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COMPARATIVE STATICS AND LOCAL INDETERMINACY IN QLG ECONOMIES:

AN APPLICATION OF THE MULTIPLICATIVE ERGODIC THEQREM

by

John Geanakoplos and Donald J. Brown

This study is an effort to give a simple measure of the local size of
the equilibrium set of OLG economies in which there may be more than one
good and more than one consumer per period, and in which the generations
may differ across time.

We are especially concerned with the meaning and significance of com-
parative statics, that is the analysis of the changes in the equilibrium
set caused by small perturbations of the underlying economy at some given
poeint in time, perhaps occasioned by government intervention in the market-
place, To this end we sharply distinguish between the thought experiment
in which the perturbation is anticipated from the beginning of time before
any agent has acted, and the perturbation that occurs as a surprise, say
at date t =1, after trade and consumption have been. carried out for
time t < 0.

Qur major findings can be summarized as follows, First we show that
a regular, nondegenerate equilibrium p = (pt; - < t < »)} for an economy
E is locally unique; it has the property that if the behavior or character-
istics of the agents at time t =1 is perturbed, by some sufficiently small
policy change, for example, forming the economy E , then there exists a

A !
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unique equilibrium p for E that is near p in the sense that —Tr.T
t

declines geometrically to 0 as t approaches = and as t approaches -= .

The comparative statics for perfectly anticipated perturbations of a regular,
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nondegenerate OLG equilibrium is thus analogous to the comparative statics
of a regular Arrow-Debreu equilibrium.

The situation is very different for unanticipated (but publicly announced)
shocks or policy changes. Suppose again that p 1is a regular equilibrium
for E and that the perturbation is unanticipated, Let E' = (E|lp) be
the OLG economy, in which 1 £t <e , that is derived from E by fixing
all behavior for t < 0 at the market clearing prices p . Thus the old
at time t = 1 maximize their utility, given that their consumption at time
t = 0 was chosen as in (E,p) , on the (erroneous) assumption that they
would face prices P; at t=1. The set of equilibria p+ = (p;, p;, eee)
of E' that converge geometrically to p may now display a vast multiplic-
ity, or it may be empty. Our second proposition asserts, however, that if
it is nonempty, then it must be a manifold of some dimension no greater than
the number of commodities (less ome if no individual held any money savings
from time Q).

The parametrizable indeterminacy that publicly announced but unantici-
pated policy can give rise to may be variously interpreted. It has been
used in [13], in the context of a specific example, to suggest that Keynesian
policy predictions are not inconsistent with utility maximization and market
clearing, at least in the short run. For example, if it is generally be-
lieved that publicly announced monetarv policy will affect quantities, with-
out disturbing certain prices (such as wages) in the short run, fhen this
believed potency of monetary policy can be exactly borne out in equilibrium,

Our third proposition sharpens the result in Proposition 2 in an (his-
torically interesting) special case. Recall that when Samuelson [24] first
introduced the one-commodity consumption-loan model he used it to explain

how the '"social contrivance" of money could effect Pareto improving trade
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in cases where otherwise the lack of "double coincidence of wants" prevented
any trade. Proposition 3 hypothesizes an equilibrium which is regular and
nondegenerate, and also autarkic (each individual consumes his endowment)
and (forward) Pareto suboptimal. It concludes that almost any neutral mone-
tary policy must have real effects--the indeterminacy, which Proposition 2
asserts is possible, necessarily obtains in this special case.

Throughout this paper our analysis relies on the regularity, and some-
times the nondegeneracy, of equilibrium. Roughly speaking, an equilibrium
is defined to be regular if we can associate with it a‘finite number of well-
defined "'Lyapunov exponents,'" i,e., "long-run rates of growth." It is said
to be nondegenerate if none of these is equal to 1. Proposition 4 asserts
that almost every equilibrium of almost any economy satisfying our assump-
tions is regular; in particular, this implies that almost every such economy
has at least one regular equilibrium. Nondegeneracy is a condition which
can always be obtained by arbitrarily small perturbations, We do not ana-
lyze its probability except to note in the corollary to Proposition 3 that
in the special case when a regular equilibrium is autarkic and Pareto optimal,
it must also be degenerate. |

A critical hypothesis which we mneed to derive our propositions is that
the behavior of every generation when it is young is sensitive to the expec-
tations it holds about the prices it will face when it is old, It is the
possibility that behavior today may be different, not as a result of differ-
ent exogenous influences, but because of different expectations, which can
be rationally held, that gives OLG economies their distinctive character.
By postulating expectations-sensitivity we concentrate on the difficult
problem of analyzing the infinite regression of expectations about tomorrow's

expectations about the day after tomorrow's expectations and so on.



The major analytical tools we rely on in this paper are (1) the multi-
plicative ergodic theorem proved by Osledec [20}, a far-reaching generali-
zation of the law of large numbers to the product of matrices, and (2) the
application of this theorem to the theory of nonlinear dynamical systems,
developed by Pesin [21] and Ruelle [22].

The obstacle to a straightforward extension of finite-dimensional
comparative statics to large economies is that it would require\the invert-
ibility of an infinite dimensional matrix, a condition which is impossible
to guarantee in general. For expectations-sensitive OLG economies, how-
ever, this infinite dimensional matrix may be replaced by the infinite
product of finite dimensional matrices. Around a given equilibrium p ,
an expectations-sensitive economy E determines a transformation @, which
maps each small change in prices Ap, into the change in expected prices
Apt+l necessary to induce the change Ap, in market clearing prices at
time t . The infinite iteration ... Pra1®Pp * ove ® @1 is the formal
expression of the intuition that lies at the heart of understanding open
ended economies, namely that there may be an essential indeterminacy in
how an economy responds to a public but unanticipated perturbation because
what people do today depends on what they expect people to do tomorrow,
which in turn depends on what people tomorrow expect people to do the day
after tomorrow, etc,

To explicitly analyze the infinite iteration of the maps %, , one
turns naturally to the product of the derivatives: ., Do, Do+ ee o Doy
But if the characteristics of each generation are chosen at random, then
ther? is no necessary relation between any map Py and its successor, or
between any matrix Dwt and its successor, and at first glance there does

not seem to be any improvement in replacing one infinite dimensional matrix



with the product of an infinite number of unrelated finite dimensional
matrices. The essential insight of Pesin and Ruelle, however, is that one
can deduce the behavior of the nonlinear dynamical system given by the @,

from the long-run geometric mean of the derivative matrices Do provided

t y

t+1.Dwt " -le de-

termines a finite number of "Lyapunov exponents," or '"generalized eigenvalues,"

this mean exists in the sense that the product ...

or "long-run rates of growth.”

