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0. HEADNOTE

The concept of a near-integrated vector random process is introduced.
Such processes help us to work towards a general asymptotic theory of re-
gression for multiple time series in which some series may be integrated
processes of the ARIMA type, others may be stable ARMA processes with near
unit roots, and yet others may be mildly explosive, A limit theory for the
sample moments of such time series is developed using weak convergence and
is shown to involve simple functionals of a vector diffusion. The results
suggest finite sample approximations which in the stationary case correspond
to conventional central limit theory. The theory is applied to the study of
vector autoregressions and cointegrating regressions of the type recently
advanced by Granger and Engle (1987). A noncentral limiting distribution
theory is derived for some recently proposed multivariate unit root tests.
This yields some interesting insights into the asymptotic power properties
of the various tests. Models with drift and near integration are also
studied. The asymptotic theory in this case helps to bridge the gap between
the nonnormal asymptotics obtained by Phillips and Durlauf (1986) for re-
gressions with integrated regressors and the normal asymptotics that usually

apply in regressions with deterministic regressors.

Keywords: Brownian motion; Cointegration; Diffusion; Near-Integration; Unit
Root tests.

Proposed Running Head: Near Integrated Time Series



1. INTRODUCTION

Many observed time series in economics seem to be modeled rather well
by integrated processes. The simplest model generating an integrated pro-
cess is, of course, a random walk; and this is a model that has been widely
used in financial and commodity market studies, in theories of rational ex-
pectations and in recent work with aggregate economic time series. More
general models of the ARIMA type have also been used frequently in economet-
ric work and have been found to represent very adequately the movements in
many different economic series. Moreover, in a recent study Nelscon and
Plosser (1982) provide substantial empirical evidence that a wide selection
of macroeconomic time series for the U.S. are modeled better in terms of in-
tegrated processes than as stationary processes about a deterministic trend.
In fact, their findings support autoregressive representations with unit
roots for all but one of the historical time series in their study.

It is also known that the discriminatory power of statistical tests for
the presence of unit roots is generally quite low against the alternative of
roots which are close (but not equal) to unity. This is explained by the
fact that the distributions of the relevant test statistics in finite
samples of data are usually quite similar under the null and the alternative
hypotheses in such cases. Thus, strongly autoregressive processes or even
mildly explosive processes must often be considered as realistic alterna-
tives in many cases where the statistical tests may actually support the
null hypothesis of a unit root.

Time series which possess an autoregressive component with a root close

{but not necessarily equal) to unity provide an important general class of



processes which we describe as near-integrated. The class may be taken to
include stationary time series with a strongly autoregressive component and
nonstationary time series with a mildly explosive root as well as integrated
processes of the ARIMA type. Thus, the class of near-integrated processes
with which this paper is concerned is rather wide.

The simulation studies of Evans and Savin (1981, 1984) gave rise to the
interesting finding that the coefficient estimator and the t-test in a sta-
tionary AR(1l) with a root near unity have statistical properties even in
moderately large samples (T = 50, 100) that are closer to the asymptotic
theory for a random walk than they seem to be to the classical asymptotic
theory that applies for stationary time series. Similar results also seem
to apply when the AR(1) is mildly explosive. In all cases the approach to
the strictly correct asymptotic distribution is very slow as the sample size
T t+ » , These results suggest that an altermatiwve asyn;ptotic theory may be
of value, one which takes into account the fact that the time series under
study are near-integrated processes.

The primary object of the present paper is to develop such a theory.

We shall work explicitly with multiple time series in which some series may
be integrated processes of the ARIMA type, others may be stationary ARMA
processes with roots near unity while yet others may be mildly explosive
series. These alternatives are determined by the wvalues assumed by the ele-
ments of a certain noncentrality parameter matrix. This matrix occurs in
the formulation of the near-integrated process model and enables us to
assess the impact on the asymptotic theory of the presence of various forms
of near-integration.

The organization of the paper is as follows. Section 2 develops some



preliminary notation, assumptions and theory that are useful throughout the
rest of the paper. The concept of a near-integrated system is introduced
and examples are given illustrating several interesting special cases. Sec-
tion 3 develops a limit theory for the sample moments of a near-integrated
time series and relates the results to conventional central limit theory for
stationary processes. In Section 4 the theory is applied to the study of
vector autoregressions and is extended to include regressions that involve
cointegrated series. A moncentral limiting distribution theory is derived
in Section 5 for the multivariate unit root tests that have been proposed
recently by Phillips and Durlauf (1986) and Park and Phillips (1986). These
noncentral distributions help in the analysis of the local asymptotic power
properties of the various tests. Section é shows how the theory may be ex-
tended to allow for systems with near unit roots and non zero drift. The
results of this section help to bring together the apparently divergent
theories of regression with integrated processes (that leads to nonnormal
asymptotics) and regression with deterministic regressors (that leads to
conventional normal asymptotics). Section 7 develops an asymptotic theory
for multiple regressions with near-integrated time series. The results of
this Section include the spurious regressions theory given recently by the
author (1986) and a theory for ceintegrating regressions of the type that
have been advanced by Granger and Engle (1987). Some conclusions are given

in Section 8. The Appendix contains a brief outline of some proofs of re-

sults in the text.



