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0. ABSTRACT

This paper studies the statistical properties of vector autoregressions
(VAR's) for quite general multiple time series which are integrated of order
dne. Functional central 1imit theoroems are given for multivariate partial
sums of weakly dependent innovations and these are applied to yield first
order asymptotics in nonstationary VAR's. Characteristic and cumulant func- -
tionals for generalized random processes are introduced as a means of develop-
ing a refinement of centrél limit theory on function spaces. The theory is
used to find asymptotic expansions of the regression coefficients in non-
stationary VAR's under very general conditions. The results are specified
to the scalar case and are related to other recent work by the author in

[17] and [19].
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1. INTRODUCTION

Econometric modeling techniques based on VAR's have attracted a good
deal of interest in recent years. The research in this field is largely
inspired by the work of Sims [21] and has been recently reviewed and dis-
cussed in [4]. Almost all of this research has been empirical. Much of
the most recent work in the field has been motivated by issues of economic
policy as in [4] and by problems of prediction as in [12].

Against the background of this applied work, there has been a rather
noticeable absence of analytical research on the statistical properties
of regressions of this type., This is unfortunate. For, there appears to
be no general statistical theory of estimation and inference in models of
nonstationary time series. Moreover, while empirical investigators
recognize that many of the time series that are used in their regressions
actually display nonstationa:y behavior, they have been forced out of
necessity to rely on traditional methods of inference for stationary time

series in interpreting the results of these regressions,

The present paper draws much of its motivation from the needs expressed
in the last paragraph. Our concern will focus on the statistical properties
of the estimated regression coefficients in VAR's. More specifically, we
shall provide an extension to the multivariate case of the theory developed
by the author in other recent work [17] for scalar autoregressions with a
unit root. As in [17], the conditions we impose on the time series are
quite weak and allow for a wide class of weakly dependent and heterogeneously
distributed processes,

A major aim of the paper is to study higher order asymptotic properties
of regression coefficients in models of nonstationary time series. The

methods we develop for this analysis involve characteristic and cumulant



functionals for generalized random processes. Characteristic functionals
were developed by Bochner [3], Prohorov [20] and others to assist in the
study of Banach valued random variables, The first order asymptotics we
develop here and in related work [17, 19] rely on central limit theory on
Banach spaces (functional central limit theory). The first step in the
development of higher order asymptotics, therefore, involves a refinement
of this functional central limit theory. In the second step, the refine-
ments are extended to apply to certain functionals of the Banach valued
random variables. The resulting asymptotic expansions help in analyzing
the adequacy of asymptotic theory for nonstationary VAR's,

The plan of the paper is as follows. Section 2 develops a multivariate
functional central limit theory for partial sums of p-mixing innovations.
This theory is related to an altefnative multivariate result for ¢- and
a-mixing processes which is proved in [19]. Characteristic and cumulant
functionals are studied in Section 3 and used to establish a refinement of
the functional central limit theory of Section 2, This theory is applied
in Section 4 to develop an asymptotic expansions of the distribution of
the regression coefficients in a first order nonstationary VAR. Some con-
clusions and extensions are given in Section 5. Proofs of results presented
in the body of the paper are provided in the mathematical appendix.

2, MULTIVARIATE FUNCTIONAL CENTRAL LIMIT THEQREMS

o«
Let {ut}1 be a sequence of random n-vectors on a probability space

(2,8,P) with
2 .

(L) Eu) =0, E(uj) <=; (i=1,...,0), (t=1, 2, ...) .

t

L. .U,
i=17;

Mt = E(StS£) . It will be convenient although not essential to require

We introduce the vector of partial sums St = (S0 = 0) and set



that the limit

(2) L= lim, T

exist and be positive definite. More generally, we may allow MT to have
the representation MT = TH(T) , where H(T) is a positive definite and
slowly varying matrix function of T, so that lim.  H(kTH(T)™' =1
for any positive integer k . In the univariate case the latter represen-
tation is a necessary condition for the validity of the functional central
limit theorem [7, p. 98]. However, to work at this level of generality

here would inhibit some of the applications intended for the present paper

and we shall therefore employ the stronger requirement (2) in what follows,

We introduce the random element

-1/2,-1/2 ~1/2_-1/2

T z

(3a) X {t) =T S{th = sj_l 3 ((3-1)/T<t<j/T , j =1,...,T?

(3b) Xg(1) = T-1/22_1/28T

where [a] denotes the integer part of a. XT(t) lies in the product metric
space " = D[0,1] x ... x D[0,1] where D[0,1] is the space of all real
valued functions on the interval [0,1] that are right continuous and have

finite left limits. We endow Dn with the metric

(4) d (f,8) = maxi{do(fi, g) +i=1, .0,m; fi, g; € Dp{o,1]}

where do( , } 1is the modified Skorohod metric (see [2, p. 112]) under
which D{0,1] 1is separable and complete.
As in [17] and [19] we want to allow for both temporal dependence and

heterogeneity in the process { }T . As a measure of dependence we shall

u
T

use the maximal correlation coefficient G which we define by:



