers by Solo (1984), by Said and Dickey (1984) and by the author
(1985a) have extended these procedures to quite general integrated time
series of the ARMA(p,1,q) type. The limiting distributions of the various
test statistics proposed in these papers are known and are all non normal.
However, these limiting distributions may usually be represented quite
simply in terms of functionals of standard Brownian motidn. Moreover,
numerical tabulations of the relevant distributions have been obtained.by
Monte Carlo methods fof the asymptotic case as well as for a range of
finite sample sizes. These are reported in Fuller (1976), and in Dickey
and Fuller (1979, 1981).

Autoregressive time series with roots that are near unity have also
been studied. Evans and Savin (1981, 1984) found in extensive simulation
experiments that the statistical properties of the coefficient estimator
and associated t-test in a stationary AR(1) with a root near unity are
close to those that apply when the model is a random walk even when the
sample size is as large as T = 100 , Similar results were found to apply
when the AR(1) is mildly explosive,

Ahtola and Tiao (1984) recently studied the sampling behavior of the
score function in an AR(1) as the autoregressive coefficient (a) approaches
unity from below. These authors described such an AR(1) as nearly non-

stationary; and their analysis helps to explain the progressive deterioration



as a t+ 1 of the conventional normal asymptotic theory for the score fupc.

tion in this context.

The present paper deals with a closely related subject. We shall

consider a time series {Yt}; that is generated by the model

(1) yt=ayt"‘1+ut ; t= l’ 2’ *ee
with
(2) a = exp(c/T)

where T 1is the sawple size. When ¢ <0 and T 1is finite, 0 < a <]
and the model is evidently stable over a finite stretch of data. When ¢
is close to zero, a 1is close to unity and the model may be thought of as
being nearly nonstationary. In this case (1) and {2) comprise a nearly
nonstatidnar} AR(1) of the type considered by Ahtdlarand Tiao (1984).
However, Ahtola and Tiao require the sequénce of innovations {ut}? in
(1) to be iid and Gaussian, so that their model is a conventional Gaussian
AR(1). Much weaker conditions on {ut}? will be imposed in this paper,.
As a result, the asymptotic theory that we develop here will apply to rather
a wide class of nearly nonstationary processes.

The parameter ¢ in (2) may be conveniently regarded as a noncentral-
ity parameter. When ¢ is fixed and T 4+ » we have a + 1 , so that
in the limit (1} has a unit root, However, the rate of approach to unity
is controlled at O(Tﬂl) so that the asymptotic theory which we develop
is noncentral. This reflects the presence of the near unit root in (2)
and features the noncentrality parameter ¢ . Thus, the constant ¢ may
be used to measure the effects of departures from the hypotheéis of a unit

root in (1) on the limiting distribution theory.



OQur theory will allow for explosive (c > 0) as well as stationary
(c < 0) alternatives to a unit root in (1). We shall further examine the

behavior of the limiting distributions as |c| 4+ o , The case ¢ 4 « and

¢ + -» then provide a means by which our own results may be related to the
theory that is presently known to apply in the stable and the unstable AR(1),
The latter was first developed in the research of White (1958, 1959) and

of Anderson (1959).

As indicated above, the asymptotic theory that we develop in this paper
will permit much more general specifications than the AR{1) with iid errors,

Our approach is to require that the sequence of innovations {ut}?

satisfy some rather general moment and weak dependence conditions. Under

in (1)

~ these conditions {ut} may be generated by a wide variety of models, includ-

ing all Gaussian and many other finite order ARMA models.

Finally, to complete the specification of (1) we shall allow either
of the commonly used initial conditions: (i) Yo = ¢, @& constant {with

probability one); or (ii) Yo = random with a certain specified distribution.

Proofs are given in the Mathematical Appendix.

2., SOME PRELIMINARY THEORY

We define the partial sum process St = E§=1uj and set S0 =0 . We

shall make the following assumption about the innovation sequence {ut}T .
ASSUMPTION 2.1
(a) E(ut) =0 all t ;
B+e
(b) sup, E[ut] <w for some B >2 and e > 0 ;

(<) 02 = limT*m_E(T"lsil exists and 02 > 0 3

»



(d) {ut}j is strong mixing with mixing coefficients o that satigp,
o 1-2/8
(3) Lo <@,

Condition (d) imposes a form of asymptotic weak dependence on the se-
quence of innovations {ut}? . The reader is referred, for example, to
Hall and Heyde (1980) for the definition of strong mixing and the mixing
coefficients., The summability requirement (3) on the mixing coefficients
is satisfied when o, = O(m-A) for some X > 8/(8-2) . Condition (b) con-
trols the allowable heterogeneity in the sequence {ut}? in relation to
‘the mixing decay rate prescribed by (3). Thus, as £ declines towards 2
the moment condition (b) weakens and the probability of outliers rises,

On the other hand, the mixing decay rate (measured by B8/(8-2) ) increases
as £ approaches 2 and the effect of outliers is required by condition
(3) to wear off more ﬁuickly.