2. PRELIMINARY THEORY AND DISCUSSION

Let {ut}z be a weakly stationary sequence of randem n-vectors. We

t
e = Ej-luj and set S0 - 0

Throughout the paper we assume that {ut}g

introduce the vector of partial sums §
satisfies the following condi-

tions:

(a) E(uo) =0
(B) E"u0“ﬁ+£ < o for some f > 2
(C) {ut); is strong mixing with mixing numbers a that satisfy

zma1—2/,8 < @
I™m

These conditions allow for many weakly dependent time series and in-
clude a broad class of data generating mechanisms such as finite order ARMA
models under very general conditions (see Withers (1981)). Note that (B)

and (C) imply that

0 = limT*mT_lE(STSi) = E(uqul) + E:_IE(uoui + wul)

(Ibragimev and Linnik (1971) Theorem 18.5.3). Moreover, since this series
is absolutely convergent, the spectral density matrix fuu(l) of [ut}

exists, is continuous and 0 = wauu(O) .  Except where explicitly noted, we

shall further require:
(D) @ is positive definite.
From the partial sum process {S. 1 we comstruct

X (x) = T“l/zs[Tr] - T'l/zsj_1 L (G-D/TSsE<i/T, §=1, ..., 1T



where [Tr] denotes the integer part of Tr . Under the conditions given

above a functional central limit theory holds for the random element XT(r)

as T t « . In particular, we have:

(1) Xp(x) = B(r)

where B(r) is n-vector Brownian motion with covariance matrix {1 . In (1)
and elsewhere in the paper, the symbol " = " signifies weak convergence of

the associated probability measures and the limit is taken as the sample
size T t = ., Multivariate invariance principles’such as (1) above have
recently been given by Eberlain (1986), Phillips and Durlauf (1986) and
Phillips (1987c¢). The reader is referred to these papers for further dis-
cussion.

Our main concern will be with multiple time series that are generated

by the following model:

(2) Ve = Ayt*1 tu ; t- 1, 2,
with

-1
(3 A = exp(T "C)

In {(3) C 1is a fixed, real n X n matrix. Formally we should write
A = AT , signifying explicitly the dependence of the coefficient matrix on

T . Strictly speaking, time series generated by (2) constitute a triangular

T

(el e

w
array of the type Tl However, this formality is not critical
to our development and in order not to overburden notation we simply refer
© .
to time series generated by (1) as {yt}0 . Initial conditions are set at

t =0 and Yo ™may be any random variable (including a constant) whose dis-

tribution is fixed and independent of T



The matrix C may be Iinterpreted as a noncentrality parameter matrix.

It may be used to measure deviations from the following null hypothesis

H, : A=1

which applies when C = ¢ . 1In this case {yt} is a vector integrated pro-
cess of order one (an I(l) process) in the sense that its first differencés
are stationmary (or I(0)).

When C = 0 , (3) represents a local alternative to HO . As Tt e
of course 4 - In . However, the rate Bf approach to In is not so fast
that the alternative hypothesis represented by {3) has no impact on the
limiting distribution theory that we shall develop. 1In fact, the rate of
approach is controlled so that the effect of the alternative hypothesis (3)
on the limiting distribution of statistics based on data generated by (2) is
well defined and directly measurable in terms of the noncentrality parameter
matrix C . Note that an alternative and asymptotically equivalent approach
would have been to replace the matrix expomential representation of A in
(3) by deviations from In of the form: A = In + T-IC . With this formg-
lation the approach would be analeogous to that which is conventionally
employed in the statistical analysis of asymptotic power under local altern-
atives., Following the terminology in Phillips (1987b) we call time series
generated by (2) and (3) with € » 0 near integrated.

Near integrated systems such as (2) and (3) accommodate many interest-
ing possibilities. For example, when C = diag(cl, NN cn) R {yt} is a
multiple time series in which some series may. be I(1l) processes of the ARIMA

type (corresponding to components with c ™ 0 ), some may be stable ARMA

processes with near unit roots (cj < 0) and yet others may be mildly



explosive (ck > 0) . Moreover, if C has nonzero off diagonal elements
the system allows for series which may be near integrated of different

orders. Thus, when n = 2 and
0 ¢
C =
0 ©

1 a
A= with a = ¢/T .
0 1

we have

In this case [yzt} is an I(1) process but [ylt} behaves like an I(2)
process in finite samples of data since a » 0-when ¢ » 0 . Note that in
this case

Y1e and Yo may be regarded as being nearly cointegrated be-

cause the linear combination which selects reduces the order of inte-

Yor
gration from (nearly) I(2) to I(1). This is an example of trivial cointe-
gration,

A less trivial example is the following. Let C = -bb' for some non

zero n-vector b . Define £ = b’'b and write b = hfl/2 where
h = b/(b'b)/% . Note that
(&) ah = e F/Ty
so that h 1is an eigenvector of A . Note also that
[ _f/T [ '
(5) h Ye e h yt_1 + h u,

and since f > 0 we deduce that the series h'yt is nearly stationary. It
follows that the time series lyt} is nearly cointegrated in the sense that

the linear combination h'yt is nearly stationary or I(0), as distinct from
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I(l). Moreover, linear regressions which relate the components of Ve fall
in the usual category of spurious regressions (Granger and Newbold (1974),
Phillips (1986)); but when (4) and (5) apply they may be interpreted as re-
gressions for nearly cointegrated series., The asymptotic theory we develop
therefore applies to cointegrating regressions and delivers asymptotic local
power functions for regression based cointegration tests. Finally, in a
sequence of models with increasing f we may regard cointegration as the

natural limit of a spurious regression as f t « .

3. SAMPLE MOMENTS OF NEAR INTEGRATED TIME SERIES

Let {yt}; be a near integrated time series generated by (2) and (3).
In developing an asymptotic theory of regression for Y, we make extensive

use of the following functional:
R (x) = [5e{"%Can(s)

where B(s) 1is wvector Brownian motion with covariance matrix 0 . KC(r)

is a vector diffusion process and satisfies the stochastic differential

equation system:

(6) dKC(r) - CKc(r)dr + dB(r) ; KC(O) -0 .