The mean of an infinite sequence is something that one can hope is
tractable. The multiplicative ergodic theorem asserts, among other things,
that the product of matrices, drawn randomly from a known distribution, does
have such a geometric mean, with probability one. The technical problem we
must cope with is to link a given probability measure on the space of agent
characteristics with the matrix product of the Dwt defined above, which
is an endogenous function of the equilibrium path.

In Section 2 we present our model and discuss the expectations-
sensitivity assumption and some ways of weakening it without affecting our
analysis. In Section 3 we review the fundamental theorem on nonlinear dynam-
ical systems by Pesin and Ruelle, and in Section 4 we use this theorem to
prove Propositions 1-3. 1In Section 5 we give an illustrative example, and
in Section 6 we introduce the multiplicative ergodic theorem, and use it to
prove Propesition 4,

Before moving to Section 2, let us mention that since Samuelson's [24]
pioneering article on the consumption-loan model! there have been a number
of analyses of the size of the equilibrium set of special classes of OLG
economies, Gale [9] was the first to explicitly recognize the possibility
of a one-sided indeterminacy in a time-homogeneous OLG economy with one
consumer and one commodity per period. Grandmont [14] proved that in

the same model it is possible to have deterministic cycles of all periods.



Balasko and Shell [4] eﬁtended the domain of inquiry to allow for
heterogeneity between the generations and many commodities per period. They
restricted their attention, however, to the case where each generation con-
sists of a single consumer with Cobb-Douglas utilities, and they found that
one-sided indeterminacy is impossible, Their analysis was generalized in
Geanakoplos-Polemarchakis [12] to allow the single consumer to have an arbi-
trary intertemporally separable utility, and alsoc by Kehoe-Levine [17], at
least locally around a steady state. None of these one-consumer, separable
utility models satisfies our expectations-sensitivity hypothesis.

Kehoe and Levine [16] treated a more robust class of economies, allow-
ing for multiple commodities and many consumers per generation. They ruled
out, however, the possibility of heterogeneity between generations, and
they restricted attention to steady state equilibria. Their main, important
contribution was to give a criterion for measuring the degree of one-sided
local indeterminacy around a steady state equilibrium. This was the first

paper to apply the technique of linearizing an autonomous dynamical system
to the study of OLG economies. Our Proposition 2 may be regarded as a gen-
eralization to non steady-state equilibria of economies which are not time
homogeneous, i.e., a generalization to nonwautonomous dynamical systems.
Muller and Woodford [19] showed how to extend the Kehoe-Levine analysis to
steady states of time-homogeneous QLG economies with land and production
and an infinite-lived agent. They also noted a connection between autarkic
suboptimality and monetary indeterminacy of steady states.

Finally, let us mention our own earlier work, Geanakoplos-Brown [11]
which attempted to complement the local analysis in this paper with a global
treatment of the equiliﬁrium set of an OLG economy. It also treated the
connection between autarkic suboptimality and monetary indéterminacy, as well

as the case of intertemporal separability.
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2, The Model

We shall not be able to choose agents independently, instead we must
choose them collectively as generations, We thus place our assumptions
directly on the set A of possible generation excess demands. If £ € A ,
then ¢ = (gy, go) s, where Ey and £y are functions from Rff into Rl
representing demand when young and old, given all the prices that will be
faced over a lifetime: g(pa, pb) = (gy(pa, pb), Eo(pa, pb)) . We assume

that:

Al: Any & in A can be generated as the aggregate excess demand of a

set of H agents, hence it satisfies Walras Law pagy(p) +pbgo(p) =0,

and homogeneity: g(p) = £(ip) for i > 0, where p = (pa, pb) .

A2: £ 1is three times differentiable.

A3: There is a compact set = Aff'l

» the 22-1 simplex of strictly
positive prices, such that if £ and &' are in A , and

80(Pas Py) * &y(Rys P) =0, then (p,, p)/lI(p,, p)l €4 and
(Pb’ pc]/“(pb’ PC) | €a .

~ 2
A4: A is compact in the C3(A, R“R) topology of uniform convergence of

functions and their derivatives up to third order.

A5: (Expectations sensitivity}: For any (pa’ pb) € A R

rank agy/apb = rank ago/apa = 2.

Differentiability is clearly needed to develop our regularity conditions
and compactness is also essential, for it is imperative that the generations

not be unboundedly different from each other across time.

A5 implies that demand today is sensitive to any change in tomorrow's
prices. Combined with market clearing, it implies that agents can predict

perfectly the price change tomorrow, given any price change today,



As we have said earlier, some kind of expectations sensitivity is
central to our discussion of indeterminacy. This is embodied in the very
strong expectations-sensitivity hypothesis AS. Although we shall shortly
weaken this hypothesis, let us give one example to show that it is not con-

tradictory, even if we restrict ourselves to separable (but many) utilities.

B.

Il ~1x

b
Consider H Cobb-Douglas consumers uh = E a? log X, *
i=1 j

1
and endowments (wh wh wh wh ) One easily shows that:
~al? ***? Tag? "bl* "' by’ ’ :

h log x, .
3 bj

]
it l/pal o ...
Y . . h h?
& S| 1 M2z, O (héH“ Wy )
[ 0 0° l/paz |

and similarly for dc’,ofdpa . When H > & , a generic choice of the vectors
{ah} , {Bh} , {w:} s {wg} gives matrices dgy/dpb and dso/dpa that
are inmvertible for all (p_, p,) >> 0 . This example should be contrasted

with Balasko-Shell [3], which assumed one Cobb-Douglas consumer per generation.

o

An economy E = (gt)tez is a selection from E = NIA . We shall always

-

. . t . .
use superscripts, such as with &~ , to refer to generations, and subscripts

. . t- t
to refer to time periods. Thus gt(pt—l’ Pys pt+1) = £, l(Pt-l’ pt) +gy(pt, pt+1)

An equilibrium p for the economy E 1is a price sequence

oo

( "'p—l’ Pgs Py .e.) in [ = IIRI;+ such that for all t ,

-

t-1 _t .

£o (Pt-l’ pt) + gy(pt, pt+1) =0 , As shown by Wilson [25], and Balasko,
Cass, and Shell [2], any economy E € £ must have at least one competitive
equilibrium, if A satisfies Al-A4. Moreover, Al-A4 also imply that the

equilibrium graph is a compact set in the product topology, if we normalize

p01=1.