Condition (c¢) is a convergence condition on the average variance of

the partial sum Sy . It is a common requirement in much central limit

theory although it is not strictly a necessary condition. However, if

{ut} is weakly stationary then
(4) 02 = E(uz) + 2L E(u,u,)
1 k=1 17k

and the convergence of the series is implied by the mixing condition (3)
(theorem 18.5.3 of Ibragimov and Linnik (1971)). Even in this case, how-
ever, it is still conventional to require 02 > 0 to exclude degenerate
results.

Assumption 2.1 is quite weak, It allows the innovation sequence

{ut}? to be heterogeneously distributed and weakly dependent over time.



This includes a wide variety of possible data generating mechanisms such
as all Gaussian and many other finite order ARMA models under very general
conditions on the underlying errors (see Withers (1981)). The requirement
that {ut}? be strong mixing does, however, exclude some linear processes
(see Andrews (1984)), It could be weakened further by working with func-
tions of mixing processes as in Billingsley (1968, Sec. 21). However, we
shall not make this further extension since it would divert us from the
main purpose of the present paper.

From the sequence of partial sums {St}{ we construct the random ele-

ment
1 1
(5a) X (r) =T &0'13[,1,1_] =T /Zo'-lsj_l s (G-D/T<r<ji/T (§=1,...,T)
1
_ o h =1
(5p) X (1) =T "o Sp

where [b] denotes the integral part of b . XT(r) lies in D = D[0,1] ,
the space of real valued functions on the interval [0,1] that are right
continuous and have finite left limits, It will be sufficient for our pur-
pose if we endow D with the uniform metric defined by
|| £-2| = supr|f(r) -g(r)| for any £, g€ D .

Under very general conditions the random element XT(r) obeys a central

limit theory on the function space D . We shall make use of the following

result, which is due to Herrndorf (1984):

LEMMA 2,2, If {ut}T satisfies Assumption 2,1 then as T + Xp(x) = W(x) ,

a Wiener process on C[0,1] .



The notation " = " that is used in the statement of Lemma 2.2 and
elsewhere in the paper signifies weak convergence of the associated prob-
ability measures, In this case, the probability measure of XT(r) Converge,
weakly to the probability measure (here Wiener measpre) of the random func.
tion W(r} . The result is a functional central limit theorem or invariance
principle (see Billingsley (1968) or Pollard (1984) for further discussion),
The limit process W(r) is popularly known as standard Brownian motion.

The sample paths of W(r) 1lie almost surely (Wiener measure) in C = C[0,1] ,

the space of real valued continuous functions on [0,1].

DEFINITION 2.3. A time series {yt}? that is generated by (1) and (2)
with c # 0 and where {utfq satisfies Assumption 2.1 is called a near-

integrated process. When ¢ =0 in (2) {Yt}? will be called an integrated

process.

The terminology we employ here for an integrated process corresponds
to usage popularized by Box and Jenkins (1970} when {ut}? is génerated
by a stationary ARMA model. The above definition actually extends the term-
inology to include time series whose first differences are not necessarily
stationary processes and may be generated, for example, by finite order
ARMA models whose innovations are non identically distributed. When ¢ # 0,
the specification (2) allows us to introduce the closely related concept
of a near-integrated process, The latter includes alternatives which are
strongly autoregressive (¢ < 0) or mildly explosive (c > 0) in finite

samples of data,

The following result is very useful in the development of our asymp-

totic theory.



