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SUMMARY

This paper develops an asymptotic theory for a first order autoregres-
sion with a root mear unity. Deviations from the unit root theory are meas-
ured through a noncentrality parameter. When this parameter is negative we
have a local alternative that is stationary; when it is positive the local
alternative is explosive; and when it is zero we have the standard unit root
theory. Our asymptotic theory accommodates these alternatives and helps to
unify earlier theory in which the unit root case appears as a singularity of
the asymptotics. The general theory is expressed in terms of functionals of
a simple diffusion process. The theory has applications to continuous time
estimation and to the analysis of the asymptotic power of tests for a unit

root under a sequence of local alternatives.

Some Key Words: Autoregression; Brownian motion; Diffusion; Near-integrated

process; Noncentrality parameter; Unit root.



1. INTRODUCTION

There has recently been a growing interest in the asymptotic theory of
autoregressive time series with roots on or near the unit circle. Fuller
(1976) and Dickey and Fuller (1979, 1981) developed statistical tests for
detecting the presence of a unit root in an AR(l}. Subsequent papers by
Solo (1984), by Said and Dickey (1984) and by the author (1986) have ex-
tended these procedures to quite general integrated time series of the
ARMA(p,1l,q) type. The limiting distributions of the various test statistics
proposed in these papers are known and are all nonnormal. However, these
limiting distributions may usually be represented quite simply in terms of
functionals of standard Brownian motion. Moreover, numerical tabulations of
the relevant distributions have been obtained by Monte Carlo methods for the
asymptotic case as well as for a range of finite sample sizes. These are
reported in Fuller (1976), and in Dickey and Fuller (1979, 1981).

Autoregressive time series with roots that are near unity have also
been studied. Ewvans and Savin (1981, 1984) found in extensive simulation
experiments that the statistical properties of the coefficient estimator and
associated t-test in a stationary AR(1l) with a root near unity are close to
those that apply when the model is & random walk even when the sample size
is as large az T = 100 . Similar results were found to apply when the
AR(1) is mildly explosive. In related work, Ahtola and Tiao (1984) recently
studied the sampling behavior of the score function in an AR(1l) as the auto-
regressive coefficient approaches unity from below. These authors described

such an AR(l) as nearly non-stationary and their analysis helped to explain



the progressive deterioration of the conventional normal asymptotic theory
in this context.
The present paper deals with a closely related subject. We shall con-

sider a time series that is generated by the model

Ye = 31 +u t=1, 2, ... (1)
with

a = exp(e/T) , —w<c¢c <o, (2)

where T 1s the sample size. Since the coefficient in this autoregression
depends on T , time series generated by (1) formally constitute a triangu-
lar array of the type [{ytT tt=1, ..., T})T =1, 2, ...} . However, with
the exception of Section 5, this formality is not essential to our discus-
sion and we shall simply refer to time series generated by (1) as {yt}
Initial conditions for (1) are set at t =0 and Yo may be any random
variable (including a constant) whose distribution is fixed and independent
of T .

It is convenient to treat the parameter ¢ 1in (2) as a noncentrality
parameter, When ¢ = 0 the model (1) has a unit root. When ¢ < 0 and T
is finite, 0 < a <1 and the model is evidently stable over a finite
stretch of data. Similarly, when ¢ > 0 and T is finite it is clear that
a > 1 and the model has explosive characteristics in finite samples of
data. When ¢ 1is close to zero, a 1is clese to unity and the model may be
thought of as having a root that is local to unity. In this case (1) and
{2) comprise a nearly nonstationary AR(l) of the type considered by Ahtola
and Tiao (1984). However, Ahtola and Tiao deal only with stable alterna-

tives (a < 1) and they require the sequence of innovations {ut} in (1)



to be independently and identically distributed as N(O, 02) , so that
their model is a conventional Gaussian AR(1). Much weaker conditions on
{ut} will be employed in this paper. As a result, the asymptotic theory
that we develop will apply to rather a wide class of nearly nonstationary
processes. In particular, our approach is to require that the sequence of
innovations {ut} in (1) satisfy some rather general moment and weak depen-
dence conditions. TUnder these conditions {ut] may be generated by a wide
variety of models, including all Gaussian and many other finite order ARMA
models,