There is a more useful way of normalizing prices which we shall use

from now on, Let D = T & . Then

-0

(Qy,» qtb)tEZ € D is an equilibrium

price sequence for the economy E if and only if

. t t+l _
El: go(qta, qtb) + gy (qt+la’ qt+1b) =0 for all t € Z and
E2: There is some g < g such that for all t € Z there is 8 >

83858 WITh Qp gy = 8G9y,

From the homogeneity of the Et one can easily derive an isomorphism be-

tween equilibria p in @ (with Pg; = 1) and equilibria q in D :

, 1
simply take (qg,, Q) = (B, Pp /il (s P ), forall te€z .,

Let T be the shift operator on £ x D :
t+]

t -
T((E )tez: (qta: qtb)ﬂ) = ((E )tezs (qt+1a’ qt+lb)t€2) . Let Q
be the graph of the equilibrium correspondence:
Q= {(E,q) € £ x P|[q is an equilibrium for E} . We may call Q<& x D
a graph on E , since for any E€ E , there is some (E,q) € Q . Q is

a closed, and hence compact, subset of E x D . Moreover Q 1is shift

1 - - -
Conversely, Py = 95579051 » Py = %gb/%a1 * Pn = %no1 *** 81%.16"%0a1
for n > 2 and Pn = Bnep - goqna/qu1 for n < -1 . Note that, also

on account of the homogeneity of excess demands, ag;/apt+1i§£,§£+l has
full rank along the equilibrium path p in @ if and only if

ag;/aq }~ - has full rank along the corresponding path q in DU .
b 9tardeb

The advantage of the price space U is that equilibrium price sequences

need not be normalized at an arbitrary date, and hence the equilibrium con-

ditions are invariant to the relabelling of time periods.
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2 The shift invariance of Q will play a fundamental

invariant: T-lQ =Q.
role in all of the following analyses,

It is possible to weaken assumption A5, and require that for every
equilibrium (E,q) in Q, each‘generation t is expectations-sensitive
at the equilibrium prices ﬁ£ s though perhaps not elsewhere., In fact,
if we are interested in the local indeterminacy of a smaller set of equi-

libria, say some subgraph 6 of @ , then assumption AS' can be used in

place of A5:

A5': (Expectations-sensitivity in equilibrium): Let Q be a closed invar-

iant subgraph of Q . Suppose for all

(E,a] = ((gt)tezl (Eta’ atb) tEZJ € 6 ’

agl 36(1}
rank —51__ _ =ranke— =2,
bla,.qyp 21,9y

The expectations-sensitivity of every generation t , at any equilib-
rium, follows from the expectations sensitivity of generation 1, at any
equilibrium, on account of the shift invariance of Q (or §).

Q may, for example, be the set of monetaryless equilibria (E, q)
where EQa'E;(aéa’ aib) = 0 for all t . Alternatively, if A consists

of a single generation, then we may take 4 to be the steady state equilibria

2 At t+1

t ~t
Let E = (& JtEZ , and let TIE = (g )th , where £ = ¢ , for all
EE€E . Similarly let TZ((qt)tEZJ = (at)tez ,
all g€ P, Then T(E,q} = (TlE, Tzq} . Evidently T2q is an equilibrium

where q, = q.,, , for

for T,E if and only if q is an equilibrium for E . The same could not

be said for T2p , for pe€en, since (T2p)01 = p,; may not equal 1,
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(E,q , ﬁ£ =q; for all t . This is the model studied in Kehoe-Levine
[16]. In general, the smaller is Q , the more likely is assumption AS'
to be satisfied. For the steady-state case, nearly any choice of A will
satisfy AS', if we take ﬁ to be the steady-state equilibria.

The most important consequence of assumption A5' is that, together with
the implicit function theorem, it implies that for any (E,q) € §@ and for
all t €Z , there is an open ball A, around (Eia, E;b) € 2 and a twice

A22,-1 o p2i-1

differentiable function Ft A c A such that if

t
Ft(qa, qb) = (qé, qé) » then there is 1 > 0 with qé =X q, and

t t+1 _ - e = - .
ﬁo(qa, 9) + Ey (q;, q) =0 and Ft(qta, Q) = Qa0 qt+lb) . Similarly,

t
ag
from the hypothesis that along any equilibrium path, 359 _ is in-
819%a-%p
vertible, we can show the existence of a twice differentiable function

6, t Aep © j28-1 4201

satisfying Eé(Gt(qa, qQ)) + €;+1(qa. qb) =0
and Gy (q,, ap) = Aq, for some A >0, and G (q ., Aggp) = (Apys Q) -
Clearly for (q,, qy) near (q,,, Q) » G *Fla,, q) = (a, @) .

For any economy E and equilibrium g € D , the equilibria near q
are given by sequences of the form {"'G-I'GO(Q)’ Go(q), q, Fl(q), Fz-Fl(q)...
where q = (q,, q) is near (Hba, aOb) . It is thus the iterated maps
Fo and Gt that we must study.

Notice that Pt(qa, qb) gives the prices at time t+2 which, if ex-
pected at time t+l1 , will allow prices q, at time t and q, at time
t+l to clear the peried t+]1 markets, Since in a perfect foresight equi-
librium these expectations must be realized, we call the (Ft)tEZ the per-
fect foresight {expectations) functions. Similarly we call (Gt)tEZ the
perfect hindsight functions,

Observe finally that since Ft has a local inverse Gt s, each of the

= (DF.l— — ) is invertible.

(22-1) x(24-1) matrices
b 9209 tex

(L) ek
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3. Dynamical Systems: Regularity and Nondegeneracy

Consider now an abstract dynamical system. Let A be an open ball in

k

Rk around the origin Q0 € R™ , and let (F be a sequence of dif-

t) emctem

ferentiable maps (with differentiable inverses) from A into Rk that map

0 into itself. One may think of Ft(q) as the prices that must be expected

to occur at time t+l1 in order for agents to act in such a way that the

prices q clear the market at time t , (When prices are expected to be

"normal at time t+1 , Qeap = 0 , they will be "normal” at time t ,

qy = 0 .) What can be said about the set of solutions

S = {(qt)__tez|qt € A, q.,, = F (q,) for all t} or

sF = {(qt)t31|qt €A, q.,, = F.(q) for all t > 1} 7 The difficulty, of

course, is ;hat for q € A, there is no guarantee that, say, szq) €A,

since the range of P2 is not confined to A . No matter how close q is

to 0, there may be some large enough t such that Fo o van e Fl(q) g A .
One hopes that the derivatives (DFt|0)tez can provide some informa-

tion. For example, if ||DF {|; <y <1 forall t ;1 (and if D2

Ft is
uniformly bounded in t ), then one can prove that for any q near enough

to 0, Qe = F_ooe suu s Pl(q) € A; 1in fact, q, converges geometrically

t
to 0 as t » o ., In this "contracting case, locally st has dimension
k . Unfortunately it is very rare that every DPt is completely contract-
ing: some DFt may be contracting in some directions, and expanding in
others. These DFt may fit together in strange ways. In particular, the
matrices may not commute, and what DFt contracts, DFt+1 may then expand.
The central conclusion of Pesin and Ruelle is that the bhehavior of the
dynamical system depends on a geometric average of the derivatives

L, = DFtIO ,provided it exists,

t



Definition: Let (Lt)tez be a sequence of invertible k xk matrices.