LEMMA 2.4, If W(r) <s a standard Wiener proagss and

Jc(r) = fge(r's)cdwcs) then:

1 1

(6) Jmf=1+ ZCIOJc(r)Zdr + 2]0Jccr)dw(r) ;
T ( )

(7) J (1) = H(x) + cf e T W(s)ds .
0

In this Lemma Jc(r) is a linear functionaj of the Gaussian process

W(s} , 0 <s<r, andis therefore Gaussian 3159, 1In fact, by a simple

calculation we obtain

_ o (r-s)c - 2rc
(® I = [ TS = N, (€71 /20)

where we use the notation " = ' to signify equality in distribution. We

. 1
remark that the integral foJc(r)dW(r) that appears in (6) is a stochastic

integral. Moreover, when ¢ = 0 we have Jc(rj = W(r) and (6) reduces

to the commonly occurring formula:

1.
[Wans = (/2mmi-n .
0

3. ASYMPTOTICS FOR NEAR-INTEGRATED PROCESSES

Qur first step is to find the relevant asymptotic theory for the sample

moments of data generated by (1) and (2). As ip the case of integrated

processes, the limiting distribution theory is post conveniently expressed

in terms of functionals of the Wiener process W(r) on C . The next

Theorem has all the results we shall need for the development of our regres-

sion theory.



THEOREM 3.1. If {yt}? 18 a near-integrated process generated by (1) and
(2) then as T + « :

-1
(a) T ®yp=0J (1) ;
_3
(b) T éZ'{yt ﬁ>cféJc(r)dr ;
-2 2 1 2
(¢) T E?yt H-czfoJc(r) dr ;
@ Ty, v, = oI (DM@ + (/2 (6% -0 ;
_ (T lr-s)c . )
where Jc(rﬂ = Jo® dW(s) , W(r) <e& a standard Wiener process and

2 _ 4 -1.T,..2
o, = llmT*m T ZIE(ut) .

This Theorem gives an asymptotic distribution theory for the sample
moments of a near-integrated process. The results may be used to approxi-
mate the distributions of the sample moments of nearly nonstationary time

series. Thus, since Jc(r) is Gaussian it is easy to show by elementary

calculations that

1
fOJc(r)dr = N(O,v)

where

vV = (l/cz) +r(1/2c3)(e2c -4ec<+3) .
Parts (a) and (b) of Theorem 3.1 therefore become:
(9) T'léyT = 0J_(1) = N(D, (02/2¢) (¢ - 1)
and

_3 1
(10) T éEI& =cf J _(r)dr = N(O, ozv) .
t OC



When ¢ =0 (9) is oJ,(1) = N(0, o) , which is the limiting dis-
tribution of the standardized sum T-%ézfut of the innovations in (1).
The variance of this limiting distribution is o = linﬁtw;T—lE(S%).
{ut}T is stationary we have o = E(ui) + 22E=1E(u1uk) from (4) and we
may write 6% = 2wfu(0) where £,(2) 1is the spectral density of {ut}? .
In this special case of (9) OJO(I) = N(O, anu(O)) , which is a general
central 1limit theorem for stationary time series (e.g. Hannan (1970) theorem

11, p. 221).

When ¢ =0 in (10) a simple calculation gives

1
of Jy(rdr = N(O, o%/3)
0

‘which is the limiting distribution of the standardized sampie mean of an

integrated process,
Perhaps the most useful application of Theorem 3.1 is to the theory

of regression for near-integrated time series, Suppose (1) is estimated

by least squares giving the regression coefficient

T

o T 2
a =LYYo 1/21Ye1

and associated t-statistic

1
T 2 A
t, = 1y, ) (@-a)/s

where 52 = T_lzi(yt-—ﬁyt_l)z . The asymptotic theory of these regression

statistics is given in:
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THEOREM 3.2. If {yt}? is a near-integrated process generated by (1) ang
(2) thenag T 4+ » ;

(@ T(G-a) » {fp D@ + (/2 (1 -o¥aP) /o300 ar

A 2 2

() a—1, s —+ g

p p ‘u
’ 1
- 4
() t, = {j'éJc(r) dW(r) +(1/2) (1 -03/02)}/{j(l)Jc(r)2dr}

When ¢ =0 and {ut}? is iid(o, 02) parts (a) and (c) of this
Theorem reduce to the known asymptotic theory for a first order autoregres-

sion with a unit root (White (1958), Fuller (1976), Dickey and Fuller (1979)),

viz

T(3-1) = {I:W(r)zdr}-l{f:W(r)dW(r)} ;

t = {I:W(.r) 2dr}-1/2{f:)w(r) d‘n’(r)} .