If T+ « while the noncentrality parameter is held fixed we see that
a—+1 ., Thus, in the limit as T -+ = the model (1) has a unit root. Note
that the rate of approach to unity is controlled at O(T_l) . This is the
order of consistency of the least squares estimator of the coefficient in
(1) when there is a unit root. It might be anticipated that the main effect
of the hypothesis (2) is to induce a noncentrality in the limiting distribu-
tion theory. It turns out that the asymptotic theory is indeed mnoncentral.
The relevant limiting distributions are most conveniently represented as
functionals of a first order diffusion process, rather than standard Brown-
ian motion. The coefficient in the diffusion process is the noncentrality
parameter c¢ . This parameter may be used to measure the effects of the
departures from the hypothesis of a unit root in (1) on the limiting distri-
bution theory. Moreover, the resulting noncentral limiting distribution
theory yields the asymptotic power functions of statistical tests for a unit
root under a sequence of local alternatives to unity.

The paper is organized as follows. Some preliminary theory is present-

ed in Section 2. Section 3 develops the general theory which accommodates



autoregressive roots in the vicinity of unicy.

4

In Section 4 we examine how

these results change as the noncentrality parameter approaches the boundar-

ies of its domain of definition.
tics which are based on a continuous data record.

remarks are made in Section 6.

Section 5 applies the results to statis-

Some supplementary

2. SOME PRELIMINARY THEORY

Throughout this paper we assume that the innovation sequence

satisfies the following general conditions:

(A)
(B)

E(ut) =0 for all t

sup, Elut|ﬁ+£ < o for some B > 2 and

{uv_}

e >0 ;

) o° = lim, E(T_IS,%) exists and o> > 0 where

t .
S, =t-Z u, ;
t j=1
(D) {ut} is strong mixing with mixing coefficients o
<0
z al—z/ﬁ < wm
m=1

that satisfy

(3)

Condition (D) imposes a form of asymptotic weak dependence on the se-

quence of innovations [ut}

The reader is referred, for example, to Hall

and Heyde (1980} for the definition of strong mixing and the mixing coeffi-

cients o
m

satisfied when o = O(mbA) for some

A > p/(p-2)

the allowable heterogeneity in the sequence {ut}

The summability requirement (3) on the mixing coefficients is

Condition (B) controls

in relation to the mixing



decay rate prescribed by (3). Thus, as f declines towards 2 the moment
condition (B) weakens and the probability of outliers rises. On the other
hand, the mixing decay rate B/(f-2) increases as fS approaches 2 and the
effect of outliers is required by condition (3) to wear off more quickly.
Condition (C) is a convergence condition on the average variance of the par-
tial sum S, . It is a common requirement in much central limit theory. If

T

{ut} is weakly stationary then

=]

02 = E(ui) +2Z E(u].uk) (4)
k=2

and the convergence of the series is implied by the mixing condition (3), as
proved in theorem 18.5.3 of Ibragimov and Linnik (1971). As is convention-
al, we still require 02 > 0 to exclude degenerate results.

Conditions (A)-(D) are quite weak. They permit the Innovation sequence
[ut} to be heterogeneously distributed and weakly dependent over time. This
includes a wide variety of possible data generating mechanisms such as all
Gaussian and many other finite order ARMA models under very general condi-

tions on the underlying errors, as shown by Withers (1981).

From the sequence of partial sums [St} we construct

-1/2 -1 -1/2 -1 I < :
XT(r) T o S[Tr] T g Sj—l i G-D/T=x < 3i/T (j 1,...,T)
where [Tr} denotes the integral part of Tr . The random element XT(r)
lies in D = D{0,1) , the space of real valued functions on the interval
[0,1] that are right continuous and have finite left limits. It will be

sufficient for our purpose 1f we endow D with the uniform metric defined

by |f-gl = supr|f(r) - g(r)| for any f, ge D .