. ' t 0
(5) oL = suptsupgmmaxi,j{1E(Einj)I P (g) €L, n= () €L

E(ED) = 1, E(n?) = 1)

where Li denotes the subspace generated by the variables {ut, r<t<s}.,

}CO

Sequences { 1

u, for which Pn + 0 as m+t+ e~ are said to be p-mixing.
Such sequences were introduced for scalar processes by Kolmogorov and
Rozanov [11]. The mixing condition °n + 0 has the simple interpretation
that menbers of the sequence {ut} which are separated by at least n
time periods have correlation which tends to zero as m + » . The condi-
tion is easy to verify for many commonly occurring time series models.,
Thus, stationary ARMA processes have correlation sequences which are known
td decay exponentially and are therefore p-mixing. Moreover, under weak

moment conditions such as sup, E|ut|2+6

<= for some § > 0 , sequences
which are étrong (or, a-) mixing (and a fortiori ¢ or y-mixing) are also
p-mixing [10, p. 307]. In addition, simple processes such as the stable
AR(1) driven by Bernoulli innovations that are known to be not strong mix-
ing [1] are, in fact, p-mixing. The class of processes included by this
condition is, therefore, rather wide.

One reason for the popularity of other measures of weak dependence,
such as strong and ¢-mixing, in recent econometric work (see, for example,
[17], [22], [23]) is that these conditions and also the mixing decay rates
continue to apply to measurable functions of the mixing processes [22, p. 47].
The same result does not apﬁly to p-mixing processes. However, in many
of the applications of the theory that we develop here, the functions of
interest turn out to be functionals of the partial sums of sequences of
primitive innovations which we may quite reasonably require to be p-mixing.

In such situations, the p-mixing condition is usually sufficient to determine



the limiting distribution of the functional. Moreover, as we see below,
no additional condition is required on the mixing decay rate, in contrast
to the limit theory based on a- or ¢-mixing processes in [17] and [19].

The main result of this section is:

THEOREM 2.1. Let {ut}T be a p-mixing sequence of random n-vectors satis-
fying conditions (1) and (2). If
a. sup{T lE(S $,) 1 k>0, T>1} <

°
3

k+T "Sk)'(sk+T‘-
b. there exist b >0 and ¢ € (0, b/2) such that

), d=1,...,n)

then XT[t) = W(t) as T+« where W(t) <s a vector Wiener process.

We use the symbol = to signify the weak convergence of the associated
probability measﬁres [2]. Each element of the limit process W(t) is a
univariate Wiener process, the elements of W(t)} are independent and the
sample paths of W(t) 1lie almost surely in the function space
c? = C[0,1] x ... x C[0,1] , the product space Sf n  copies of C[0,1]
(the space of all real valued continuous functions on the interval [0,1] ).

Theorem 2.1 is a multivariate generalization of a functional central
limit theorem for p-mixing scalar sequences established recently by
Herrndorf [8], It provides an alternative to the closely related multi-
variate limit theorem presented recently in [19]. The latter theorem may
also be relied upon in our theoretical development and is especially useful
in cases where there are other reasons {such as those giveﬁ above} for
employing a- or @-mixing conditions. For convenience, we shall state the
result here, using an and ¢, to represent the (a- and -, respectively)

mixing coefficients which measure the dependence between events separated



by m time periods,

THEQOREM 2,2, If {ut}T 18 a sequence of random n-vectors satisfying (1),
(2) and

(a) {uit} is wniformly integrable for all i =1, ..., n ;

(b) supt(E[uit|B) <o forsome 2<B<w agndall i=1, ..., n ;

(&) BT (Syp =80 (Sy,p =S '} + T a5 min(k,T) 4 = ;

k+T
(d} either o is of size -B/(28-2) or B > 2 and o i8 of 8ize
-8(B-2)

then XT(t} = W(t) , a vecetor Wiener process, as T + = ,

The conditions of Theorem 2.1 are generally weaker than those of
Theorem 2.2, In particular, the requirement that {ut}T be p-mixing elim-
inates the need for the mixing decay rate condition (d) of Theorem 2.2.
Moreover, the moment condition (b) of Theorem 2.2 ensures that the (- or
a-mixing processes are actually p-mixing [10, p. 307 and p. 309]. Finally,
in contrast to (b) of Theorem 2.2, the moment condition (c) of Theorem 2.1
allows for‘moderate growth in the higher moments of u,  as the process
evolves,

We shall also have occasion to use the random element:

(6a) ZT(t) = T-I/ZZ-I/ZS [Tt] + T-I/Z(Tt - [Tt])z_l/zu[Tt]_,.l
for (j-1)/T <t <j/T (G=1,...,T)
_ -1/2-1/2
(6b) 2p(1y = T %S,

Now ZT(t) € " » which we may endow with the uniform metric
n
d (£, = maxisupt|fi(t)-gi(t)| for f, g€ C .

Note that since W(t) € ¢ almost surely (with respect to Wiener



measure) we may, according to [2, p. 151], deduce from Theorem 2.1 that
XT(t} = W(t) where the weak convergence to multivariate Wiener measure
is interpreted in the sense of the umiform topology induced by the metric

du on D% . We also have:

THEOREM 2. 3. XT(t) = W(t) <ff ZT(t) = W(t) .