In this case, we have 02 = ci and Jc(r) = W(r} in the formulae of the
Theorenm,

When c # 0 Theorem 3.2 delivers the noncentral asymptotic theory for
the regression statistics a and t, - We note in particular that {a)

and (c¢) imply that

1 -1¢1
- 2 2,2
T(a-1) =» ¢ + f J (r)7dr J (r)dW(r) +(1/2)(1 -0 /c")
and

t, = (2§Y3_1) T(a-1)/s #-c{foJc(r)zdr}

R {flJ )24 }'%é{fla (D)W () +(1/2) (1 - 02/ 2)}
0 g(r T e T)dW(r -o /o .
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These distributions give the asymptotic power functions for tests of the
hypothesis of a unit root based on a and t; under the sequence of local

alternatives a ='ec/T ~14+¢/T.

4. THE STATIONARY AR(1) AS A LIMIT CASE AS ¢ + -

it is interésting to study the limiting behavior of the above results
as the noncentrality parameter c¢ approaches the limits of its domain of
definition. Here, we shall consider the limit as ¢ ¥+ -=» ., Note that if
we allow ¢ + -» in (2) then a time series generated by the model (1) is
no longer a near-integrated process. In fact, if {ut}: is weakly station-
ary so is {yt}i in this case., Thus, stationary alternatives may be re-
garded as a natural limit of the model when c + -» ., We now show that the
conventional asymptotic theory for stationary time series follows from the
results of the previous Seétion under the limit ¢ 4 - ., We first give

the theory for sample moments.
THEOREM 4.1, As c¢ ¢ -=
%
(2) (-2¢) 23 (1) = N(O,1) ;
(0 (-0) fgI ()dr.= N(0,1) ;
(@ (-20) [X%(mdr — 1 ;
. 0c P :
1
(@) (-20) 2[L3 () a(x) = N(O,1) ;
L
(e) (-2c) &{(—ZC)féJc(r)zdr-l} = N(0,4) .
These results may be shown to yield the usual asymptotic theory for

the sample moments of a stationary time series. Thus, part (b) of Theorem

4.1 and part (b) of Theorem 3,1 imply the asymptotic approximation
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3L T
(11) (-¢)T /Zzlyt ~ N0, o9
But a = ec/T so that
(12) “2¢c = (=2 20 &)T ~ (1 -a®)T ~ 2T(1-a)

for a c¢lose to unity. Combining (11) and (12) we deduce the asymptotic

approximation

(13) T'l&z'{yt ~ N(O, o%/(1-2)3) = N(O, 2n£, (0))

-2
A| fu(l) is the spectral density of {yt}l and

where fy(k) = |1 - aet
fu(l) is the spectral density of {ut}T . (13) is the usual asymptotic
normal approximation delivered by conventional central limit theory for
stationary processes, (See, for example, Hall and Heyde (1980), corollary
5.2, p. 135.)

In a similar way, from part {(c) of Theorems 3.1 and 4.1 we deduce

that:

-2 T 2 2.~-1.T 2 2
(18) (-2¢9)T Zlyt ~ (1-a7)T Elyt —5+ g .
When (1) is a stationary AR(1) with 1id(0, 02) innovations u o, . (14)

yields the correct asymptotic formula

-1_T 2 2, 2
T EF{}’t—I;*c/(l-az) = E(yy)

of conventional theory. Finally, in this case of iid innovations, we ob-

serve that 02 = ci and from part (d) of Theorems 3.1 and 4.1 we obtain

% ~1.T
{-2¢) éT‘lzlyt_lut ~ N(0, 04) .
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In view of (12), this leads directly to the asymptotic approximation:

5T 4 2
T Zlyt-lut ~ N(0, o'/(1-2a7))

Once again this approximation is the same as that delivered by conventional

central limit theory when Yy is a stationary AR(1).

COROLLARY 4.2, 48 ¢ ¢ -=

1 ~1
(@ (29" 2L @mam i i =N, ;

1
-k
(b) {IéJc(r)dW(r)}{féJc(r)zdr} = N(0,1) .

We deduce from this Corollary the usual asymptotic theory for a first

order stationary autoregression. Thus, when y_ is generated by (1) with
t g y

1id(0, o2 inmovations u, and |a] <1, Theorem 3.2 and Corollary 4.2

imply the following asymptotic approximations:

VP
{(-2¢) T(a-a) ~ N(0,1) ; ta_n'N(O,l) 3

that is:
1/26 21& :
(15) T “(a-a)/(1 -a") ~ N({0,1) ; t, ~ N(0,1) .
Both results are well known from the traditional asymptotic theory for sta-

tionary autoregressions,

We observe that the asymptotic theory for the statiomary AR(1l) is ob-

tained precisely when the innovation sequence {

Oy = 02 . When {ut}? is weakly dependent, as

u )] of (1) is iid(o, % .