*
write LY =L Lt-l .. -L1 for t>1, and LY for Lt transpose,

. . . ..n* pl/2n
We say the sequence is forward Lyapunov regular if (a) 1lim(L" <L) = A

T1-ree

t.

exists and if (b) there are s <k numbers 0 < Y1 <Yy T ees <y and

subspaces {0} = VeV eV, eV = R*  such that for any

. n .
z € Vi\vi-l . y(z) = lim /[Ln-Ln_1 ‘... -le[ =Y for i=1,...,s .

Tl

The numbers y; are the absolute values of the eigenvalues of A ., They

(or their logarithms) are usually called the Lyapunov exponents of

(L) ez
and (Vi; i=1, ...,8) is called the corresponding foliation of Rk .
Note that on account of the invertibility of the matrices, the Lyapunov

exponents vy, and their multiplicities (the dimensions of the V. less

Vi;l ) are independent of the starting point., If, for example, we took

n
lim ¥ .
II"n+l L

-...-L22| , we would get the same Y o and a corresponding
Tl

Il
foliation Vi = LiVi » i=1, ..., s, Forward Lyapunov regularity only
depends on the right tail of the (Lt)tez sequence, It is thus applicable
to a one-sided sequence (Lt)tgl .

In case k =1, the sequence of numbers is Lyapunov regular if and only

if the successive geometric means converge. Consider also the special case

where Li =L for all i, and L has k distinct real eigenvalues, which
are ordered 0 g [A,]| < ... < [A |, corresponding to the linearly indepen-

dent eigenvectors €15 wevs Ep Let Vl be the span of e

Vi = {xe A €RY 5 let Vi = {xe +...+xrje|A;, ..o, 2 €R} . Then it

is easy to see that if 1z € Vi\vi-l , then z = Alel e +,\iei where

Ay # 0 . Clearly, Lz = A?el e +Agei , and as n grows large,

n n
/1anl - Vﬂl?eil - Iki| . Thus we see that Lyapunov regularity demands



14

that it is possible to decompose Rk into generalized eigenspaces for the
product ...Ln 'f'Ll . The numbers Yys eevs Yg (or their logarithms) are
called the Lyapunov exponents of the product. When the matrices Li are
different, it seems almost incredible that Lyapunov regularity should ever
hold. That is the question which is discussed in Section 6.

For our purposes the most striking consequence of Lyapunov regularity
is the following theorem on nonlinear dynamical systems. Its proof, in
various different forms,can be extracted from Pesin [21] and Ruelle [23].

It has also been discussed in Katok [15].

k

Theorem A. Let A be an open ball arommd O in RY . Let (F be a

t)til

sequence of twice differentiable maps from A into Rk , taking 0 into

itself, that has uniformly bounded second derivatives, [[DZF | <J for

tlq
all t>1, q€A . Suppose furthermore that the sequence of derivatives
. . . ,
(DFt|0)t;1 is forward Lyapunov regular, with foliation ‘1’ cany Vs . Let
d be the dimension of Vi , the subspace corresponding to the largest
Lyapunov exponent \f less than one, and let vy satisfy Y4 <y <1,
Then there are numbers 4 > § > 0 such that S$ = {q € Aliq] <3¢ and
IFt'Ft-l * e -Fl(QJ| < AYt for all t > 1} is a manifold of dimension 4 ,

tangent at 0O to Vi .

The theorem states that if the linear approximation (DFt|0) of

t>1
the dynamical system has a (linear)} 'stable manifold” Vi of dime;sion d
around 0O , then so does the nonlinear dynamical system (Ft)t>1 . The

theorem is a generalization of the fundamental stable manifold ;heorem for
dynamical systems for the case when F, = F for all t > 1., In the time-

homogeneous ¢ase it is possible to derive a stronger result when DF|0 has

no eigenvalues of modulus 1. Then we can replace Si by
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st - {q € Al|g-q] < & and IPtq-EI < 8} . The condition that no Lyapunov
exponent be 1 is sufficiently important to be called hyperbolicity or

nondegeneracy.
Definition. Let (Lt) be a sequence of kxk matrices. We say the

sequence is nondegenerate (or hyperbolic) if there is no vector 1z € Rk

t;l

. n
such that lim “V[L <L, e...-Ljz[ = 1.

T
In addition to forward Lyapunov regularity, one can also define back-

ward Lyapunov regularity and their combination, regularity.

Definition. Let (L) be a sequence of invertible kxk matrices.

T teZ
We say the sequence is backward Lyapunov regular if the sequence
- -1 . -
(Mt t51 = (L_t)t21 is forward Lyapunov regular. If (Lt)tez is both for-

ward Lyapunov regular, with Lyapunov exponent function +y(z) , and backward
Lyapunov regular, with exponent function £(z) , and if there are k

linearly independent vectors Zys eees Z such that y(zj) = I/B(Zj) ,

k
j =1, ..., kK, then it is regular,
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4, Local Indeterminacy and Comparative Statics

Let A and § satisfy assumptions Al-A4 and AS'. Let (E,q) be an
equilibrium in a . We know that associated toc each such equilibrium there
is a uniquely given sequence of (22-1) x(22-1) , invertible matrices

(Lt)tEZ . We can thus give:

Definition. The equilibrium (E,q) is regular iff (1) the associated se-
quence of 22-1 x22-1 matrices (Lt)tEZ is regular in the sense of Lyapunov

and (2) letting g, = Ia&-lbl/latal , lim ann ... g, exists and equals
e

-1
lim(an_n ...g_l) - Furthermore, we say that (E,q) 1is a nondegenerate

T

equilibrium iff no Lyapunov exponent of the associated (Lt)tEZ is equal

to one,

Condition (1) refers to the regularity discussed in Section 3, and con-
dition (2) posits that there is a well-defined long run average rate of

growth of the prices, If we had chosen the other price normalization (E,p) ,

ﬁbl =1, pE€TN (for the same equilibrium), then condition (2) implies
-1
that 1im tf]ﬁi” = lim(tdnﬁ;tn) , and is equal to the limit in condi-
t- Lo
tion (2).