3. CHARACTERISTIC FUNCTIONALS AND REFINEMENTS OF

FUNCTIONAL CENTRAL LIMIT THEQRY

The multivariate limit process W(t) of Theorems 2.1 and 2.2 is a
Banach valued random variable. Its distribution is determined by the multi-
variate Wiener measure on (Cn, Cn) where C" (a Banach space) is the
support of Wit) (i.e. W(Cn) =1 where W( ) denotes Wiener measure)
and C" is the class of Borel sets on C" (i.e. the u-field generated by
the open subsets of C° with the uniform metric du }J. This distribution
is also uniquély determined by the characteristic functional of the gen-
eralized random process1 corresponding to W(t) .

We shall work with the characteristic functional rather than Wiener
measure because the characteristic functional provides a natural tool for
the refinement of central limit theorems on function spaces such as those
in Section 2. Our approach will be rather formal and is inspired by the
needs of the following sections of this paper. We shall not attempt a fully

rigorous mathematical theory, which would require methods outside the scope

of the present paper. As pointed out recently in [17], to the author's

lrhe reader is referred to [3], [6], [9] and [20] for an introduction to the
theory of characteristic functionals and to [6], [9] and [24] for the theory
of generalized random processes,



knowledge, no work at all has yet been done on asymptotic expansions for
central limit theorems on function spaces. What follows, therefore, is a
preliminary step in this direction.
Let Kn denote the space of all real valued nx1 functions @(x)

with continuous derivatives of all orders and with bounded support. A
generalized randoﬁ process is a continuous linear random functional on
K, [6] and will be denoted by ¢(¢) , @€ Kn . For the multivariate
Wiener process W(t) we may define the corresponding generalized random
process by the integral

-1
I R OR[OF

0
which is well defined for all ¢ € Kn . Tﬁe correlation functional of ¢

is given by -(w, Y € K)

n
B(w,p) = E{o(p)o(y)}
1.1
= J J @(t) 'y(s)min(t,s)dtds
0/0
1.‘\ -~
(8) - [eorima
0
where
. 1 . 1
e(t) = J pls}ds , @(t) = J[ p(s)ds .
t t

Formula (8) may be established quite easily by integration by parts., The
scalar (n = 1) case of (8) is well known and may be found for example
in [9, p. 125].

Given ¢ € K, the distribution of the linear functional & is



N(O, B(w,p}} . It follows that the characteristic functional of the gen-

eralized random process @&{¢) is given by:

(9) L{p) = E{eiq’(“’)} = exp{-(1/2)B{o,@} , ©wEK,

As in the case of distributions on finite dimensional spaces, the charac-
teristic functional uniquely determines the probability measure. Here,

the measure 1s Wiener measure on (Cn, Cn) . The relevant extension of
the continuity theorem for characteristic functions which achieves this
unique correspondence is known as the Bochner-Minlos theorem and is given
in [9, p. 122]. We note that: (i) L(v) is a continuous functional in
the sense that L(qk) = L(@) wheneyer @ >0 as k + =« for any sequence
{wk} and limit function ¢ in K ; .(ii) L(¢) 1is positive definite in
the sense that for any fumctions D)5 wees W in Kn and any complex

numbers Ops eens Op

the inequality ZTZTL(@j -¢k)aja£_i 0 holds;'and
(iii) L(0) =1 . Properties (i), (ii1) and (iii) parallel the conventional
properties of characteristic functions on finite dimensional spa;es.

Define the generalized random process @T(qn = fé¢(t)'XT(t)dt cor-
responding to XT(t) . The correlation functional of 2% is
BT(w,w) = E{@T(QDQT(qﬂ} , with o, ¢ € Kn , and its characteristic func-
tional is LT(qﬂ = E{exp{i@T(qU}] . Under quite general conditions on the
process {ut}T we may develop an asymptotic expangion of BT(m,w) about
the correlation functional, B(@,y) , of the limit process W(t) . There

is a related expansion for LT(@) and a stochastic expansion of XT(t)

about W(t)} . Our first result is the following:
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THEOREM 3.1. Let {ut}T be a weakly stationary p-mixing sequence of random

n-vectors satisfying (1) and (2). If z;zlmpm < » then

(10) BL(0,0) = B(®,4) + O(T™H)
for any @, $ € K . Moreover, if {ut}T 18 Gaussian, then
an Lp(®) = L(@) [1 +0(T"1)]

for any ¢ € K and

L 1.
(12) Xp(t) = H(e) + 0 (™)

The condition E?mpm < @ on the mixing coefficients P is not very

. restrictive. ‘It is, for example, satisfied by all stationary finite order
ARMA processes, since Pp = O(A_m) with A > 1, for such processes and
ao

2
thus Zlmpm = A/ (A-1)7 <= ,

The requirement that { }T is Gaussian in the second half of Theorem

Ye
3.1 is, of course, not necessary. To show how the condition may be relaxed,
we first define the cumulant functional:

i@T(¢0

(13) CT[qﬂ = ¢n LT(m) = 4n E{e }

and assume that it may be expanded in térms of the cumulant functions (which

are assumed to exist)
CkT(tl’ ...,tk) = cumulant{XT(tl), ...,XT(tk)} ; k=1, 2,

as

kol 1
@ 1
(14) Cley = 1, ET—JO .ee Iow(tl) see @(t ) (ty, oan, tyddE) Ll dt
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Note that for a sequence of innovations {ut}T satisfying (1) and (2) we

have
and thus

rl
dow(tl)cthtl)d‘cl =0,

-1

1
J ) eputepepiey, cenan, < b0

-r/2+1,

If we now assume that r'th cumulants of XT(t) are O(T ) we obtain

Cr(® = -(1/2)B(0,0) + o(TH?)