We may also write:

r (r-s)C

K.(r) = B(r) + cfoe B(s)ds

and in this representation the effect of the noncentrality matrix C is

more evident. Kc(r) is a Gaussian process and for fixed r the finite



dimensional distribution
7 Ky (r) = N(0,Q) . Q- f;e(r‘s)cne(r“s)c ds

is easy to obtain. In this expression and elsewhere in the paper, we use
the symbol " = " to represent equality in distributioen,

Using an approach developed in earlier work (Phillips (1987a, 1987b))
it is easy to study the asymptotic behavior of sample moments of Ye - The
main results we need are collected together in the following lemma. Here
and elsewhere in the paper all asymptotic results apply as T t « ; and to

achieve notational economy we frequently eliminate function arguments and

write, for example, K in place of KC(r) and féKC in place of

C
fox (r)ydr .
LEMMA 3.1
@ 1V ek
) T 3/2 T IO c :

-2.T .
(¢) T DR IOKCKC ;

-2.T = )’ ’ L lge
(d) T Zl(yt - Y)(Yt -y) = IOK K IOKCIOKC !

-1_T

(e) T Tyy, _qui= _]'OK dB' + QO

1 ¢

where

Gy = B Blugn)

This Lemma gives an asymptotic theory for the sample moments of a near-
integrated vector process. As in the case of an integrated process, these

sample moments (when appropriately standardized) converge weakly to random
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matrices rather than constants as T t «» . The limiting distributions of
these sample moments are characterized as functionals of the vector diffu-
sion Kc . Whea C =0, Kc = B and the results specialize to those given
in earlier work (Phillips and Durlauf (1986)) for I(l) processes. Note that
in the case of (a) and (b) we have linear functionals of KC ., so that the

asymptotic distributions are Gaussian. The first of these is already given

in (7). The second is found by a simple calculation to be

1
(8) JoKe = N(O, W)
with
(9) V- féféngpexp{(r—s)Cln exp{ (p-s)C' }dsdpdr .
In the scalar éase (set n=1, Ve=vwv , k6K (Qm= w2 ., € =1c¢ ) the limiting

variance is:

c

(10) v = wle? 4 (08/2¢7)(e2° < 4e® + 3

Note that for particular cases of (2) in which A 1is assigned a value
in the vicinity of In the results of the Lemma may be used to suggest
simple asymptotic approximations te the distributions of the sample moments.
Thus, if n =1 and A = a is close, but not equal, to unity we have
c/T

am=ge $0 that ¢ = Tln a and then

2 2
v 3 4T 4 Q7T
(Tin a) 2(Tin a)
s : . . =3/2_T .
is an approximation to the variance of T Zlyt . In the stationary case

1/2_T

(a < 1) this suggests that T Zlyt is approximately N(O, vT) where
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2 2
(11) VT - 2 + = {3 - AaT + azT]

(4n a)2 2T(2n a)

The leading term here may be approximated as

vy - W2/ a2+ o(t™h

(12) - W2/(1-a)2

when a 1is clese to unity.
Interestingly, the approximation (12) gives the exact asymptotic vari-
ance in the stationary case for all values of a (|al < 1) . Indeed, we

know that in this case

-1/2_T .
T Zlyt = N(O, 2ﬂfy(0)) : as T t e

(see, for instance, Hall and Heyde (1980}, p. 135) where fy(A) is the
spectral density of the stationary process {yt)g . Here Ye is generated

by the stable AR(1l) Yo = @¥pq * Y, with stationary errors u, and fixed

autoregressive coefficient |a} <1 . The spectral density of Ye is given
by:
x| 72
fy(A) = Il - ae fu(A)
where fu(A) is the spectral density of the error process {ut] . More-
over,

-2 2,2
fy(O) = (l-a) fu(O) = (l-a) "(w /2rm)

where
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o = E(udy + 257 E(ugw)

Thus, 2xfy(0) - wz/(l—a)2 and so the approximation (12) yields the correct

-1/2_T

asymptotic variance of T Elyt in the stationary case,

This rather remarkable deduction from the simple approximation (12) ex-
tends to the general case of vector processes. Here we find that when (2)

is stationary and we set {(using the principal value of the logarithm)
C = Tin A ~ T(A-I) ,
the analogue of (1ll) is:

2.-1 1

(13) vy - 12y - T2c tac L + O(T_l) - (I—A)_lﬂ(I - A')'l + O(T_l)

Part (b) of Lemma 3.1 and (8), (9) and (13) now suggest the approximation

-1/2.T - i,
(1a) /%57y, - N[O, (1-8) " lacr-ar) 1] = K(0, 2n£_(0))

-1 T

A) £aa - Ae ) is the spectral density

where f A) = (I - Aei
yy( ) (

matrix of Yo and fuu(k) is the spectral density matrix of u_ . Thus,

(14) gives for all (stable) A the well known asymptotic result from the

theory of stationary processes (see, for example, Hannan (1970, theorem 11,

A s



4. VECTOR AUTOREGRESSIONS WITH NFAR-INTEGRATED PROCESSES

Consider the least squares vector autoregression

A

(15) Ve = Ayt—l + U, t =1,
where
A=YY (YYD E ¥ o=y
-1'"=-1"-1 ? 1’
The associated error covariance matrix

A —l ,
QO =T "Y'(I - PY_l

)Y

where PD - D(D'D)_lD' for any matrix

lowing Theorem provides the asymptotic

LA YTI + Y':l - Ein soay YT_ll

estimator is:

D of full column rank. The fol-

distribution theory for these least

squares regression estimates when the time series is a near-integrated

process.

THEOREM 4.1

A -1
(a) T(a-I) = C + [fécmxé + ni] [jéxcxé]

A

I, G,-0Q, =E(u

by Ag o3 % 0%’

(¢) If Condition (B) is strengthened to

(B)' EHuOHZﬂ <« for some B > 2
then
JT(Qy — 8,) = N(O,W)

where

13
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W="P (3 .0 )P
= Py oY)y

¥, = E(uu' @ utué) - vec(no)vec(ﬂo)'

0 tt
Wk - Qk + §i i k=1, 2, ...
°k - E(utué+k @ utué+k) - vec(ﬂo)vec(no)

and D is the n2 X n(n+l)/2 duplication matrix.