Under conditions (A)-(D) the random element XT(r) obeys a central
limit theory on the function space D . 1In particular, from Herrndorf

(1984) we have:

XT(r) = Wr), as T+ = ., (5)

The symbol " = " signifies weak convergence of the associated probability
measures. In the present case (5) tells us that the probability measure of
XT(r) converges weakly to the probability measure, viz. Wiener measure, of
the random function W(r) . The result is known as a functional central
limit theorem or invariance principle and the limit process W(r) is popu-
larly known as standard Brownian motion on ¢[0,1] the space of real valued

continuous functions on the [0,1] interval.

DEFINITION. A time series {yt] that is generated by (1) and (2) with
¢ # 0 and where [ut} satisfies (A)-(D) is called near-integrated. When

c =0 in (2) (y_ )} 1is called an integrated process.
Ye p

The terminology we employ here for an integrated process corresponds to
the usage popularized by Box and Jenkins (1970) when {ut} is generated by
a stationary ARMA model. The sbhove definition actually extends the termin-
ology to include time series whose first differences are not necessarily
stationary processes and may be generated, for example, by finite order ARMA
models whose innovations are non identically distributed. When ¢ = 0 |,
the specification (2) allows us to introduce the closely related concept of
& near-integrated process. The latter includes alternatives which are
strongly autoregressive (c < 0) or mildly explosive (c > 0) in finite

samples of data.



The following functional will play a central role in our theory:

3 _(r) = J5e{r 9 %u(s)

Jc(r) is a Gaussian process which, for fixed r > 0 , has the distribution
3 (x) = N[o, 27T - 1)/c] (6)

where we use the symbol " = " to signify equality in distribution. Actual-
1y, Jc(r) is a diffusion process that is popularly known as the Ornstein-

Uhlenbeck process. It is generated by the stochastic differential equation:

dJc(r) = ch(r)dr + dW(r) {(7)
with initial condition JC(O) =0 . It is simple to establish that
r {(r-s)c

I (x) = W(r) + cf W(s)ds

Oe

and by stochastic differentiation of {f;e_sch(s)}z we deduce the follow-

ing useful relationship:
2 1 2 1
J T =1+ 2cf0Jc(r) dr + 2f0Jc(r)dW(r) . (8)
When ¢ =0 , (8) reduces to the commonly used formula
1 1 2
fowcr)dW(r) - (WL - 1)

In these expressions, féchW and féWdW are interpreted as stochastic

integrals.



3. ASYMPTOTICS FOR NEAR-TNTEGRATED PROCESSES

Our first step is to find the relevant asymptotic theory for the sample
moments of data generated by (1) and (2). In the case of integrated time
series, the limiting distribution theory is most conveniently expressed-in
terms of functionals of the Wiener process W(r) . When the time series is
near integrated the corresponding theory involves functionals of the
diffusion Jc(r) . The following Lemma has all the results we need for the

development of our regression theory.

LEMMA 1. If {yt} is a near-integrated time series generated by (1) and

(2) then as T » o :

-1/2

(a)y T Y[Tr]

= aJc(r) 4

-3/2 1 ]
(b) T Zy, » ajOJc(r)dr :

2

(¢) T Eyi = azféJc(r)zdr ;

1

(d) T Eyt—lut = azféJc(r)dW(r) + (1/2)(02 - ai) ;

where
2 . -1 2
oL~ ].1mT_mD T ZE(ut)

Joint weak convergence of (a) through (d) also applies.