In this case, of course,

under Assumption 2.1, but is not iid then oi # 02 Moreover, a is no

longer a consistent estimator of a (|a| < 1) -and the conventional limiting
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distribution theory, as given by (15), no longer applies. By contrast,
when {yt}j is an integrated or near-integrated process a is consistent
(for unity) and the general limiting distribution theory of Theorem 3,2
continues to apply. Thus, when we come to specialize the latter theory

to the stationary case, as we have done above, we need to employ the addi-
tional requirement that u, is 1iid(o0, 02) . This requirement, which is
usual in the traditional asymptotic theory for the stationary AR(1), ensures

that 02 = ai so that Theorem 3.2 actually gives us:

T(a-a) w-{I;Jc(r)zdr}-l{f:Jc(r)dW(r)}

and

1&{J‘:Jc(r) dW(l”)}

1 2 -
t, = {f J.(x) dr}
o
in this case.

S. THE EXPLOSIVE AR(1) AS A LIMIT CASE AS c 4 =

When ¢ >0, a= eC/T gives local alternatives to unity in the

direction of explosive roots of (1). The limit c 4 « may therefore be
regarded as a natural boundary for the noncentrality parameter correspond-
ing to an explosive root a > 1 , We shall examine the behavior of the

general asymptotic theory of Section 3 at this boundary. We start with

the theory for sample moments.



THEOREM 5.1, As ¢ 4 =
(@) (20) eI (1) = N(0,1) ;
) (2c%) l/ze'cfé.]c(r)'dr = N(0,1) ;
() (20)%7*¢fLy (r)%dr = n? ;

(@ (206 [T (R AN(x) = tn .

where t and w are independent N(0,1} variates.

15

These results yield an asymptotic theory for the sample moments of an

explosive time series (1) with fixed a > 1-,

With some qualifications,

which we shall discuss, the theory corresponds with earlier analyses by

Anderson (1959) and White (1958, 1959).

instance, we deduce from Theorems 5.1 and 3.1 that:

(16) (2¢) 1&e'°T'1&yT ~N(O, ¢%) .
But a = ec/T so that
(17) . 2c = (2 2n &)T = (4n ad)T ~ (a2 - DT

and e® = aT . Thus, (16) implies that

(18) a-TyT ~ N(0, czl(a2 -1)) .

From (1) we note that:

T-1

T
(19) Yp = Up + aup )+ ...+t a Tup+avy, .

Where Yo = 0 and {ut} is iid(o0, 02) we have var(yT)

Thus, in the case of part (a) for

o2 (a’T -1y /(2% -1) ,
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so that var(a_TyT) > 02/(a2 -1) as T4« (a>1) . If, in addifion,
the u, are normally distributed then a_TyT = N(O0, 02/(32 -1)) cor-
responding to (18) above, This result was given in Anderson (1959, Theoren
2.6) . However, as emphasized by Anderson (1959, p. 680), normality of the
ut's is necessary for a-TyT to have a limiting normal distribution,.

This is because component variates in the sum such as u, and Yo have

1
a non negligible influence on the asymptotic distribution of a'TyT , as

is clear from (19).

These requirements ( Yo =0 and {ut}? iid N(o, 02) ) are not
brought out in our own approach to (18). This is explained by the fact
that the results of Theorem 5.1 are deduced as a limiting case of a theory
in which the sample moments aie'already asymptotically distributed as func-
tionals of a Gaussian process (see Theorem 3.1). As we have seen, these
functionals are invariant to the distributional and temporal dependence.
properties of the innovation sequence .{ut}? within the general requirement
Assumption 2.1; and they hold irrespective of the initial conditions on
Yo « These invariance properties persist for all finite c and hence hold
for all near integrated processes. However, the invariance properties do
not continue to hold at the boundary ¢ =« , In fact, as the above example
makes clear, the limiting case c¢ 4+ = yields the correct asymptotic theory

for an explosive time series with fixed a > 1 when Yo = 0 and when

{ut}1

is iid N(0, ¢%) .
A major application of the limiting case ¢ 4+ «» is to the asymptotic
theory for the regression statistics a and t, in the explosive case.