Theorem 4.1 extends to near-integrated time series the theory developed
in Philli#s and Durlauf (1986) for integrated processes. In particular,
when C = 0 part (a) of Theorem 4.1 gives the main distfibutional_result of
their theorem 3.2. When C » 0 part (a) of Theorem 4.1 shows the effect of
near-integration on the asymptotic distribution of the regression coeffi-
cients. We see that this entails a shift in the location as well as the
shape of the limiting distribution. We also note from part (b) of Theorem
4.1 that simple least squares regression continues to provide consistent
estimates of In (and hence the asymptotic unit roots of the model) in the
presence of serially correlated inmovations even when the time series ére
near-integrated. Part (c) gives the asymptotic distribution of the error
covariance matrix estimator ﬁo . We observe that this distribution is
independent of C and is the same for integrated and near-integrated proc-
esses. This is explained by the fact that in both cases A - A E 0 so that
the residuals ﬁt from the regression (16) are asymptotically weakly depen-
dent and consistently estimate the innovation process u, - Conventional

normal asymptotics therefore apply in this case, as we would expect for sta-

tionary processes.
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The above results may be extended te apply to vector autoregressions in

the presence of cointegration. In such cases we need to relax condition (D)

above and allow (I to be singular (see Phillips (1986)).- To fix ideas let

J, be an n x k matrix of orthonormal cointegrating vectors.

2
suppose that C 1is symmetric and C32 = 0 . Then

T¥e = Ia¥e1 ¥ T4

and since Joy, is stationary we necessarily have OJ, = 0 .

2

an n X {n-k) matrix for which P = [Jl' J2] is ortﬁogonal.

X = P'yt we find that X, satisfies:

e | _ [ TMe O] Fre |, | Mae
Xoe 0 O 1 *2e-1 Yae
or
(16) X = Glxlt-l + szzt_l + wt
where
N B T I I ££°
t 1]
ot IV,
and
[}
S St I
t 1]
Yot J9¥e

We deduce that

a7 Ye = I1%1e ¥ Jo¥2¢

We shall

Let Jl be

Defining
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and Xy, is a near integrated time series of dimension wn-k . Thus, (17)
decomposes Ye intoc a stationary component of dimension k and near inte-

grated process of dimension n-k . This generaiizes the common trend decom-

position of Stock and Watson (1986).

THEOREM 4.2. If [wt}; is strictly stationary and ergodic with non singu-

lar covariance matrix E(wowé) and satisfies conditions (A), (B)', (C) and

(D) then
18 ; - P In_k : G P' = A 5a
(18) 5 o | 2 . y

A _ _ 1 - 1 -1
(19) T(A-A)T; = J,C + P{EfodBKé + F}{IOKEKE}
(20) JT(Q—K)JZ = N[O, (P © I)Q(P' @ 1)]
(21) JT(A—K) = N[O, (P @ Jz)a(P' ® Jé)]

— !
where B(r) = (Bl(r)' Bz(r)') is n-vector Brownian motion with covariance

matrix ( = 2ﬂfww(0) ' KE(r) is an (n—k)-vector diffusion defined by
r (r—s)E = - .
Kz(r) foe dB,(s) , C=Jic3,
and E, F and Q are constant matrices defined by (A3)-(A5) in the

Appendix and

- ] ’ -1
Gy = E(Wwy e ) (E(wy W )

We see from (19) and (20) that scme linear combinations of the columns
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of ; are 0(/T)-consistent and have an asymptotic normal distribution while
otherg are O(T)-consistent and have a nonnormal limit distribution. The re-
sults closely parallel those obtained in Phillips and Ouliaris (1986) for
the case where A = I in (2). In particular, we observe from (21) that ;
has a singular asymptotic normal distribution in the limit (since qQ is
singular) and this distribution does not depend on the noncentrality matrix
€ . 1In fact, the limiting distribution of JT(R-K) given by (21) is the
same for all C and thus the presence of cointegration in a system such as
(2) eliminates the differences between integrated and near-integrated pro-
cesses. This is because cointegration in the regressors induces
0(/T)-consistency as we have seen and the effects of near-integration are of

a smaller order (by comstruction).

5. POWER FUNCTIONS FOR UNTIT ROQT TESTS

The theory of the preceding section may be used to derive asymptotic
power functions for regression based tests for unit roots. To illustrate
what is involved we use the framework developed recently by Park and
Phillips (1986). This framework allows for multivariate regressions with
deterministic regressors as well as I(l) processes and it also accommodates
I(1) processes with drift. Park and Phillips propose a general class of
statistics (called H-statistics) which in the present context are useful feor
testing the null hypothesis HO : A=1 1in (2). More specifically, from
the vector autoregression (15) the suggested statistic (given by equation

(38) of Park and Phillips (1986)) is:

- P ~ L, ~—1," _ = 2 ==lx . —1x
(22) H(A) = tr(@ (A-DM(A-1)") = 2T ex(@ (a-D)) + T° er@ 8M 8
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where {3 and ﬁl are consistent estimates of Q and ﬂl respectively and

MT - YllY-l . Under the null hypothesis H, we have

A -1
H(A) = féfédB(r)'ﬁ_ldB(s)B(r)'(féss'] B(s)
101 , oLt
(23) = [0 gdW(x) ' dW(s)W(r) [foww ] W(s)

where W(r) 1is n-vector standard Brownian motion. When n =1 (23) re-

duces to

2 P
lvew]  [oar? - b

Iéwz - [Iéw ]1/2

which {s the square of the limiting distribution of the t ratio statistic
in an AR(1l) with a single unit root and with 1id{(0, wz) errors. The latter
distribution is tabulated in Fuller (1976). Note also that in this scalar

case H(A) in (22) reduces to the square of the statistic Zt (the modi-

fied t-ratio statistic) introduced in Phillips (1987a).