Proof. The approach we follow is based on Phillips (1986). To prove (a) we

first note from (1) and (2) that:

e(t=1De/T, |, te/T

y-
t 1 ]

; 0
J

I ™ et

and thus



[Tr]

- — 3/T _
T 1/2y[Tr] - g = e([Tr] J)C/TJ dXT(s) + 0 (T 1/2)
j=1 (3-1/1 P
[Tr] o3/T
-c I I( Ny e(r"s)chT(s) + op(T"l/z)
3=1 J (j-1)/T
r (r s)c

dXT(s) + 0 (T 172 )

We now use integration by parts on the first term, which is valid since
(r-s)ec . . . s s
e is continuous and XT(s) is increasing and of bounded variation,

We obtain

{XT(r) + effel™ S)CXT(s)ds} + o (1%

r (r-s)c

= oW(r) + cf W{s)ds = aJc(r) ; 485 T » =

by (5) and the continuous mapping theorem; see, for example, Billingsley
(1968, p. 30). This proves part (a). The proofs of (b) and (¢) are en-

tirely similar. To prove part (d) we note by squaring (1) and summing over

t that

-1_2 -2..2 -1 2 - -1/2

T "yoo= 2T "2y, . + T "Zu_ + 2T IZy _tu_ + 0 (T )
T t-1 t t-1"¢t P

Now T 1Eu2 -+ ai almost surely, by the strong law of large numbers for

weakly dependent sequences; see, in particular, MecLeish (1975, theorem

2.10). From parts (a) and (c) and the continuous mapping theorem we now

deduce that as T =+ « :
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-1 2 2 201 2 2
2T "2y, _qu, = 0°J (1)° - 2¢o fOJc(r) dr - o
2-1 2 2
= 20 foJc(r)dW(r) +o" -0
in view of (8). Part (d) of the Theorem follows immediately. To establish
joint convergence of (a) through (d) we need only note that the vector of
sample moments may also be expressed as a continuous functional of XT(s)

1/2

up to an error of OP(T_ } . The required result then follows. O

This Lemma gives an asymptotic distribution theory for the sample mo-
ments of a near-integrated process. The results may be used to approximate
the distributions of the sample moments of nearly nonstationary time series.
Thus, since Jc(r) is Gaussian it is easy to show by elementary calcula-

tions that

féJc(r)dr = N(0,v)
where

v = (1% + 21/e%) (% - 4e° + 3)

Parts (a) and (b) of Lemma 1 therefore yield:

~1/2

1%y, % 03 (1) = N[O, 2(o%/e) (e - 1)] (9)

and

-3/2

T8y, = of33_(0)ar = N, o) . (10)

When ¢ =0 (9) is aJO(l) = N(O, 02) » which is the limiting
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distribution of the standardized sum T_l/zzut of the innovations in (1).
The variance of this limiting distribution is 02 - 1imT*w T-lE(Si) . When
{ut) is stationary we have 02 = 2wfu(0) where fu(A) is the spectral

density of [ut} . In thisg specilal case of (9) we therefore find that

-1/2

T Eut = N(O, Zﬂfu(O))

This is, of course, a general central limit theorem for stationary time
series; see, for example, Hannan (1970, theorem 11, p. 221}.
When ¢ = 0 in (l0) a simple calculation gives
1 _ 12
afOJO(r)dr = N[O, 30 ]
which is the limiting distribution of the standardized sample mean of an
integrated process; see Phillips (1986).
Perhaps the most useful application of these results is to the theory

of regression for near-integrated time series. Suppose (1) is estimated by

least squares giving the regression cecefficient

A 2
4= Iy Ve 1/%
and associated t-statistic

2 1/2
€ = (Syi_ ) (&-a)/s

where 52 = T_lz(yt - ﬁyt_l)2 . The asymptotic theory of these regression

statistics is as follows:
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THEOREM 1: If {yt} is a near-integrated time series generated by (1) and

(2) then as T = =

(a) T(A-a) = {féJc(r)dW(r) +o(1/2) (L - ai/az)}/féJc(r)2dr :

(b) a-1, 52 -+ aﬁ in probability;

1 2,2 1 2 11?2
(e) t = (a/au){foJc(r)dW(r) +(1/2)(1 - 7 /o )}/{foJc(r) dr} .