1/2

-(1/2)B(@,@) + O(T %)

under conditions which ensure the validity of (10). The characteristic

functional is now:

i

Lo (@) = exp{zn Crlo)?

exp{-(1/2)B(@,0)}[1 +0(T /)]

and we obtain:

_ -1/2
2,(@) = a(@) + 0 (175
and
X () = W(t) + op('r"l/z)
In cases where third order cumulants are zero (as they are when {ut}T is

Gaussian) we obtain the improved result XT(t) = W(t) + OP(T—l) . Thus,
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we have:

THEOREM 3.2. Let {ut}T be a weakly stationary p-mixing sequence of random
n-vectors satisfying (1), (2) and Z;=1mpm <w , If third crder cumilants

r/2+1) and

ef {ut}? are zero, 1f r'th cumulaonts of XT(t) are O(T
tf the cumilant functional CT(m) admits an expansion of the form given

in (14) then X(t) = W(t) + op(T'l) .

In some instances it is useful to consider generalized processes such
as &{Y) and @T(qﬂ where ¢ may lie in a function space that is larger
ihan Kn . In general,.the larger the spacé of test functions < the nar-
rower is the class of generalized random processes., However, in the present
case where attention centers golely on the random elements W(t) and XT(t) R
it is very convenient to replace Kn with the set of all generaliied func-
tions Kﬁ (i.e. the set of all linear continuous functionals defined on
Kn }. The generalized random processes (¢) and @T(qﬂ are now continuous
linear random functionals on the set of continuous linear functionals Kﬁ .
Since Kﬁ includes functionals such as the delta function for which

1

(8(t-tg), v(t) = jos(t “eperd = ulg)

the generalized processes o{y) and ¢T(qﬂ now include all of the finite

dimensional distributions of XT(t) and W(t) . Thus:

1
@(a(t-to)) = J S(t-to)W(t)dt = W(t

)
0 0

and

1
m _ I _ _ I
e(zy_,2;8(t -t)) = zlfos(t ti)W(t)dt = Ij_,3;W0ey)

for arbitrary constants a; (i=1, ...,m) . This method of extracting
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the finite dimensional distributions of random elements such as W(t) is
also useful in generating asymptotic expansions.
As an example we shall take the simple case of a sequence {ut}j of

i.i.d. N{0,1) wvariates. Here n =1, £ =1 and we find from formula

(Al) in the Appendix that:

N (I/T /T
Brlw,0) = E§=1<lT‘)J J @w(t)e(s)dsdt
(3-1/T'(5-13/T

i/T k/T
. 23?_2J 23 i(le>Q(t}J o(s)dsdt

(5-1)/1 ¥ (k-1)/T.
1y (T /T
= B(p,9) - T % lj J o(t)o(s) (tT - [tT])dtds
_ U Goym g-pr
j/T k/T
- (2/T)ZT ZJ ZJ }m(t)J‘ W(s)(sT - [sT])dsdt
=2y K (k-1)/T
T
(1s) = 30,0 - 1757 G(/D -FG-1 /M HEG/ - J B(r)dr)
| (G-1)/T
- (/I ,100G/T) -B((5-1) /T HE)19k/T) -TJ o(r)dr}

0

where ©(r) = fﬁw(t)dt and B(w,p) = fé(@(l)-—ﬁ{t])zdt (compare (8) above).

We may write (15) in the abbreviated form:

and the characteristic functional LT(m) now has the expansion
(16)  Ly(® = exp{-(1/2)B(0,) [ + (1/2D)E(9) +0(T"%)]

Let us suppose that we are concerned with developing Edgeworth expansions
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of the finite dimensional distributions of XT[t) . We may start with the

unidimensional case of XT(tO) with tO fixed (0 < ty = 1} . The cor-

responding generalized process is @T(G(t —tO)) . Moreover, setting

Pp(t) = y&(t -tO) , wWe obtain:

o(r) =y 1>t

B(o,p) = ¥ to

([Tt0]+1)/T

1+ toNIT /[Tegd + _
A A () o, o
AT )

2
=y {Tﬁo - [Tto]} .