Under the alternative hypothesis given by (3) the limiting distribution

of H(A) may be obtained from the results of Theorem 4.1. We find:
H(;) > tr{ﬂ_lc(flx K.)C') + 2tr{n_1C(f1K dB’)}
07cC oc
-1 el o, .l -1 1 ,
+ tr(a (fodBKc)(foKCKC) (fOKCdB )}

(26) - er{@(C4E) (SR KL (CH+E) )

where
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1 , 1 s -1
£ = (IOdBKC) (IOKCKC)
Now consider the case where the innovation sequence {u_ )} is
11d(0, ﬂo) . In this case 01 =0 and O = ﬂo . The conventional Wald

statistic for testing H, 1is:

0

A_l -~ ~ ,
F = crifi (ArI)MT(A—I) )
Once again we find that:

F = tr{ﬂ_l(c+§)(IéKcKé)(C+f)'}

-~

Thus, there is no 105; in asymptotic local power from the use of H(A) even
though this statistic is applicable for a wide range of possible innovation
processes. Similar results hold for tests of a single unit root (see
Phillips (1987b) and Phillips and Perron (1986)).

Phillips and Durlauf (1986, equation (32)) suggested an alternative

test of H0 in the multivariate case based on the statistic:
6 = T3/ 2er((a-1) " (a-1)) + T_ly&ﬁ_lyT

where {1 1s a consistent estimate of Q . Under the null G = xi so that
tests based on G have the advantage of relying only on conventional tables

of the chi squared distribution. Under the local alternative hypothesis (3)

we now find that

sl
(25) G = Kc(l) 1 Kc(l)
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which is a quadratic form in the normal vector

Kc(l) - N[o, fée(l_s)cﬂeu_s)c'ds]

A

It is interesting tc compare the asymptotic behavior of H(A) and G
under local alternatives. Note first that Kc(l) has zero mean so that the
limiting distribution of G 1is a weighted sum of independent central xi
variates. The limiting distribution of H(R) ., on the other hand, is a
random quadratic form in the elements of the matrix C+f£ . The distribution
of this matrix involves a shift in location under the alternative hypothesis
that is directly related to the magnitude of the noncentrality matrix C .

~

From these observations we may expect the asymptotic local power of H(A)
to be superior to that of G .
The poor power properties of the G test are confirmed by closer exam-

ination of the scalar case. Here (25) becomes (setting € = c ):
G = (%% - 1)/2e))2

which for small ¢ behaves like (1+c)xi . Thus, against stationary local
‘alternatives (with ¢ < 0 ) G has asymptotic local power less than the

size of the test (the latter being delivered by x% under the null). More-

over, as ¢ { == we see that

2c 2
{{e - 1)/20)x1 ; 0.

Thus, asymptotic local power tends to zero as ¢ + — for the G test.

By contrast, in the scalar case (24) reduces to
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1.2)%/2 1.y 2 i
(26) c[foJc] + [IOJC] Jo ¥

where J (r) = f;e(r_s)ch(s) and W(s) 1is standard Brownian motion. By

Lemma 2 of Phillips (1987b) we have

1.2 17201
(-2e)f3, 3 1, (-2e)™7[fyJ 4% = N(0,1)
as ¢ + =0 . We deduce that (26) diverges to +®» as ¢ { —» . Thus,

asymptotic local power tends to unity as ¢ { —= for the H test.

6. EXTENSIONS TO MODETS WITH DRIFT

The theory developed in earlier sections may be extended to allow for

models with near unit roots and non zero drift. In this case we replace (2)

by

{2)* Y= b+ Ayt-l +u .

When A =1 in (2)' the asymptotic theory has been fully developed recently

by Park and Phillips (1986). Note that in this special case of (2}’ we may

write
27) =- ut + 0
where yg is a (driftless) I(l) process satisfying (2) with A = I ., Under

(27) Ye behaves asymptotically as if it where ut and we therefore find

asymptotic behavior rather different from that which obtains for yg . In

particular, we find that:
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(28) T8y v 2 (/D
t"t p
so that the second moment matrix converges in probability to a conétant
matrix, in contrast to Lemma 3.1(c). Note also that the standardization in
(28) is T_3 (rather than '1‘_2 ) and the limit matrix is singular when
n>1.
For near integrated time series two major cases can be distinguished.

In the first, we replace (3) by

3/2

(3)° A= exp(T V%) ~ 14+ 173%

where the local alternatives are O(T*3/2) , a choice inspired by the stan-

dardization factor T - in (28). 1In place of Lemma 3.1(a)-(c) we now find:

-1 )
(29) T Yire] p T
~2_T
(30) T Iy, 3 (/2 ;
(31) 35Ty yr o (1/3)up!
Vele B /3)

The asymptotic regression theory is complicated by the singularity of the
limiting sample second moment matrix (31). Park and Phillips (1986) show
how to deal with this complication and their results apply directly in the
present case. In particular, let u and A be the least squares regres-
sion coefficients from (2)'. Define hl - ,u/(,u',u)l/2 and let H = [hl, HZ]

be an orthogonal matrix of dimension n x n . We further define B = HéB

and a, - Héﬂl and we use the following functional introduced by Park and

Phillips (1986):
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1 A
£(B,M,E) = [fodBM' + E] [J'OMM']

where B 1is vector Brownian motion, M is a process with continuous sample
paths such that féMM' >0 a.s. and E 1is a (possibly random) matrix of

conformable dimension. As in Theorem 3.6 of Park and Phillips (1986) we

find that:
(32) T(A-a) = £(B, B¥, §,)H)
(33) /2 @b, = (w28, B, 8

Here B* and P may be interpreted as Hilbert space projections. Specif-
ically, let m = n-1 and treat C[O,l]m as a Hilbert space of m-vector
valued, continuous, square integrable functions on the {0,1] interval with
inner product fégigz for g1 8y € C[O,l]m . Define the functions

1(r) =1, 2(r) = r for r € [0,1] . Then B* 1is the projection of B
onto the orthogonal complement of the subspace spanned by

Il(r)Im, 2(r)Im] . Similarly, P 1is the projection of 2(r) on the

orthogonal complement of the subspace of C[0,l1] spanned by

[1(r)y, B'(x)] . Finally, § 1in (33) is defined by
1 1,1 1 1.1t
s =- [IOSL' - §f0§:][f0§ B - J'OMOE'] 2y

‘as in Park and Phillips (1986, theorems 3.3 and 3.6).