Proof. To prove part (a) we note that

1
T(4-a) = [T_zzyi_l] (T7'5y,_qup)

-1
> {féJc(r)zdr} {féJc(r)dW(r) + (1/2)(1 - ai/az)}

by direct application of the continuous mapping theorem and Lemma 1. More-
over, this implies that 4 = a + OP(T_I) =1 + OP(T_I) so that part (b)
also follows., Part (c) is an immediate consequence of Lemma 1, the continu-

ous mapping theorem and part (b). O

When ¢ = 0 and {ut} is independently and identically distributed
with zero mean and variance 02 parts (a) and (c) of this Theorem reduce to
known asymptotic results for a first order autoregression with a unit root;

see White (1958), Fuller (1976), Dickey and Fuller (1979). 1In particular,

(a) and (¢) become:
1 2 “1ra
T(&-1) = {fow(r) dr } {jow(r)dwcr)} :

172
£ = {féW(r)zdr } {féW(r)dW(r)} .
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In this case, we have 02 - ai and Jc(r) = W(r) in the formulae of the
Theorem.

When c¢ » 0 Theorem 1 delivers the noncentral asymptotic theory for
the regression statistics & and t, for a very general class of innova-
tions in (1). The theory is particularly useful in studying the asymptotic
power of tests for a unit root under the sequence of local alternatives
given by a = ec/T ~ 1+ ¢/T . Dickey and Fuller (1979) suggested the test
statistics T(4-1) and t1 . These statistics are appropriate when the

errors in (1) are independent and identically distributed, in which case we

2 2

have ¢ = ¢ and
1 2. VY
T(3-1) » c + {IOJc(r) dr } {foJc(r)dW(r)} ,

1 1/2 1 ) -1/2¢ 4
t, = c{foJc(r)dr} + {joJc(r) dr } {jOJ (r)dW(r)} .

The Dickey-Fuller tests have recently been extended by the author to accom-
modate rather general time series with a unit root. The new statistics Za

and Zt given in Phillips (1986) are based on T(4-1) and t, but they

1

employ a nonparametric correction for serial correlation. Under the sequence
e/T : :

of alternatives a = e Theorem 1 provides asymptotic power functions for

these new tests as well. It turns out that Za and Zt have the same

asymptotic local power as the Dickey-Fuller tests T(4-1) and t1 given

above, yet the net tests allow for a much wider class of error processes.
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4, LIMIT DISTRIBUTIONS AS ¢ = tw

It is interesting to study the limiting behavior of the asymptotic
theory of the preceding section as the noncentrality parameter approaches
the boundaries of its domain of definition. As might be expected, the re-
sults for the sample moments are different at the two boundaries and two
different normalizations are required to eliminate degeneracies. The cent-
ral results we shall use are contained in the following lemma which is

proved in the Appendix.

LEMMA 2. As ¢ =+ -~ !

(a) (—Zc)féJi(r)dr ~ 1 in probability;

b) (—Zc)l/zféJc(r)dW(r) ~ N(0,1)

As ¢ =+ +=
—crl 2 —2c¢l 2 2
(e) [<2c>e T (DaH (), (2e)7e [T (1) dr] > (&n, 1)
where £ and 1n are independent N(0,1) variates.
We now define

-1
ky(e) = g e} ([ mam + ama - oot}

and

1 2 V"% 2,2
K3(c) = (a/au){IOJc(r) dr} {bec(r)dW(r) + (1/2)(1 - au/a )}

where

glc) = E{IéJc(r)zdr} = (-1/2c){1 + (1/2e)(1 — e2°)}

Kg(c) and K3(c) are functionals which represent the limiting
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distributions of the standardized regression coefficient g(c)l/zT(é—a) and
the associated t-ratio ta . The behavior of K2(c) and K3(c) for large

le|] is now a simple consequence of Lemma 2. We have:

THEOREM 2. As ¢ -+ —=

N(0,1) if o =&

13

(a) Kz(c) and diverges otherwise;

N(0,1) if o% =&

4

and diverges otherwise.