E(®)

Hence, from (16} we find:

(17} g(y)

Lp(ys(t - tg))

2
exp{~(y2t0/2)}[l + %T(Tto -[Tto])] + O(T'z)

Inverting (17) we obtain the Edgeworth expansion of the density of X(to)

3

viz.

pdf(x)

1 ~ixy
7 Je gly)dy

2
1 .( x ) 1 (x 1 .( x ) -2
i ——= =={Tt, - [Tt Dl ~ 1 i + 0(T ™)
£ /2 t1/2 2T 0 0 t0 t3/2 /2

1 1
0 0 0 5

" 2
(Zﬁ)-l/Ze-z /2

]

where 1(z)

is the density of standard N(0,1) distribution.
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Upon integration we find the expansion of the distribution function of
Xplty)

(19) cdf(x) = T/t 2y (1+a) + o(1™d)

where 1I(z) 1is the cdf of N(0,1) and

_ 1
a1 = 71, (Mo - [Tty 1)

1/2

Noting that W(t 0 )

is N{0, to) with cdf I(x/t we deduce from (18)

o)

and (19) the stochastic expansion:

Xp(tg) = Wit [1-ag] + 0(1™%) ~
{20) Tt - [Tt,] |
- W(to)[1 - —OZT—tOO—} s 0(T"9)

Higher order finite dimensional distributions of XT(t) may be expanded
in a similar way. Let us consider (XT(fo), X(tlJ). with 0 < ty <ty < 1,
or equivalently (X(to), X(tlj —X(to)) . Take any linear combination such
as aX(tO) + b(X(tl) -X(to)) and define the corresponding generalized
process @T(qﬂ = féw(t)XT(t)dt with o(t) = y{(a-b)&(t -to) +bé(t —tl)} .

Then

Br) =ya  , Tt

y(a-b) , t, <r <t

Blo,w) = y ity + bPt) -t0))

and



From

g(y)

and

{25)

wher

toti

16

B = y* 67 (Tt, - [T;]) + (2% -bD) (Tt - [T, 1))

(16) we deduce that:

Lo(@(t))

2 2 -
exp{- %?[a2t0+b2(t1—to)]}[l +%T{(a2~b2)(Tto—[Tto])+b2(Tt1—[Tt1])}} +0(T 2)

upon inversion we obtain the stochastic expansion:

aXp(ty) +b(Xp(t) - Xp(tg))
N 1 2,2 2 -2
= [aW(tO)+b(W(t1)—N(t0)]{l - 2{(a -b )(Tto—[TtO])+b (Ttl-[Ttl]]}} +0(T 7)
2Tw
e w2 = a2t0 + b2(t1 -to) .

Both (20) and (25) may be checked by conventional methods for the asymp-

¢ expansion of finite dimensional distributions.

4. ASYMPTOTIC EXPANSIONS IN VECTOR AUTOREGRESSIONS

WITH INTEGRATED PROCESSES

Qur concern in this section is with multiple time series of integrated

processes of order one that are generated in discrete time according to:

(26a) Yo = Ayt-l *u o o t=1,2,
(26b) A= In
Either of the commonly proposed initial conditions may be ﬁsed:

(27a) Yg = ¢, a constant; or

(27b) Yo

random with a certain specified distribution.
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The innovation sequence {ut}T in (26) will be required to satisfy the
conditions of Theorem 2,1 or 2.2, As discussed in [19] (26) includes quite
general vector ARMA specifications because of the weak conditions imposed
on {ut}cf .

Define the matrices Y' = [yl, ...,yT] . Y:l = [yo, ...,yT_lj , and
Ur = {ul, .;.,uT] . A* = Y'Y_l(Y:lY_l)_1 is the matrix of regression coef-
ficients from the vector autoregression of Ye O0 Y. g - The asymptotic

theory for such a regression has been developed recently in [19], where

the following result is proved:

THEQREM 4.1, If {ut}i satisfies the conditions of either Theorem 2.1 or

2.2 and if {y }] is generated by (26) then as T + =
t’1 genen

-1
(28) T(A*-I) = (1/2) (Y Zweyw(n) rpl/2 -}:u}{zl/zféW(t)W(t)'dtZl/z}

_ o T . .
where L, = llmT_>00 ZlE(utut) and W(t) <s a multivariate Wiener process

on CV . (28) applies irrespective of the initial conditions, (7a) or (7b).

(28) implies that A* =1 + OP(T_l) and, of course, A* ; I as T 4= |
These results-and (28) are especially interesting because of the generality

of the underlying conditions on the innovation process {u_}, under which

oo
Y1
they are proved. In view of this generality, it is more than usually
intriguing to study the adequacy of the asymptotic theory delivered by Theorem
4.1. The aim of our next main result, therefore, is to effect a refinement

of these first order asymptotics. First, we shall prove:



18

. 2 2
LEMMA 4.2, Define v_ = (uit-E(uit))

. and let the sequerce {v }T

t
satisfy the conditions of either Theorem 2.1 or 2.2. If, additionally,

nxl

{ut}i satigfies the conditions of either Theorem 3.1 or 3.2 and if {yt}?

is gemnerated by (26) then

(@ T2 v | =t wcewce) rdest/2 e pn/ 2512 IENCtYdtyy +yoron(e) 1dezt/ 2y
-1
0
+p(T)
1 1/2

® 1= a e away s sy e g s - e o h

where Yo satisfies either of the initial conditions (7a) or (7b) and where

£ 18 a random symmetric n *n matrix distributed as matriz N(0,V) with

(29) V= PD{zzzo{wk - vec(Z vec(Z ) '}]P,
whe re

(30) ¥ = E(uui , ©® utué+k)

(31) P, = D(0'D) 'D!

and D ie the duplication matrixz of [13]. W(t) and & are statistically

independent.