It can be shown without much trouble (see Balasko-Shell [4]) that if
g <1, then the regular equilibrium (E,q) is forward Pareto optimal:
there is no reallocation of the commodities from period 1 onwards that
improves one individual's utility without harming another's, On the other
hand, if g > 1 , then the equilibrium is not forward Pareto optimal, In
Propositions 1 and 2 we concentrate exclusively on the question of local
uniqueness vs, local indeterminacy. In Proposition 3 we turn to the con-
nection between indeterminacy and forward Pareto suboptimality in a special

context,



Given an economy E = (Et)tEZ , we define a perturbation as an economy
E = (ét)teZ in which Et = gt for all but a finite number of t ., The

size of the perturbation is given by Max[[ét- gtH , where we use the ¢
t

norm. A perturbation £ of E is of size zero iff E=E. Itis some-
times useful to think of a perturbation not only as an experiment in compar-
ative statics, but possibly as a perfectly anticipated policy change, A
rational expectations equilibrium {qt)tEZ for E may differ at all t
from any equilibrium path (a£)tEZ of E, even though £b < B uneil

t=1.

Proposition 1. Let (E,q) € Q be a regular, nondegenerate equilibrium,

Y

where Q satisfies Al-A5'. Then every sufficiently small perturbation E
of E, including E itself, has a locally unique equilibrium near g .
More precisely, for any such perturbation E and any vy < 1 sufficiently
big, there are numbers 6 > 0, A > 68 , A' > & such that the set

_ - = t
S§.a,81 = {ag) ez € D]lql -q1| < & and [qt qt' < gy  for all t > 2 and

|qt -ﬁ;[ < A'y't for all t < 0} contains exactly one equilibrium for E .

Proof. From the discussion in Section 2, we know that for each t > 1 there

is an open ball A, in 2°*"! centered around q. = (.., 9..) on which
)2 t t © ‘%ta’ Ytp

the perfect foresight function Ft is defined, and similarly for any

t < 0 there is an open ball At+1

around g on which the perfect hind-
qt+1 P

sight function Gt is defined. From the compactness and shift invariance

of d it follows that the balls A_ and A]

¢ te1] TAY be taken to be of the

same radius r > 0 , independent of t (and indeed of the equilibrium
(E,q) ). Furthermore, it must also be true that on each such A, (A;+1} .
D2Ft (DzGt) is uniformly bounded, again independent of t (or indeed the

equilibrium (E,q) ).
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We have now established that the hypotheses of Theorem A apply to

(Ft)tgl and to (Gt)

3, in ,28-1

>0 The first has a local stable manifold through

of dimension d , and the latter of dimension s . The

regularity of (E,q) implies that the tangent spaces to these stable mani-
folds are independent: the first is spanned by Zys eres Zg > ON each of

which the Lyapunov exponent of (F_)

ezl is less than one and the Lyapunov

exponent of (Gt)t<0 is its reciprocal, hence greater than 1 (see Section 3
for the definition of regularity). From the nondegeneracy hypothesis we
deduce that d+s = 28-1

manifolds span Rzl'l . In other words, the stable manifolds intersect

, and hence that the tangent spaces to the stable

transversally, hence locally at a single point (namely a& }J. Small per-
turbations will perturb the manifolds, but they will still intersect at a

unique point, in a neighborhood of g . Q.E.D.

The situation is quite different for unanticipated shocks or policy changes,
Let (E,q) be an equilibrium, in which generation 0 consumes and saves when
young with certain expectations in mind, namely that it will face prices
EOb when old. Suppose instead that at the beginning of period 1 its members
discover that the world is different from what they thought; they, and all
succeeding generations, maximize according to their new expectations. What
can be said about the size of the set of one-sided equilibria?

Let ggh(q, Ih) représent the net purchases individual h € H of gen-
eration 0 would make in his old age if he is surprised to find that the prices
turn out to be q , instead {perhaps) of the ﬁbb he expected when he

—h

purchased zy = Egh(aba’ abb) in his youth. Of course if he is not surprised,

— h -
q=4qp and I = Hh = 'qu'E? » then he will act according to plan:

Egh(abb, Eh} = Egh(EOa’ Ebb) . We assume, of course, that the aggregate

H
excess demands Eg(q, Il, ...,IH) = z Egh(q, Ih) and go(qa, qb) can be
h=1
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consistently derived from the maximizing behavior of the same H agents,
As before, we will identify policy changes with perturbations E of

the economy E {and later of Ih }. The idea that the shocks are

unanticipated is captured by the definition of one-sided equilibrium that

we will give. In order to simplify the statement of the next two proposi-

tions, we shall restrict our attention to neutral perturbations with respect

to (E,q) , 1i.e. we will assume that excess demands in E remain the same as

in E at the prices q . The set of possible perturbations of E still

deg de? |
allows for many changes in —— and ————=——- consistent with rationality
dq dlq_, q)

and neutrality.3 Propositions 2 and 3 are proved for "almost all" neutral

. 4
perturbations.

F

We call (u, qF) , DER, q = F

D =
t
equilibrium of (£, H', ..., ) with respect to (E,3) iff

A a one-sided

(qta,tb)tzl € 1

H.=t 8

- ot 2t+l _

(E1) §oldp,s ) * &y (Qppyqar Ypaqp) =0 forall t2 1

(E2) Ay = Atqt+la for some At >0 for all t > 1

B on shy 2l

(E3) hzlas (Q, #M) * 8 o(a),, ) =0 .

3 —h . ,Oh— - =0 : .

Let z, £ &, (qu, qOb) . Then dgs/dq _ ﬁh e must satisfy a restric-
LR |

tion for Walras Law, homogeneity, and be symmetric and negative definite

4
on [zé, ...,zg] . Otherwise it can be arbitrary.

*consider a finite dimensional submanifold of K of neutral perturbations

£ which allows for all changes in dsg/dq and dEl/d{qa, qb) evaluated at
the old equilibrium .aba s abb , ﬁh , etc., If we can show that for an
open and dense subset K' of all sufficiently small perturbations in K ,

a property holds, and if this is true for all such submanifolds K of the
space of all neutral perturbations, then we shall say that the property holds
for almost all neutral perturbations.