CNE R

(b)  Ky(c)
As ¢© =+ 4w
(e) Kz(c) = Cauchy

(@) Ky(e) = N(O, o%/o2)

1

Proof. Parts (a) and (b) follow directly from Lemma 2 upon appropriate

standardization of numerator and denominater. To prove part (c) we write

-1
Ky(c) = (20)_1ec{féJi(r) dr} {féJc(r)dW(r) v /A - ai/az)} + 0 (1)
-1
2 _%¢c 1 2 —c(l —~,. 2.2
- {(2c) e foJc(r) dr} {(2c)e foJc(r)dW(r) + ce (l-o’ /o )} + op(l)
2
= €n/n" = £/9 = Cauchy

as ¢ = o by Lemma 2 and the continuous mapping theorem. In a similar way

we find

~1/2
K, (c) = (a/au){féJc(r)gdr} {féJc(r)dW(r) + (/D - 03/02)}

_ -1/2 _
(a/au){(Zc)ze_chéJc(r)2dr} {(2c)e*°féJc(r)dW(r) + ce c(l—ai/o2)}

3

(o/5 )6/ || = (o/0 )¢ sgnln) = N(O, a*/a2)

as ¢ = o , proving part (d). O
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The above results are obtained by studying asymptotic behavior in suc-
cessive limits: first as T + » with c¢ taken to be a fixed constant; and
second as ¢ =+ two . Heuristically, one might expect the asymptotic results
of Theorem 4 to provide reasonable approximations in finite samples for
which both T and |c] are large. Note, in particular, from (2) that
¢ =T1ln a and, thus, finite sample configurations with large T and large
|e] may be associated with stable or explosive AR(1l)'’s depending on the
sign of ¢ . In this sense the results of the theorem are suggestive. In
fact, parts (a) and (b) correspond with known asymptotic theory for the
stationary AR(1l); and parts (c) and (d) correspond with asymptotic results
obtained by White (1958, 1959) and Anderson (1959) for the explosive AR(1)
with Gaussian errors. However, it would be wrong to interpret the results
of Theorem 2 and the previous section as implying the asymptotic theory for
a stable or explosive AR(1l) with a fixed coefficient. This point has been
emphasized by a referee. The reason is that, in general and without further
conditions, one cannot deduce rigorous asymptotic results that apply for
T+ » with the coefficient a fixed by telescoping the limits as T + «» and
c =+ dw |

Theorem 2 relates to some recent independent work by Chan and Wei in a
University of Maryland research report. These authors take the case of
independent and identically distributed innovations (ut} and by an ap-
proach that is quite different from that used here they obtain parts (b) and

(d) of Theorem 2, both for the special case in which 02 - ai
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5. REGRESSTONS WITH CONTINUQUS TIME OBSERVATIONS

Models such as (1) and {2) have another interesting interpretation and
application. Let [ynt tt=1, ..., Tn; n=1, ...} be an autoregressive

array generated for each row n by

Yoe = 8 Vne—1 t Ype 0 E 1, ..., Tn b Yao " y(0) (11)

in which the innovatioms u . are independent and identically distributed

with zero mean and variance = ozhn . Now let hn - 1/Tn and define

a —e -e . {12)

Each row of the triangular array {ynt] may be interpreted as an autore-
gression in discrete time with sampling interval = hn . We shall require

T -+ «« Aas n —+ «©

a , so that hn -+ 0 . The array then represents a sequence

of autoregressions with sampling intervals that decrease as we get deeper
into the array. For each value of =n , (11) and (12) is just a special
case of the earlier model (1) and (2).

Note that by definition Tnhn = 1 so that {ynt; t=1, ..., Tn) may
be regarded as equispaced observations of a continuous stochastic process

over the interval [0,1]. In fact, by methods analogous to those of the

proof of Lemma 1{a) it is easy to show that
Ya(r £ = e+ e %y (0) (13)
n

as Tn + « . Thus, setting ¢ =1 and initial conditioms y(0) =0, we

find that the triangular array {ynt} converges weakly as n —+ = to the
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diffusion Jc(r) over the unit interval O < r <1 . 1In this way (11) and
(12) may be regarded as a discrete time autoregression whose natural limit
as n + » is the first order stochastic differential equation (7). Note
that it is not necessary to treat {ynt] as a Gaussian process for this
interpretation to be valid since (13) applies provided the innovations in
(11) are independent and identically distributed. Of course, if {ynt} is
Gaussian then we may go further and treat (1ll) and (12) as the discrete time
equivalent of (7), i.e. the discrete time model that is satisfied almost
surely by equispaced observations generated from (7).