We see from (32) that the limiting distribution of T(A-A) is degen-
2
erate and its support in R is the range space of In ® H2 . The de-

generate linear combination of A-A at O(T) scaling involve the vector
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(K—A)hl , From {(3)' and (33) we have:
/2Dy = ch) + '/ ?EE, R0

whereas from (3)’ and (32) we obtain:

T(A-I) = £(B, B*, 0,)H; .

Thus, the noncentralities induced by the specification (3)' influence only
those linear combinations of A& , viz. Khl , which are O(T-3/2) con-
sistent., All other linear combinations of A have limiting distributions
which are invariant to the noncentrality matrix C .

The situation is substantially different when alternatives to A =1
take the form given in (3) rather than (3)’'. This is the second major case

of interest for near integrated processes. In place of Lemma 3.1(a)-(c) and

(29)-(31) we now find:

-1
4 R :
(&) Ty 3 Lok s
-2.T 1.
(35) T Iy, 3 Solos
(36) T2l v o frLoue'L(n)dr = 5eC,u) . sa

where

L(x) = I + (1/20)r%C + (1/3)1r°¢% + ..
The limiting sample second moment matrix I(C,u) may have rank equal to any
integer from zero to n . Let M be the subspace of R" spanned by the

vecters {Ckp tk=0,1, 2, ...) and set £ =~dim M . Then 0 < £ < n
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and rank{Z(C,u)} = £ , as in the proof of theorem 1 of Phillips (1974).
Let Hl be an n X £ matrix of orthonormal vectors of M and let
H= [Hl’ HZ] be.an orthogonal matrix. Define the f-vector of continuous

functions g(r) by the equation
Lo(x)p = Hyg(r)
and set
' Kc(r) - HZKC(r) , @, = H)Q

=1 271 -

The least squares regression coefficient matrix in (2)’ now has limiting

distributions given by:
(37) T(A-A) = £(B, K¥, Q)H) ;
-+

(38) T3/2(K—A)H1 - £(8, ¥, &5

. : + .
It is again convenient to interpret KX and P in these functionals as

c
Hilbert space projections. Thus, KE is the projection of EC onto the
orthogonal complement in C{O,l]n—z of the subspace spanned by the func-
tions [1(r)In_£, In—£ ® g(r)'] ; and g+ is the projection of g{r) onto

the orthogonal complement in C[O,1]£ of the subspace spanned by

[1(n)T,, I, ® K] . 57 in (38) is defined by
+ 1., (1 1,7t
& =- [f o8¢ ~ Jo#f ogc] [f ocke = Joke/ 05?:] g -

From (37) we see that the limiting distribution of T(A-A) is again
2 .

, with support equal to the range of I ® H, . The

degenerate in R" 2
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legenerate elements of A-A at O(T) scaling now involve the £ vectors
>f (K—A)H1 . In contrast to (32), we observe that the limiting distribu-
tion of T(A-A) does depend on the noncentrality matrix. This is to be
expected since the alternatives given by (3) involve O(T-l) departures

from the null. Indeed

(39) T(A-I) = C + £(B, K%, Q )H)

and this provides a generalization of Theorem 4.1(a) to models with drift.

Note, in particular, that when u = 0 we have 2 = 0 | H2 - In ,
1
q3. = - * - - .
21 nl , KC Kc . KC KC IOKC and (39) extends Theorem 4.1(a) to the

special case of fitted drift with u =0 .

At the other extreme, when u =0 and 2 = n , we have H1 - In ,

K =0, Ql -0 , ﬁf = 0 and £+ is the projection of g(r) on the

-+

]n . Thus P =g - fég and

orthogonal complement of l(r)In in ¢C[0,1

(38) yields
3/2 - + 1+ (1ot} T
T/ “(A-A) = £(B, B', 0) = [fodsg ][.roz P ]
S T
(40) = N0, @ e[fogg - fosfos']

Note that in this case
1,
Z(C,p) = [,88

n

is positive definite, since £ = n and, consequently,- M =R Thus, from

(36), the sample moment matrix T—SYLIY_l

probability limit and, as we might have expected in such a case, the

has a constant, positive definite
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limiting distribution is normal. Note also that there are no degeneracies
in the limiting distribution (40). This extreme case with uw = 0 and
2 = n therefore represents a return to conventional normal asymptotics.

The result is explained by the fact that the behavior of Ye is dominated
by deterministic components (viz. Tg(t/T) ) which induce sufficient asymp-
totic variation over component variates to ensure that the limit of the
sample moment matrix of the regressors in (2)' is constant and nonsingular.
The general case given in (37) and (38) admits the two extremes we have
just discussed as well as intermediate cases in which both normal and non-
normal asymptotics apply. These results therefore help to bridge the appar-
ent gap between the nonnormal asymptotics explored in Phillips (1987a),
Phillips and Durlauf (1986) and Park and Phillips (1986) and the normal
asymptotics obtained in Kramer (1984) and West (1986), the latter for the

special case of a single nonstationary regressor with drift.

7. MULTIPLE REGRESSION WITH NEAR INTEGRATED TIME SERIES

The theory developed in Sections 3 and é may be applied to multiple

(least squares) regressions of the form:

- ] N .
(41) X, a+ B zt + vt :

where xt {(a scalar) and zt {an m-vector) are quite general near-
integrated processes. For our analysis it will be convenient to set
n=mtl , to define yé - (xt, zé) and to assume, at first, that the mul-
tiple time series {yt]; is generated by (2) and (3) with innovations

[ut}; that satisfy Conditions (A)-(D). Under this set up, some elements of

Y, may be I(l) processes, others may be near-integrated; the innovations
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u. that drive (2) may be quite general weakly dependent time series; and
X and z, may be both contemporanecusly and serially correlated.