THEOREM 4.3, If {ut}T satisfies the conditions of Lemma 4.2 then A*

has the following asymptotic expansion as T 4+ « :

-1
(32) T(A*-1) = (1/2){21/2W(1)W(1}'21/2 -zu}{ 1/2f1W(t)W(t) dtzl/z}
-1
T‘l/z[{ l/ZW(l)y (1/2)5}{ 1/2, 1W(t)W(t)'dt21/2}
1/2 1/2 1/2 1 121"}
- (1/2){2 WCLW(L) 'z -zu}{ SN (L) ez }

-1
{ /2, 1W(t)dtyo +y0I W(t) dtzl/z}{ /2,1 WO (L) dtxl/z} ] s op(T'l)
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where W(t) <8 a multivariate Wlener process on ¢ and £ 18 an inde-

pendent N(0,V) matric with covariance matrixz V given by (29).

COROLLARY 4.4. If the conditions of Theorem 4.3 hold and if the initial

value Yo = 0 then

-1
(33) T(A*-I) = (1/2){21/211(1)W(1)'21/2 -Eu}{zl/zf{l)W(t)W(t)‘dtzl/z}

-1
- (1/2/T) E{El/zféW(t)W(t)'dtzl/z} . op(T'l) .

Theorem 4.3 provides an asymptotic expansion of the distribution of
T(A*-I) that holds under very general conditions. These conditions apply
for a wide class of weakly stationary sequences {ut}T . They are certainly
satisfied by stationary Gaussian sequences which satisf& the mixing condi-
tion z;zlmpm < = and thereby include all finite order ARMA processes that
are stationary and Gaussian, Many non-Gaussian stationary sequences which
obey the mixing condition and whose third order cumulants are zero will
also satisfy the conditions bf Theorem 4.3. The asymptotic expansion given
by (32) may therefore be expected to have rather wide applicability.

We observe that, since the matrix variate £ is independent of the
vector Wiener process W(t) and since E(£) = 0 , the correction term of
0(1/¥T) in the expansion (33) contributes no adjustment to the mean of
the limiting distribution of T(A*-I) . Thus, the location of the limiting
distribution should be a fairly accurate approximation in moderately sized
samples when y, = 0 . For the special case n =1 and {ut}T i.i.d.
N(O, 02) » this is confirmed by the experimental results of [5]. When
Yo # 0, it is also clear from (32) that the initial conditions may have

an important influence on the sampling distribution of A* ., The conclusion

too is corroborated by the specialized experimental results of [5].
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Note that when {u .}, is i.i.d. N{0,Z} we have the reductions:

t’1
L =1I
1
LIfk = (vec E)(vec L)' ; k=1, 2,
‘PO = (I'+Kn) (L ®ZI) + (vec Z)(vec 2)' ,

where KIl is the commutation matrix, so that
V = PD(I +Kn) ( ® }:)PD

- 2,1 @ D)

since I + K = 2P, [13, pp. 427-428]. Thus, in this case & 1is matrix

N(O, ZPDCZ ®z)) . When n =1 (33) reduces to

2 )
(c”/2) (W(l) -1) - (1/2/T)¢ 0 (r”
f W(t) dt

Y

(1/2)(wg RN
S W(t) dt

where n = (1/vZ 0°)E= N(0,1) . This highly specialized case of (32) and

(33) was first derived by the author in [17, formula (38)}].

5. CONCLUSIONS

In earlier work [14, 15] the author developed analytic formulae for
Edgeworth-type expansions in a stationary first order autoregression. Simple
derivations of these formulae and extensions of them to stationary vector
autoregressions are provided in other ongoing research [18]. The present

paper complements this research by providing higher order asymptotics in
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nonstationary VAR's.

The asymptotic expansions derived in this paper are quite different
in character from traditional Edgeworth expansions. In the first place,
formulae such as (32) yield refinements of a limiting distribution theory
that is nonnormal. The first order asymptotics are obtained through weak
convergence on fuﬁction spaces rather than Euclidean spaces and the limit-
ing distributions take the form of functionals of multivariate Wiener pro-
cesses, Correction terms in the refinement of this limit theory take the
form of new functionals of Wiener processes. The resulting asymptotic
expansion is quite different from the prototypical form of an Edgeworth
expansion: i.é. a limiting normal density scaled by a polynomial whose
coefficients are functions of the sample size and the (pseudo-) moments of
the statistic [16].