We have:
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THEOREM 5.2, 48 ¢ 4 = :

- -1
(a) (2¢) 1ec{féJc(r)2dr} {féJc(r)dW(r) +(1/2)(1 -03/02)} = Cauchy ;

1
) I %y 2l @anm + @2 -0Ye)) = N,

Since (2c)'lec ﬂ'aT/{T(az«-l)} we deduce immediately from part (a)

of Theorems 3,2 and 5.2 that

(20) {a¥/(a% - 1)}(i-a) ~ Cauchy

for large T and a > 1 . This corresponds to the asymptotic theory de-
veloped by White (1958) directly for the explosive case. Moreover, from

part (b) of Theorems 3,2 and 5.2 we obtain the asymptotic approximation:

(21) t, ~ N(0,1)

which also corresponds to the asymptotic theory derived in White (1959)
and Anderson (1959).

As discussed above the limiting case c 4+ @ does not share the invar-
jance properties of the general theory for near integrated processes with
¢ finite. 1In fact, as shown by White (1958, 1959), result (20} applies
in explosive models with fixed a > 1 when y, =0 and {ut}? is
iid N(O, 02) ; and (21) applies when {ut}? is iid N(O, 02) independent
of the initial condition Yo ° These results were also demonstrated by
Anderson {1959).

Theorems 3.2 and 5.2 do suggest one generalization of the asymptotic
theory of White and Anderson for explosive models, We note that the effect
of temporal weak dependence in the innovation sequence {ut}; affects the

limiting distributions given in Theorem 3.2 through the presence of the
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constant (1/2)(1 -ci/oz) in the numerator of the limiting random variates,
However, in the limiting case ¢ 4 = this term vanishes and the effects

of temporal dependence in {ut} disappear. This suggests that (20} and
(21) remain valid for quite general weakly dependent Gaussian innovations,

such as those generated by stationary ARMA models.

6. FINAL REMARKS

The theory for near-integrated time series presented in Section 3 seems
likely to be most useful in the development of a noncentral asymptotic dis-
tribution theory for the analysis of the power properties of statistical
tests in the vicinity of a unit root. The conventional approach here would
suggest local alternatives of the form a =1 + ¢/T , This was, in fact,
considered by the author (1985b) but it was found that alternatives of the
form (2) lead, in generai, to much simpler derivations. The final results

are, of course, the same with either approach.
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MATHEMATICAL APPENDIX

Proof of Lemma 2.2. See Herrndorf (1984).

Proof of Lemma 2.4. We define the process E£(r) by the differential

dg(r) = e TCaw(r) . Then, from the Ito formula for stochastic differen-

tiation applied to the function g(r)2 we obtain:

dE(D ) = e 2T%r + 2¢"TC () dW (D)

Multiplying by ¢ and integrating over [0,1] we deduce (6) immediately.

(7) follows from integration by parts, which applies here because e{T-s)¢C

is continuous,

Proof of Theorem 3.1. From (1) and (2) we have

_ ot L (t-3)¢/T te/T
Ye T Ej=1e uj + e y

0
and thus

b

- i/ T | 1
T (1-5/Tef? -
y oL, _,e dX.(s) + O0_(T “)
oo I(j-l)/T %

LI}

i/T
GET I e(l-s)c

X (s) + 0 (T B)
-— S +
=Gt T P

(A1)

1
(1-s) )
cjoe S chT(s) + Op(T ) .

We use integration by parts on the first term of (Al), which is valid since

l-s . . C . . s s
e( Je is continuous and XT(s) is increasing and of bounded variation.

(Al) becomes
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1
U{XT(I) + cjoe(l's)CXT(s)ds} + Op(T'%é)

b (1-5)
e cW(s)ds = GJE(I) ; as T+ =

= oW(1l) + cI
0

by Lemma 2.2 and the continuous mapping theorem (e.g., Billingsley (1968),

p. 30}. This proves part (a). To prove (b) we note that

again by Lemma 2.2 and direct application of the continuous mapping theorem.

This proves part (b).

therefore, omitted.