(El) and (E2) are as before. At time 1, the old maximize their utility
given the prices I and their real income uﬂh s+ h€H . We suppose
that the savings of the old is in the form of money ﬁh . We incorporate
the possibility of government monetary policy by allowing that
- _ — Oh — - .
Mh # ﬂh E -qoagy (qu, qOb) . We say that the monetary perturbation

~]1 p}-[ R B . ~ ~~h ...]_h
(M", ...,M) 1is neutral if there is some scalar u such that uM =¥
for all h € H . We need the scalar u in (E3) because we renormalize

prices every period, and the real value of individual savings depends on the

absolute level of prices. Note that if the real and monetary perturbations

are both neutral, then (qta, qtb)tzl = (qta’ qtb)tzl and
— —h - =
o= ———vTT:HT is a one-sided equilibrium for (E, M7, ...,LF) with respect
lay, | 1M
1b

to (E,q) . We define the size of the perturbation to be
Max(||E-E|, (' -F); hen) .
Finally, let us note that by not requiring any connection between abb
and q;_  , we are considering unanticipated shocks or policy changes at time 1.
Let us begin with the'simplest case, in which (E,q) has no individual
h _ +h

savings at time 0, and there is no monetary intervention: M =M =0 for

all h€H,

Proposition 2. Let (E,q) bea (forward) regular equilibrium, where (4,8 satisfy

Al-A5', in which there is no individual saving at time 0. Then there is an
integer r , 0 gr <1, such that for almost all sufficiently small,
neutral perturbations E with respect to (E,q) , the set of all one-sided
locally stable equilibria of E with respect to (E,q) is a manifold of
dimension r . More precisely, for almest any such neutral perturbation

E , and any vy <1 sufficiently large, there are numbers A > § > 0 such

F

- — t
that SG,A = {(qt)t:1|]q1 -qll < & and Iqt-qt| < &y for all t > 2}

HY

contains exactly an r dimensional manifold of one-sided equilibria qF .
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Proof. As in Proposition 1, consider the forward local stable manifold Sf

. 24-1 —
of (Ft)tgl in A through q where the (Ft)tgl are the perfect

foresight connecting functions for E at gq . Sf has dimension d

0 < d < 28-1 .

. a 22-1 - =
Consider the set S1 of (qla’ qlb) € A near q, that solve (E3).

248-1

For almost all perturbations E this is a manifold in & through ﬁl

~

of dimension #-1 , Furthermore, for almost all perturbations E , §1

-~

F . . . . .
and S1 are transverse: they intersect in a manifold of dimension

Max(0, (&-1) +d - (22-1)) = Max{(0, d-2) . If d-g £ 0, the intersection
is at the single point 'Hl , and so Sg contains a unique equilibrium 7q .

s A
Q.E.D.

In the more general case, neutral unanticipated policy may give rise

to a still larger indeterminacy.

Proposition 2', Let (E,q) EQ bea (forward) regular equilibrium, where (A,Q)

satisfy Al-A5'. Then there is an integer r , 0 s r <% such that for
almost all sufficiently small, neutral (monetary) perturbations

(ﬁ, ﬁl, ...,ﬂ“) with respect to (E,q) , the set of one-sided locally
stable equilibria of (ﬁ, M R ...,ﬁ#) with respect to (E,q) is a manifold

of dimension r .

The proof is similar to Proposition 2; we do not give it. One simply
takes into account the extra parameter u to get the possibility of an extra
dimension; v = iMax[0, d+1-2] , where d 4is the dimension of the forward
stable manifold of (E,q) .

If we had allowed for nonneutral perturbations, the set of one-sided
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equilibria might have been empty (when ds+1 < ¢ ).5 Propositions 2 and 2!
are generalizations of results derived by Kehoe-levine [16] for the case
when all generations are identical for t > 1.

The striking difference between Proposition 2 (2'), and Proposition 1,
or the analogous finite horizon case, is the possibility of indeterminacy,
perhaps of high dimension, when policy is unanticipated, We shall now present
one (historically, at least) important class of economies for which the
dimension T in Proposition 2' can be taken to be at least one,

Recall that when Samuelson [24] first proposed the consumption loan
model, he suggested that it explained how an economy might be in a situation
where there was no double coincidence of wants, hence no possibility for

trade, without the introduction of the '"social contrivance of money."

Proposition 3. Let (E,p) « (E,q) € ﬁ be a regular equilibrium, where

(A,a] satisfy A1-A5', Suppose in addition that (E,q) 1is nondegenerate,

. . . - . .. n
and autarkic, and that the unnormalized prices p satisfy lim M[pn > 1,
Then the dimension 1r of the locally stable solutions to almost any neutral

{monetary) perturbation can be taken to be at least 1,

Proof. Recall from Proposition 2' that r = Max(0, d+l-g) , so it suffices
to show that d 2L, where d is the dimension of the forward stable

manifold. Note that since (E,q) is nondegenerate and regular, there is

a backward stable manifold S§1 at time -1 of dimension s = (22-1) - d .

It suffices to show that s < g-1 .

5The analysis would also have been more complicated. It would have been
necessary to extend the definition of regularity of (E,q) to include the

fact that Sf and S1 intersect transversally.



Let us apply Proposition 2' in the backward direction. In other words,

-1 . . . . -
let E be the economy where time runs in the reverse direction, and q 1

the corresponding equilibrium. We know from Proposition 2' that for almost
any neutral monetary perturbation of (E_l,'ﬁ-l) , there is a locally

stable manifold of one-sided equilibria of dimension Max(0, s+1-2) . Suppose
s > 2 . Then this manifold has dimension at least one. In particular it

contains one-sided equilibria distinct from a'-l. But since (E_l,'ﬁ-l)

is autarkic, any such different equilibrium must Pareto dominate (E-l, a-l)

in the forward direction. But in the forward direction of (E-l, ale s

the unnormalized prices grow at a rate lim fy P_n less than one, Hence
Ti00

in this direction (E,g) is Pareto optimal. Thus we must have s < g-1 ,

and the theorem is proved. Q.E.D,

Corollary 1. If an equilibrium (E,3) € Q is regular and both forward and

backward Pareto optimal, then it is degenerate.
Proof. If not, either d > 42 or s > 2. Q.E.D,

Other versions of Proposition 3 have appeared in Geanakoplos-Brown [11],
and Muller-Woodford [19].
Let us finally note, following an observation by Kehoe, Levine, and