The following result provides an asymptotic theory for the least
squares regression (4l1). It is a simple consequence of earlier results in
Section 3. In the statement of the Theorem we use Fﬁ to represent the
customary regression F statistic for testing the significance of ; in
{41}, tﬂ. denotes the conventional t-statistic for assessing the signifi-
cance of lﬁi : R2 is the coefficient of determination in the regression;

and DW is the Durbin-Watson statistic.

THEOREM 7.1

-1

(a) B = G22521 ;

(b) /2% o b'n ;

2 -1 _

(e) R" = 871Gp28p1/817

(&) TYF, = (1/m)g,,Coog, /(8yr = 851Coigyy)
P 215228217/ (817 ~ 851622851)

-1/2
172 , -1 -1 -1
() T 7 g = {(511 - g21G22521”622]ii} (€

2289174
(£) T(DW) = n'Gan/ (811 = B1Cnig,.) ;
0 11 2172287217
where
1 m
811 81 |1 1 1
(42) c - e |- Jo¥cKe = K UKE)
831 22
1
b= Jo¥
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Theorem 6.1 generalizes to near-integrated processes the regression
theory derived in Phillips' (1986) for spurious regressions with I(l) pro-
cesses. All of the main qualitative results of the regression theory of the
latter paper alsc apply in the context of near-integrated processes. Thus,
unlike the theory of regression for stationary processes, the regression
coefficients & and B do not converge to constants as T t = ; has a
nondegenerate limiting distribution; and the distribution of & diverges as
T+t o . Similarly, R2 has a non&egeneraterlimiting distribution. On the
other hand, the distributions of the test statistics F and tﬁ, both
diverge as T t « and DW ; 0 as T t = . ;

Equation (41) may be regarded as a cointegrating regression of the type
recently considered by Granger and Engle (1987). 1In the work of these
authors, the null hypothesis in the regression is that of no cointegration
(i.e. no linear combination of X and z, is stationary). Their main-
tained hypothesis is that all of the variables in the regression (here, X,
and z, } are integrated processes. When C = 0 , Theorem 7.1 gives the
asymptotiec theory for the regression coefficients, conventional significance
tests and regression diagnostics under the Granger-Engle null hypothesis in
such a cointegrating regression. When C » 0 the theorem delivers the
relevant asymptotic theory for the wider class of near-integrated processes.
That is, the asymptotic theory is established for a more general maintained
hypothesis under which some variables in the regression may be I(l) pro-
cesses, others may be nearly explosive, while yet others may be nearly sta-
tionary. The effects of these extensions are measured through the noncen-

trality matrix C

Under the alternative hypothesis that the variables in the regression
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are cointegrated a different asymptotic theory applies. Phillips and Dur-
lauf (1986) developed the relevant asymptotic theory for regressions such as
(41) when zt is an I(l) process and (xt, zé) are cointegrated. This

theory is easily extended to the case where z, is near-integrated. Spe-

cifically, suppose {xt) is generated by:

(43) X, = ﬂ‘zt + v,

where

(44) z =F +w F = ex lR
e T TPl Y Yo PIT

Let ué - (vt, wé) and assume that {ut}g satisfies conditions (A)-(D).

Then, in place of Theorem 6.1(a) we find 2 3 B as T t =« and

(46) T(8-B) = [féKRKé]—l[fcleRdﬂl * ‘\]

where
r (r-s)R @
Ky = foe dB,(s) , X = Z _ (wgv,)
1 m _
and B'(r) = [Bl(r), Bz(r)'] is n-vector Brownian motion. (46) extends

theorem 4.1(a) of Phillips and Durlauf (1986). The two results are very
similar and they differ only by the presence of the diffusion process KR
rather than vector Brownian motion in the limiting distribution.

The asymptotic theory of cointegrating regressions may be further ex-
tended to cases which allow for drift as well as near integration. This
leads to new and rather different results which make use of the theory de-

veloped in Section 6. Suppose that the regressors in (43) are generated by
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. 1
(44) z, = m +th_1 + L F= exp[TR]

in place of (44). As in (36) we now find that

-3.T , 1 , -
T UEZz, 3 j‘OLR(r)mm Lp(r)’dr = Z(R,m)
Let MR be the subspace of R spanned by {ka :k=0,1, 2, ...7 and

set £ = dim(MR) . Then, as before, 0 < £ <m and rank{Z(R,m)} = £ .
Once again, let Hl be an m x £ matrix of orthonormal vectors of MR and
let H = [Hl, HZ] be orthogonal. We define the £-vector g(r) by LR(r)m
- ng(r) and write &R - HZKR , A= H2A . The least squares regression
coefficient B from the cointegrating regression (43) now has asymptotic

distributions which we characterize as follows:

A * '
(47) T(8-B) = HyE(B), Kp, A)

25

wsy  T/mis-p) = £, g,

Here gﬁ is the projection of KR onto the orthogonal complement in
C[O,l]m_)2 of the subspace spanned by Im—£ @ g(r)' ; g+ is the projection
of g onto the orthogonal complement in C[O,l}'E of the space spanned by

IE @ gé(r) ; and

i - ~(rhe) (rheass)

Note that when m = 0 (and hence 2 =0 ) H2 - Im . Kﬁ - KR - KR y A=A
and (47) reduces to the earlier result (46). At the other extreme, when

me0 and £ = n we have:
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3/2.° 1 14
/3-8 = [foss'] [58dB,

-1
2 (f1_,
= §|0, wn[fogs]
where

2 2 @
Wy - E(vo) + zzk-lE(VOVk)

is the variance of the Brownian motion Bl .