The proof of part (¢) is entirely analogous and is,

~%. T, =% T T (i-j)c/T =3,T  _ic/T
T Elyt =T Ei:l Zj=1e uj + T Ei=1e Yo
. . cj/T 1
_ =17 T (i-e/T]? )
=oT "Z. , L. .e dX,.(s) + O (T )
= S TP %
. i/ T /T . 1
czgzl z%=1 dr e(I'J)C/TdXT(s) + 0 (T é)
=2 -0t Ygensr P
: . (i/T r3/T _1
ole zl._l ‘ dr e(r's)cdx.r(s) L 0 (T )
=Hla-n G-t P
1 T 1
(r-s)c -h
UI dr J e dX.(s) + 0 (T ™)
0o “0 T P
(! T (r-s)c -1
o} {XT(rj +c J e XT(s)ds}dr + 0 (T )
Jo 0 P
¢l
oiOJc(r)dr ’

To prove part (d) we note by squaring (1) that

2
Ye

- eZc/T

2
Vi1

+ Ze

c/T

u

Ye1Yt

+U.2.

t
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In view of part (a), T éyt = Op(l) for all t <T. Thus,

2 2 _ 2 2 -
Ye = Vg = Qo/Mypp # v + g 18 * 0T )

and summing over t

1, ..., T we obtain

1.2 ., .-2.T.2 -1.T 2 -1.T -1
T Y = 2¢T zlyt-l + T Zlut + 2T zlyt-lut + OP(T )
-1.T 2 2
We note that T Ljug 757 9, by the strong law of large numbers for weakly

dependent sequences (see, in particular, McLeish (1975}, Theorem 2.10).

From parts (a) and (¢) and the continuous mapping theorem we now deduce

that as T 4 « :

-1.T 2 2 2r1 2 2
21770y, qu, = 07T (1) - 2c0 foJc(r) dr - o
ol ,‘ 2 2
= 2f 3 (D) dN(x) .+ o - of
in view of (6).

Part (d) of the Theorem follows immediately.

Proof of Theorem 3.2. To prove part (a) we note that

-1
a o =2 2 -1.T
T(a-a) = (T zlyt-l) (T Elyt-lut)

-1
- {féJc(r)zdr} {féJc(r)dwqu +(1/2)(1.-cﬁ/02)}

by direct application of the continuous mapping theorem and Theorem 3.1.

Moreover, this implies that a = a + Op(T"l) =1+ OP(T'l) so that part

(b) also follows., Part (c) is an immediate consequence of Theorem 3.1,

the continuous mapping theorem and part (b).
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Proof of Theorem 4.1. Note that Jc(r) is Gaussian with E{Zc(r)} =0
and Var{JC(r)} = (1 -ezrc)/(-ZC) for all ¢ . It follows that for fixed
1
r>0 (-2¢) éJc(r) = N(0,1) as ¢ + - ., Part (a) now follows immediately,

In a similar way, part (b) follows from (10) and the fact that (-c)zv + 1

aS C+-m.

To prove parts (c) and (d) we shall employ a different approach. We
shall first find the limiting distribution of (T 'Zly. ju., T 2Iiy? )
I't-1"¢t 17 t-1
when the innovation sequence {ut}i is iid N(0,1) . In this case, of
2 2

course, ¢ =0 = 1 and by Theorem 3.1 the limiting distribution is that
of the functional (féJc(r)dW(r), féJc(r)zdr) . However, by the invariance
principle this distribution is not dependent on the normality assumption

made about the innovation sequence. The assumption is simply a device which

facilitates the extraction of the mathematical form of the distribution.

Moreover, relaxation of the independence assumption about the u_ leads,

t

under Assumption 2,1, only to the additional presence of the constants
2 2

¢ and 9% in the limiting distributions (see parts (c¢) and (d) of Theoren
3.1 in particular). Thus, we may extrapolate easily from the limiting dis-

tribution obtained under 1iid N(0Q,1) innovations to the general case of

Theorem 3.1.

. . -1.T -2.T 2
We note that, when u, s iid N(0,1) , (T zlyt-lut’ T zlyt-l)
is a pair of quadratic forms in normal variates. The joint moment generat-
ing function (mgf) of these forms may be obtained in precisely the same way

as in White (1958), allowing for the representation a = ec/T The 1limit

of this function as T 4+ = is then the mgf of (féJc(r)dW(r), féJc(T)sz) .
Simple calculations along lines identical to those of White (1958) yield

the following limiting mgf as T 4 = :
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| 2 Y
(A2) M (v,2) = {(1/2)(c2 + 2 —22)—%éec+w[{(c2 v 2cw - 22) B - (cru) Yol F2CH=22)

2 1 2+2 2 )1& --1&
+{(c” + 2¢ew - 22) B . (cawyyem(C HICH-22 ] .