Secondly, and more significantly, the asymptotic expansions developed
here have a much wider range of applicability than traditional Edgeworth
expansions. This is because the new expansions have their genesis in in-
variance principles (such as those of Section 2) which apply in very general
situations, allowing for a wide class of different models and processes.
Thus, the validity and form of the asymptotic expansion given in Theorem
4.3 by (32) is unaffected by the misspecification of the VAR. The true model
may be vector ARMA or even vector ARMAX with stationary exogenous inputs.
All that is required is that the process {yt}? be integrated of order one
with stationary innovations that satisfy the quite general moment and mixing
conditions of Thecrem 4.3. In this way, the asyﬁptotic expansion (32) shares
some of the invariance principle properties of the underlying limit theory
that it refines,

Many extensions of the work reported here are now possible and merit

further research. The most immediate are regressions with fitted means,



higher order regressions, general multivariate regressions and problems

of prediction. Research on some of these topics is now underway,

22
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MATHEMATICAL APPENDIX

Proof of Theorem 2.1, It is easy to see that individual elements of the

vector random element XT(t) satisfy the conditions of Herrndorf's theorem
(8, p. 142]. Thus XiT(t] a-wi(t) as T + = , where Wi(t) is a Wiener
process on C[0,1] for each i =1, ..., n, Moreover, since D[0,1]

is separable and complete under the metric d0 [2, p. 112], the weak con-
vergence of XiT(t) =>Wi(t) implies that the family of marginal probability
measures associated with the sequence {XiT(t) :T=1, 2, ...} is tight
by Prohorov's theorem [2, p. 37], Furthermore, tightness of these marginal
probability measures ensures tightness of the family of probability measures
associated with XT(t) on- the product metric spacé p" [2, p. 41, exer-
cise 6]. Since the finite dimensional distributions of XT(t) converge

to those of the multivariate Wigner process W(t) (this may be proved as

in the proof of Theorem 2.1 of {19]) it follows that XT(t) = W{t) , as

required.

Proof of Theorem 2.3. The proof is the same as that of Theorem 2.11 of

{7, p. 100] after modification for the product space metric.
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Proof of Theorem 3.1

1.1
- [ [ ot i o0 ucs) asee
070
¢3/T /T . i}
(A1) = T'lzT_lj J ©(t) 'z 1/25(5 RENE: 2 12 (s)dsdt
G-D/T(G-1)/T
/T _1/o(K/T
R T'lzT=2J rdz i[ 0z 2e(s. sr s 1/2J ¥(s)dsdt
= G-nyr J (k-1)/T
k/T
+yey e e, sy l)z'l/zj m(s)dsdt} :
I (k-1)/T
Now since {u,} is weakly stationary
-1 -1.3-1.j-1 '
TUEGS; 85 = T Il 1El B (u )
= l——[E(u H +E {E(u u') +E(u uly ] - lzj 2rE(u +u_u!)
T o1 1 T r=1 1 1+r r+171
and
o= E(upu)) v on o [E(uu) +E(yul)]

so that

(2) TTUE(S; ;S ) = (LTI - G-1/TE S [B(uy ) +E(wul)]

-y} pTIECuul ) +EQu un)] .

Since E:=1rpr < = the final term of (A2) is O(T_l) . Moreover, elements

of the second term of (A2) are dominated by



(3-1) /125 _s0, = 0T

. @ © @
since Zj=1zr=jpr = zr=1rpr r=j T

It foilows that

-1 .
TE(S; ;S)_p)

(5-1) /T2 —(l/T)Ei;fr[E(ului+r) YE(

(A3)

(3-1)/Tz + o(T™H)

In a similar way we find that for j > k

-1 k-1 k-1 -1_j-1
=T Er=1zs=lE(urué) T LlakE

I

(k-1) /T{E(upu}) +z§;%{E(ulu;)-+E{urui)}]l

) k-2 . . j-l k-1
(U/ME By orupgu]) « (U DE oo
Note that
-1.j-1.k-1 1 = poigk-1.i-1-s !
T Zr=kzs=lE(urusJ =T £s=lzq=k—sE£ul+qul)

whose elements are dominated by

Hence, we deduce as before that

-1 . _ -1
(Ad) TE(S; Sy ) = (k=1)/TI + O(T7)

It now follows from (Al}, (A3) and (A4) that

ur+1

A3

< = and, hence, I el = o(1/3) as j 4+ = ,

u)] + o(T™h)

E(uru;)



1 (/T /T

Bplw,¥) = T Ej=lj J [Ttlp(t) 'w(s)dtds
(G-1}/T° (3-1)/T

1 k/T

Zﬂ;l [Ts]@(t)'J p(s)dsdt

(3-1)/T (k-1) /7

/T
+ T—IET J

j=2
k/T

+ [Ts}w(t)'J w(s)dsdt} + O(T_l) .
' (k-1)/T

We observe that

Ot ¢ sorlyy , 11l

_ -1
T T =S+ o(T ™)

and thus

1.1
B1(0,9) = j [ty wisymince, syasar + ocrhy
0’0

= B(p,¥) + O(T h)

as required,

When {ut} is Gaussian, the characteristic functional of @&

therefore

L@ = exp{-(1/2)B(0,0) )

exp{-(1/2)B(@,@)}[1 +0(T™ 1] .
We deduce that

e (@)

-1
() + Op(T ), all ¢ € Kn

and

-1
W(t) OP(T )

X (1)

as required,

T

is

A4
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Proof of Theorem 3.2. Note that XT(t} is linear in {ut} . Hence, third

order cumulants of XT(t} are zero and the rest of the proof is given in

the main text.

Proof of Theorem 4.1, This theorem is proved in the same way as Theorem

3.2 of [19].