8. CONCLUSTON

This paper develops a general asymptotic theory of regression for. mul-
tiple time series which may be individually ch;racterized as either inte-
grated or near-integrated processes. ‘The limiting distribution theory that
we have derived covers vector autoregressions and cointegrating regressions
with near-integrated processes. In both cases the asymptotic theory pre-
sents some important general departures from conventional theory based on
stationary processes., The new asymptotic theory is helpful in characceriz-
ing large sample behavior in such regressions whether there are unit roots
or near-unit roots in the underlying data generating mechanisms.

The theory we have developed has been applied to analyze the noncentral
distributions of certain multivariate tests for unit roots. The results
provide some helpful asymptotic local power comparisons among the tests. In
particular, they indicate that the H-tests introduced by Park and Phillips
(1986) involve no loss in asymptotic power over more conventional Wald
tests, in spite of the fact that the new tests allow for a wide class of

weakly dependent innovation processes whereas the Wald tests apply strictly
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for iid innovations only.

Our regression theory includes cases of vector autoregressions with co-
integrated regressors. We have also studied cases where the generating
mechanism allows for drift as well as near integration. Both these cases
lead, in general, to degeneracies in the asymptotic distribution theory.

The case of drift and near-integration is particularly interesting because
the extent of the degeneracy is contingent on the noncentrality matrix and
the drift coefficient. The results in this case provide a bridge between
the nonnormal asymptotic theory developed in Phillips and Durlauf (1986} for
integrated regressors and more conventional normal asymptotics for regres-

sions with deterministic regressors.
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APPENDIX

Proof of lemma 3.1. The proofs of (a)-(d) follow lines developed earlier in
Phillips (1987a, 1987b). To illustrate we outline here the arguments lead-

ing to part (b). From (2) and (3) we deduce the representation:

-1
Ve - EE_Oexp[(k/T)C}ut_k + exp{(t/T)Cly,

(a1) = 2§_lexp{((t—j)/T)C}uj + exp((£/T)C)y, -

Thus,
-3/2_T -3/2.T i .. -3/2.T .
>/ . =T / Ei_lzj_lexp{((1—3)/T)C}u.j r 17 I qexpt(i/TCly,
/T
-1.T i . 1203/ -1/2
- T "Z,_,Z,_,exp{({i-j)/T)CIZ I (s + 0 (T )
=11 (j—l)/Td}Lr P

i/T j/T

(i-13/T “(j-1)/T P

Now (i-1)/T=r=<1i/T and (j-1)/T <= s =< j/T , so that

exp{ ((i-j)/T)C) = exp((r-s)C}{1l + O(T‘l)]

and (A2) becomes:



. i/T /T -
zz_lz?_lj er exp{(r-s)C}Zl/deT(s) + 0 (T l/2)
=Ny dg-nr P

- flarfTexp( (r-5)C122ax (s) + op(T“l/z)

= féKc(r)dr

by the continuous mapping theorem (since exp{(r-s)C} 1is continuous) and

(1}, proving (b). The proofs of (a), (¢) and (d) are entirely analogous.

Part (e) is proved in Phillips (1986c).

Proof of Theorem &.1. Define U’ = [ul, e, 4 and then from (2)

1]
; - A+ U'Y (Y'Y )"1
-1 "-17=1
so that

N -1, -2, -1
T(A-A) = (T "U'Y_ )(T "Y!,Y ;)

Now A = exp{(l/T)C} = In + (1/T)C + O(T-Z) and from Lemma 3.1 and the

continuous mapping theorem we deduce that as T t = :

n -1
T(A-I) = C + [fédBK& + ni]{féxcxé]

as required for part (a) of the Theorem. The first part of (b) follows
directly. To prove the second part of (b) we now that as T t =
" 1

00 =T

’ — _lp. '] _l' -
VU - TUY_ (YLY )TY LU = 6,

: . : . ; -1
as required, since the second term in the above expression is OP(T ) and



the first term converges to ﬂo almost surely as T t = by the Mcleish
strong law for dependent sequences. The proof of part (c) is identical to

the proof of theorem 3.3 of Phillips and Durlauf (1986).

Proof of Theorem 4,2. The line of argument follows closely the proof of
theorem 3.1 of Phillips and Quliaris (1986) so we sketch only a broad pic-
ture of the proof here. Let 81 and 52 be the least squares regression
coefficients from (16). Using Lemma 3.1 we find that

N -1
1.= ][ 1

TGy =G = {Efodsxé +F IOKEKé}

JT(G2 - 6,) = N(0,Q)

_ (n-k) (k) , _
where B(r) = (Bi(r), Bé(r)) is n-vector Brownian motion with covariance

matrix Q = 2xf (0) and
wW

r (r-s)C = ,
Kz(r) = foe dB,(s) , € =Jic1,

-1
(A3) E=1 -EF, [0, 1]

E* - E(thZt*l)

F* - E(Wthét)



(Ad4)

(A5)

~and D

Now Ye = th

so that A = PGP’

Noting that

A= JlJl + PGZJZ

“ii)' 1 (1
_ -1,(1)"
F Y EFy 9,
12
(k)
L (n-k) > a3
a LIS e e
(k) : né%)
Q = HQH'
-1 -1 -1
H=(I®eF_, EF, ®F, ]
Q, = M(2nf, (0))My
1 0
My = n? ., P - D(D'D)-ID'
0 P
I D
: v, ® o1~ vec(E*)
§. -
I wt @ wt - vec(F*)

is the duplication matrix of order n2 X n{n+l) /2 .

and we deduce that

say.

A~



we see that
T(;—K)Jl - P(T(a-a)}P'Jl
- P(T(al -GN
and (19) follows directly. Similarly,

JT<R*K)J2 - P{JT(5—6)1P'J2

- P{/T(G, - G,))

and we have (20). Finally, writing ¢ = N(O, (P®I)Q(P'e®I))

ﬁ(A_K)P = [0,§]

and thus

JT(R—K) = [0,¢]P’' = N(O, (P ®'J2>6(P' ® J5))

as required for (21).

we obtain
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