When continuous time observations are available a natural estimator of

the coefficient in (7) is the least squares estimator
A 1 1 2
& = jOJc(r)dJc(r)/jOJc(r) dr .

This estimator was originally suggested by Bartlett (1946, 1955) and
Grenander (1950) and has been more recently studied by several authors in-
cluding Brown and Hewitt (1975), Feigin (197%) and Phillips (1986).

Since
g -c = féJc(r)dW(r)/f(l)Jc(r)zdr (14)

we see that the finite sample distribution of & - ¢ is identical to the
asymptotic (Tn + @) distribution of the corresponding statistic
T (& - an) that is based on a discrete time record. 1In a similar way we

n n

introduce the continuous record t-statistic

1 1 2 11/?
t, = fOJc(r)dW(r)/{foJc(r) dr} (15)
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whose distribution is identical to that of the asymptotic (Tn -+ o) distri-

bution of the regression t-statistic t, from discrete time data.
n

From Theorem 4 we now deduce the asymptotic behavior of these contin-

uous record statistics as ¢ approaches the limits of its domain of defini-

tion. Thus

g(c)/2(& - ¢) = N(O,1) ; t, = N(0,1) (16)
as ¢ -+ —w ; and
g(c)1/2(6 - ¢) = Cauchy ; t, = N(0,1) (17)

as ¢ < +o |

These results together with (l4) and (15) completely characterize the
distributional behavior of the continuous time regression statistics. Note

that (14) and (15) apply whether the stochastic differential equation (7) is

stable with ¢ < 0 , explosive with ¢ > 0 or sgimply a continuous time

random walk with c = 0 . The asymptotic distributions given by (16) and

(17) for the boundary cases ¢ = *= complete the theory.

6. SUPPLEMENTARY REMARKS

Many observed time series in the physical and social sciences are well
modeled by integrated processes of the ARIMA type. However, we are frequent-
ly uncertain whether the process has a root of unity or a root in the vicin-
ity of unity; and the discriminatory power of tests for the presence of a
unit root is rather low against such alternatives. The present paper devel-

ops an asymptotic theory of autoregression which accommodates the possibil-
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ity of a root that is local to unity. This theory has several advantages.

First, it may be used to construct distributional approximations for
regression statistics in mildly explosive, strongly autoregressive or unit
root models. Second, it provides a mechanism by which we can obtain asyﬁp—
totic power functions for unit root tests under a sequence of local alterﬁa~
tives., The local departures from the unit root theory are then measured
through a noncentrality parameter which figures in the asymptotic theory.
Finally, the theory enables us to obtain a very convenient unification of
the asymptotic theory for autoregressions with roots in the vicinity of
unity. This is rather useful because in previous work the unit root case.
has been viewed as a singularity of the asymptotic theory. in the new
theory for near integrated processes that is developed in this paper it
becomes a simple special case, the case where the noncentrality parameter is

Zero,

Our analysis in this paper has concentrated on models without drift.

If (1) is replaced by

Y= 4 +ay g +u (1)’
then we may write

0

y, - #a" - 1/G-1) +y,

where yg is driven by a model such as (1), When a =1 , Ye = Lt + yg
and Ye is dominated by a deterministic trend. Similarly, when a is in
the vicinity of unity, for example a = exp[c/T3/2} ., we still find that
Ye = pt when the drift u = 0 ., In this case conventional normal asymptot-

. - c C s 3
ics obtain for regression statistics such as T /2(a—a) and ta . When
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u =0 and (1)' is estimated with a fitted drift, results analogous to those
of the present paper apply. One needs only to make simple modifications to
the formulae which account for the fitted mean. For example, we have

- -2
T 2E(yt -y)