Proof of Lemma 4.2, Note that yj = sj * ¥y and we may write:

2., 2T ,
T Y—lY—l =7 Zj=l(sj-l +y0) (Sj—l +y0)
-
_ & 1/2 -1/2 1/2 -1/2. .,
= I._ (£ (t) +T Yo (2 (t) +T Yo Tdt
3= (5191 Xy 0 X 0
1/2¢ 172 -1/2 1/2
{AS5) = 3 JOXT{t)XT(t)'dt; + T °° yOJOXT(t)'dtz
1
s M maa Ay - gy

By Theorem 3.1 or 3.2 XT(t) = W(t) + Op[T-l) . We deduce from (A3) and

the continuous mapping thecorem that:

1
(A6) TRV Y = 21/2J Wee)w(e) rde /2

1 0

1 1

. T-l/Z{Zl/ZJ W dey +y0[ w(t).dtzl/z} + OP(T'IJ

0 0

proving (a).

To prove (b) we first write

-lyy o _ 1T . L y _ 1T . -1
(A7) T Y_lb =T 7L u! = T "z, (S, +y0)uj =T Ej:lsj-luj +y0T z

17 t-1% j=1

(W

=1

=
e
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Next we employ the random element ZT(tJ € ¢ defined in {6). We note

that dz (t) = Tl/zz‘lfzujdt for (j-1)/T < t < j/T and hence, by direct
integration:
3/T . - - -
(A8) J Zp(t)dz ()" = Tz l/zsj_lu!z L (1/27): l/zujuéz 1/2
G-1/T !
Alternatively, by integration by parts we have:
/T l[ /T
(A9) J ZT(t)dZ ()" = 2. .(t)Z.(t) "] .
G-1)/T T 2T TGanyt
Summing (A8) and (A9) over j =1, ..., T and solving we obtain:
-1_-1/2..T 1/2 _ : -1/2 -1/2
T ¢ (ZJ =1%j-1 J)Z = (I/Z)ZT(I)ZT(I)' - (1/2T)z (Z uju3)2
_ . : -1/2 1/2
= (/X (LX) = (1/2T)F T j=1 JuJ)E .

By Theorem 3.1 or 3.2 we deduce that:

1.T

(a10) TME_s. qut=(1/2) Vigawy 22 - 172 I,

j=1"j-1

- (1/2/TY T 1/2 T o (u, u; -z} + o (T” 1

Now {(u u -z )} is a weakly stationary sequence of random matrices with
zero mean that satisfies the conditions of Theorem 2.1 or 2.2. Thus, fol-

lowing the argument of the proof of Theorem 3.3 of [19] we find that:

-1/2.T ,
(Al11) T Ejzlvec(ujuj-zu) = N(0,V)

where
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o0

- - 1
Vo= PDZk=O{wk vec(zu)vec(zu] }PD .
= ' M =
?k E(utut+k ® utu%+k) ; ok 0, 1, 2, ,..

P. = D(D'D)'ID'

and D is the duplication matrix of [13].

Since the error on the asymptotic approximation (All} is at least as

2

small as Op(T—l/ )} we may write (AlQ) in the alternative stochastic ex-

pansion form

-1.T } 1/2 1/2 -1
TUL5850 = /2 TWIR T -8 ) - (1/2/D)g +0,(T77)

where ¢ 1is a random symmetric matrix for which vec £ is N(0,V)

Returning to (A7)} we observe that

T-I/ZETu

Ty - T-l/st ) Zl/sz(l) - M +'OP(T-1)

Thus:

1

w2y T = /e A et g - a2/ - a/mygiay e o o7h

giving (b) as required. Note, finally, that £ depends on a quadratic func-

tion of u, whereas W(t) depends on partial sums which are linear in the

u, . Hence £ and W(t) are uncorrelated and, being normal, are therefore

independent as stated in the Lemma,
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Proof of Theorem 4.3

-1 -2 -1
(A13) TA*-1) = (TTNUY_ ) (A y )
and
-1 1 -1
(T“ZY'IY D= {zl/ZJ W(t)W(t)'dtZl/z}
-1 0
1/2f.1/2( 1 172101721 172171 ! -1
J1e1 {z J W(t)dty} +yOJ W(t) 'dts }{z J W(L)W(t) ' dts } +0 (17h)
0 0 0

1

-1 1
(Al4) = {21/2J w(t)wft)'dtzl/z} {1 -T'l/z{zlfzj W(t)dtyg
0

0

1 1 -1
+ YOIOW(t)'dtzl/z}{zl/ZJOW(t)W(t)'dtzl/z} ] so 7 .

Combining (Al2)-(Al4) we have:

’ 1 ' | -1
T(A*-1) = (1/2) (=Y Zwnyw(y 12/ 2 -zu}{zl/zj W(t)W(t)'dtZl/z}
-~ Jy

1 -1
+T_1/2[{21/2W(1)y6 -(1/2)5}{21/2J0W(t)W(t)'dtZl/z}

. 1 -1
/2 =Y 3wy 12 -zu}{zl/zj W(t)W(t)'dtZl/z}
0

1 1 1 -1
-{zl/ZJ W(t)dty) +yOJ W(t)'dtzl/z}{zl/zj W(t)W(t)'dtZl/Z} } +op(T“1)
0 0 0 :

as required.
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