Mas-Colell,6 that if at the equilibrium g of E all the excess demands

t
BEL

satisfy the gross-substitutes conditions >0 1if 1 <1 #j < 2r,

Ay
tila,
then the dimension 1 of local indeterminacy determined in Proposition 2

must be zero. For if q 1is another equilibrium of a neutral perturbation

6.
Private correspondence.



E of E that is sufficiently near t , then it follows immediately from

. 91 Qev1i .
gross substitutes that Max < Max - hence it is impos-
I<iz2z 7ti 1<i<22  “t+li

sible that q. -q converges geometrically to zero.
A -9 g g )



5, An Illustrative Example

We can illustrate Propositions 1-3 in a concrete example in which every
generation t from -= to « consists of a single consumer with endow-
ment (wt, 1 -wt) for the single good in each period of his two period life,

and utility

t
u (xt, X a, log X, * {1 -at)log X

t+1) = % t+1 "

As long as 0 < LA 1 and 0 < a, <1, the excess demand for commodities
by generaticn (ut, wt) satisfies the sensitivity conditions Bgt/apt+1 £ 0
# agt+1/apt at any (pt, Pt+l) >> 0, If we randomly choose each genera-
tion (at, wt) from the rectangle [a,b] x [c,d] , with
0<a, b, c,d<1, then there typically will be no intergenerational
homogeneity, no steady states, and no déterministic cycles, It is precisely
this kind of setting to which our analysis is designed to apply.

Consider first, however, the simple steady-state case where the rec-
tangle {a,b] x [c,d] reduces to a single point and for all t

3

By = o<W =W, Let us normalize prices, as we have throughout this

analysis, by setting r, = pt+1/pt . Let Q be the set of steady state
equilibria; there are two of these, one with r, = 1 for all t , and

in the other, autarkic steady state equilibrium, r, =t = ¥ 1o | for

t a 1-w

all t . Each of these steady-state equilibria is locally unique: for
any perfectly anticipated change in the behavior of the generations alive

at time 1, there is a unique path r_ such that T, geometrically

t

approaches r =1 (or r=1) as t approaches = or =-o , Thus
Proposition 1 is confirmed for (E,q} € Q . Both these equilibria are
regular {and nondegenerate) in the sense that around each equilibrium the

(DFtl?Er or 1)tEz has a forward and a (reciprocal) backward Lvapunov
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exponent (different from one; in both equilibrium they are 1/ and T ,
respectively).

Proposition 2 asserts that the maximal dimension of one-sided indeter-
minacy around a regular equilibrium with no personal saving, such as the
autarkic equilibrium T , is -1 = 0 . Allowing for monetary policy,
or more generally a regular equilibrium with personal saving, expands the
maximal one-sided indeterminacy to & = 1 dimension, according to Proposi-
tion 2'. And indeed it can be confirmed (just as Proposition 3 predicts)
that around the autarkic equilibrium T , a "neutral” gift of money from
the government to the old at time 0 will produce a continuum of possible
locally stable one-sided equilibria,

In addition to the two steady equilibria, there are a continuum of
other equilibria which satisfy the property that r, > r as t -« and
r, *1 as t = -= ., All of these equilibria are forward Lyapunov regular
(and backward Lyapunov regular), so Proposition 2' applies to them: there
is a one-dimensional one-sided indeterminacy in unanticipated policy. On
the othér hand, none of these equilibria is regular, since the forward and
backward Lyapunov exponents are not reciprocals. As a result, none of
them is locally unique. This illustrates the important point that we cannot
in general expect all equilibria of nice economies to be regular, (In this
example there is a forward and a backward "sink" which assures us that
every shift-invariant measure ) on Q 1is concentrated on the steady state
equilibria; in Section 6 it will become clear why this in turn might limit
the class of regular equilibria for this example to steady states.)

Let us return now to the more general example where the rectangle
[a,b] x [c,d] has positive area, a <b , ¢ <d . The domain of Q is

now not a point but an infinite dimensional space. Still Propositions 1-3



apply to regular equilibria. But how can be we sure there are any? Since
there is only one consumer and one commodity per period, for any choice

(at, wt)tEZ , there must again be an autarkic equilibrium (rt)tEZ . One
can calculate the derivative of the perfect foresight connecting functions

dF, a2(1-up)? o _
(Ft)tez > E?;-— i eETRI 1(1"wt+i7-' From the pointwise ergodic

rt Tt t+

theorem, one can show that for p-almost all choices of economies (at, wt)tEZ ,

the autarkic equilibrium ('i"t)tEz is regular. When there are several com-
modities per period, direct calculation will usually not demonstrate the
existence of regular equilibria, Nevertheless, in Section 6 we will derive

their existence from the multiplicative ergodic theorem,

The above calculation allows us to illustrate one more important point:

it is evident that for some measures u on [a,b] x [c,d] , the
dFt
geometric mean of I - is 1. To eliminate nondegeneracy, one
tr
t/t>1

may have to perturb the parameter space A or the measure. The classic
case of degeneracy we have identified in Corollary 1: a Pareto optimal,
autarkic equilibrium. Thus in the special steady state example when

a, =a = b=c=4d-= W, for all t , Q contains a unique equilibrium,
which is Parete optimal and autarkic, and degenerate, The slightest per-

turbationof a2, b, ¢ or d removes this problem,



6, Regularity with Probability One

Needless to say, the utility of Propositions 1-3 depends crucially on
how 'likely" it is that Lyapunov regularity holds at a particular equilib-
rium., If it is unlikely, then Propositions 1-3 do not really permit us to
analyze any economies except the steady state economies, where every gener-
ation is the same for all t . In fact, although regularity seems improbable,
once we give the proper interpretation to likely, we shall show it almost
always obtains,

It would be nice to show (as Debreu did in 1970 for regular finite
economies) that for almost any econcmy, all of its equilibria are regular.
But as the example in Section 5 shows, this is impossible, Instead we
shall demonstrate that for almost all economies, almost all of their equi-
libria satisfy the Lyapunov regularity property. This will be deduced from
the famous multiplicative ergodic theorem.