2
2] ¢l 2 1
= o{fI (r)7dr ~ [foJc(r)dr]
in place of (c) in Lemma 1, Sometimes (1)’ is fitted with a trend as well
as a drift in order to discriminate between processes which are stationary
in differences rather than stationary about a trend. Such models may also
be extended in the manner of the present paper to accommodate roots in the

vicinity of unity and closely related results are again obtained.
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APPENDIX; PROOF OF LEMMA 2

To prove parts (a} and (b) we employ the invariance principle. We
first find the limiting distribution of (T_lzyt_lut, T_ZEyi_l) when the
innovation sequence {ut} is independent and identically distributed as
N{(0,1) . In this case, of course, 02 - oi = 1 and by Lemma 1 the limiting
distribution is that of the functional (fgJ_(r)dW(r), [eJ_(x)%ar) . How-
ever, by the invariance principle this distribution is not dependent on the
normality assumption made about the innovation éequence. The assumption is
simply a device which facilitates the extraction of the mathematical form of
the distribution. Moreover, relaxation of the independence assumption about
the u, leads only to the additional presence of the constants 02 and ai
in the limiting distributions; see, in particular, parts (c) and (d) of
Lemma 1. Thus, we may extrapolate easily from the limiting distribution
obtained under independent N(0,1) innovations to the general case.

When {ut] is independent N(0,1) , (T-lzyt_lut, T-zzyi_l) is a pair
of quadratic forms in normal Qariates. The joint moment generating function
of these forms may be obtained in precisely the same way as in White (1958),
allowing for the representation a = ec/T . The limit of this function as
T - » 1is then the moment generating function of

(féJc(r)dW(r), féJc(r)zdr) . Simple calculations along these lines yield

the following joint moment generating function:



~1/2 1/2
M_(w,2) = {(1/2)(c2+2cw—2z) M (2420w —22)

-1/2
2 1/2 2 1/2
= (eruyel® T2V T lirew-22) /2~ (ciuyye (O FEOW22) ]} . (al)

This expression holds for all ¢ and will be used later in our derivations
for explosive (c -+ =) alternatives. For our present purpese (with ¢ < 0)
we note that the joint moment generating function of

((-2c)1/2féJc(r)dW(r), (—ZC)IéJC(r)Zdr)) is:
Lo - (20 %, 20 . (a2)

We observe that for large negative ¢ we have the expansion:

1/2 _
{c2—23/2(—c)3/2p + 4cq} - (~e)-2Y2 ey 2 p%2q + o(|c|TV?y . (a3)
Using (A3) in (A2) we deduce that as ¢ =» —

2
Lc(P»Q) i ep /2+q .

It follows that

20y fl3 (@) = NGO, 1)

and

1 2
(—2c)foJc(r) dr 3 1

as ¢ - -= , proving parts (a) and (b).
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To prove (c) we first deduce from (Al) that the joint moment generating

function of (2ce Cf§I_(DA@(r), (20)°¢72%f3 (n%ar)  is:

K (p.q) = Mc[2ce_cp, (2c)2e_2cq] . (A4)
Now
[cz + (20)%e % - 2(2c)2e—2cq]1/2
= c[l + hencp - Se_ch]l/2
- c[l + 26 % - 4e 2%q - 2(e”%p - 2e72%)2 4 O(e‘3°)] (A5)
for large positive ¢ . Substituting (A5) into (A4) we deduce after a

little calculation that as ¢ -+ o

-1/2
] (A6)

2
K (p,q) ~ [1 - P —2q

Setting p = 0 in (A6) we have Km(O,q) = (1—2q)-—1/2 . This is the moment
generating function of a xi variate. Setting q = 0 in (A7) we have

K _(p,0) 2, 71/2
o P = (1 -p") , which is the moment generating function of a pro-

duct of independent N(0,l) variates; see, for instance, Kendall and Stuart
{1969, p. 269). Moreover, a simple calculation shows that

-1/2
Km(p,q) =1 ~-p - 2q) is the joint moment generating function of

(én, n2) where ¢ and n are independent N(0,l1) variates. Thus we also

have joint weak convergence as required for part (c) of the Lemma.
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