This expression holds for all ¢ and will be used later in our derivations
for explosive (¢ t+ «) alternatives. For our present purpose (with ¢ < 0)

we note that the joint mgf of ((—Zc)HéIéJc(r)dW[r), (-ZC)IéJC(r)Zdr}) ‘is
%
(A3) L (p,q) = M((-2¢) ?p, (-20)q)

We observe that for large negative c¢ we have the binomial expansion:

% 1
o {P-2hatraca) = o - 2hCa b - 7 - 2w odlel ™)

Using (A4) in (A3) we deduce that as ¢ + -= :

2
L.(p,@) » & /¥ = mggn(o, 1), 1)

It follows that

H& 1
(-2¢) 2f J_(r)dW(z) = N(0,1)
0
1

2
(_2c)IOJC(r) dr - 1

as ¢ + -= , proving parts (c) and (d).

We also note that from the Ito formula (6) we have

1 2 ! 2
(-2} f J(x)%dr = 1 + 2f J ()di(x) - J (1)
0 0

1o clel™ o Clel™
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in view of parts (a) and (d). We may deduce from this expression that

1 - 1 1
("2C)%é{(?zc)f 5o -1} = 202043 @A + 0 (le]™ )
0 0 - P
= N(0,4)
as ¢ + -» , proving part (e).

Proof of Corollary 4.2, This follows immediately from the results of

Theorem 4.1 by application of the continuous mapping theorem.

(1]

Proof of Theorem 5.1, Jc(l) N(O, e2c -1)/2¢) . It follows that

(ZC)H&G-CJC(I) = N(0,1) as c 4 « , proving part (a). Similarly,
féJc(r)dr = N(0,v) and, from (10), (2c¢)e %v > 1 as ¢ 4= so that
_(ZCSJ%ﬁe-CIEJC(r)dr = N(0,1}) as required for part (b).

We shall prove parts (¢) and-(d) together, using the invariance principle
method explained in the proof of Theorem 4.1 above. In particular, we know

that the joint mgf of ([QJ (DdW(r), [pJ (r)°dr) is given by (A2). It

follows that the joint mgf of (2ce-cféJc(r)dW(rj, (2c)2e-chéJc(r)2drj is:

(AS) K_(p,q) = M_(2ce”p, (2¢)%e"%Cq) .
Now
[Cz + (2c)2e'°p - 2(2c)2e'2cq}1/2
= o1+ 4e7p - Se'ch]%é
(A6) ) C[l + 2¢""p - 48-2cq - 2(e %p - 2¢7%%q) % + 0(e~3C)]

for large positive ¢ . Substituting (A6) into (AS5) we deduce after a

little calculation that as ¢ 4 o



2 —Eﬁ
(A7) K.(p,@) > (1-p -29
Setting p = 0 in (A7) we have the marginal mgf K(0,q) = (1 -Zq)'%& .
This is the mgf of a X% variate, proving part (c). Setting q =0 in
(A7) we have K _{(p,0) = (1 _PZ)-%Q , which is the mgf of a product of in-
dependent N(0,1) variates (see, for instance, Xendall and Stuart (1969),
p. 269). This proves part (d).

A simple calculation shows that X _(p,q} = (1 -p2 -Zq)'H& is the joint

mgf of (&n, nz) where & and n are independent N(0,1) variates.

Thus we also have the joint weak comvergence of:

2 -2ct 02 ot 2
o) (o 5%, 26 I @A) = 0% ), as e b o
0 0

Proof of Theorem 5.2

(2c)"e°{j:Jc(f)zd;}-l{j:Jc(r)dW(r) +(1/2) (1 -03/02)}
= {(zc)Ze‘chlJc(r)zdr}_l{(zc)e‘cflac(rgdwcro +ce'°(1.-ci/cz)}
‘o 0
= En/n2 = g/n = Cauchy

as ¢ 4+« by (A8) and the continuous mapping theorem. This proves part

(a). In a similar way we find

1 RVYE!
{foJc(r)zdr} {IOJc(r)dW(r) +(1/2)(1 -ci/cz)}
1 - 1
_ 2 -2¢ 2 -C ~Cpq _ 24 2
= {(20) e jOJc(r) dr} {(ZC)e joJc(r)dW(r)-+ce (1-0 /0 )}
= £n/n = £ = N(0,1)

as ¢ + » , proving part (b).
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