Thus we shall assign our probability measure X directly to the equi-

librium graph ¢ (or 6 , if we are interested only in a subgraph). Recall

that Q< E x D, where £ = T A is the space of economies. Perhaps

-0

there is a natural Borel measure | on E . For example, if n is a Borel

[--]

measure on the compact set A , then we might take u = T u ., In this

-

case our notion of a random economy corresponds to an independent drawing

of the generations characteristics, governed by the measure u . If there
is a natural measure p  on E , then we shall require that the marginal

distribution of A on E be equal to 1 . In keeping with our point of

view that the labelling of calendar time is not in itself significant, we

suppose that L 1is stationary, or shift invariant. In other words, if

T, s B E is the one shift operator on E defined by



Tl((it)tez) = (ét)tez with Et = £t+1 , and if F 1is any measurable sub-

set of E , then we must have E(TII(F)) w(F) . Of course if 7 is the

]

aa

product measure p§ = II p

-

, then it is indeed shift invariant. We shall

also concentrate on measures X on Q (or a ) which are shift invariant:
for any measurable Ge< Q , A(T-I{G)) = x(G) , where T 1is the shift
operator on E x U introduced in Section 2.

We are now in a position to invoke the multiplicative ergodic theorem
to demonstrate that with A probability one, all equilibria are regular.
The multiplicative ergodic theorem is an extraordinary generalization of
the pointwise ergodic theorem, itself a great leap up from the strong law
of large numbers. The theorem was first proved by Osledecs, and can be
derived from Kingman's subadditive ergodic theorem. Let us state it with

the notation most suggestive for our purposes:

Multiplicative Ergodic Theorem, Let (Q,)) be a probability space and let

T : Q+Q be a transformation which preserves the measure X
A(T_I(G)) = a(G) for all measurable G« Q. Let L : Q- M map each
X in Q into an invertible k xk matrix and suppose

j Max [0, 10g(|IL'1(X)“]dA <® , Then (Lt)tez » L= L(rt{x)) is regular
Q

in the sense of Lyapunov.

We now use this theorem to prove that equilibria are regular with

probability one.

Proposition 4. Let (A,Q) satisfy assumptions Al-A5', Let A be any

shift-invariant probability measure on the equilibrium subgraph é . Then

with A-probability one each equilibrium is regular.



Proof. We must show first that for i-almost all equilibria (E,q) in Q,

the matrices (Lt)tez are regular, where Lt = DFt 5£a’5}b and Ft is

the perfect foresight function associated with the equilibrium (E,q) at
time t , as explained in Section 2.

Let L : be defined by L{(E,q) = . Then

Q-+ M, _ DF, |- —
28~1x%20-1 l|qla’q1b

it is easy to sce that L, = L(E,q) , and L, = L(T(E,q)) , and similarly

2
for all t , Lt = L(Tt(E,_)) . By hypothesis, X is shift-invariant, i.e.

T preserves the measure X . Moreover, since DFl il is invertible, and
1

since L is a continuous function on the compact set Q , it follows

that J Max[0, log[|L-1(E,Eﬂ[IdA < w , Applying the multiplicative ergodic
Q

theorem we conclude that (Lt)tEZ is a regular sequence of matrices.

Secondly, we must show that 1lim n/]alb]/\ﬁéal ...Tﬁhb}/]ﬁh+lé] exists

o0

. X = — — — ~1
and is equal to llm(nVThoa]/lq_lbl e 1q_p /1@ 1) 7, for A-almost
N~ ~

~

all equilibria (E,q) in Q . To this end let L : Q =M _. be defined

1x1
by L(E,q = |aib|/!aéa| . Another application of the multiplicative ergodic

theorem concludes the proof. Q.E.D.

Corollary 2. Let (A,Q) satisfy assumptions AI-AS', and let u be a sta-
tionary Borel probability measure on the space of economies E . Then there
is a probability measure 2 on Q< E x P, with marginal distribution u
on E , such that for p-almost all E € E , the conditional measure AE
on the equilibria of E 1is well-defined. Moreover, for u-almost all ecomno-
mies E in E , AE-almost all of their equilibria are regular. In particular,

u-almost all economies E in E have at least one regular equilibrium

(E, €Q .



Proof. Any Borel measure X on the compact graph a can be ''disintegrated"

into a marginal measure on E , and conditional measures Ap s SEC [7].

Thus in view of Proposition 4, it suffices to show that there is a shift-

invariant measure X on Q , with marginal distribution T on E .

~

We know, since @ 1is a closed graph, that there is some Borel measur-
able selection f from ﬁ . Let T be its graph: T = {(E, f(E))} where

E takes on all values in E . We can put a probability measure AO on

~

Q by setting, for any Borel measurable G < Q ,

(G = w{E|(E, £(E)) € G} . This clearly has marginal distribution » on

»~

E . Now, given the probability measure g on Q, we can define probabil-
ity measures A on a by 1,(0) = AO(T-I(GJ) and similarly

At(G) = At_l(T‘l(G)) for all t > 1, and measurable Gc Q . Notice that
if u  is statlonary, then all thése measures At on Q retain the same

1
t+l s

t
marginal distribution % on E . Finally, letting i; = ) Ay we get
=0

a countable collection of measures X£ on the compact set Q , which by
Prokhorov's theorem must have a limit measure X (for some subsequence).

It is easy to see that A must be shift invariant and have marginal distri-

bution p on E . Q.E.D.

Observe that Corollary 2 cannot be strengthened in any obvious way,
for if 6 is a shift invariant closed subgraph of Q then it is possible
that every shift invariant probability X on Q with marginal distribution
w on E is concentrated on 6 . Our example in Section 6 makes this clear,
One can also use the multiplicative ergodic theorem to show that in the

. ey . . . s 6
class of autarkic equilibria, regularity still occurs with probability one.

6Let A* be a collection of generation utility functions., Let B be a

[==] =+

collection of generation endowments. Let Q*< I A* x T B be the set

-0 -
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Having shown that regularity occurs with A-probability one, it might
be conjectured that the same is true for nondegeneracy. Indeed, given any
degenerate equilibrium, it can be perturbed away. If A is rich enough,
then nondegeneracy is an open and dense condit&on in Q (with respect to
the 2_  topology). However, as the example in Section 6 makes clear, such
a conjecture is false, Nondegeneracy requires a long run average to be dif-
ferent from 1. The real numbers distributed between 0 and 2 form a rich
set, but with the uniform probability their average is 1. To prove nonde-
generacy is a probability one event, one would need to choose the measure
1 , instead of taking it as arbitrary, as we did for regularity. We have

not pursued this problem in this paper.

of all utility and endowment assignments which are also (autarkic) competi-
tive equilibrium. Then Q* is a compact, shift-invariant, graph on

E*» = 1 A* , given assumptions on A* analogous to Al-AS., One can prove,
-

in exactly analogous fashion to Proposition 4, that a typical autarkic

equilibrium in Q* is regular,
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