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ABSTRACT

This paper and its sequel, Andrews [4], extend the Pearson chi-square
testing method to non-dynamic parametric econometric models, in particular,
models with covariates. The present paper introduces the test and dis-
cusses a wide variety of applications. Andrews [4] establishes the
asymptotic properties of the test, by extending recent probabilistic results
for the weak convergence of empirical processes indexed by sets. The chi-
square test that is introduced can be used to test goodness-of-fit of a
parametric model, as well as to test particular aspects of the parametric
model that are of interest. In the event of rejection of the null hypothesis
of correct specification, the test provides information concerning the
direction of departure from the null. The results allow for estimation of
the parameters of the model by quite general methods. The cells used to
construct the test statistic may be random and can be specified in a general

form,



1. INTRODUCTION

This paper and its sequel Andrews [4], referred to as Andrews II, extend

the Pearson chi-square testing method to parametric models with covariates.

A chi-square test is proposed that is applicable in a wide variety of cross-

sectional models, including panel data models. It can be used to test the
null hypothesis that the specified parametric model is correct. This is
the classical goodness-of-fit hypothesis. In addition to yielding a formal
acceptance or rejection of the parametric model specification, the test
provides information regarding the direction of departure from the null
hypothesis, in those cases where the null hypothesis is rejected.

The chi-square test also can be used to test more specific aspects of

& parametric model,

The examples we consider in this paper include testing for:

(1) overall goodness-of-fit and correct specification of various aspects
of logit, probit, nested logit, and log-linear models with binomial or
multinomial response variables,

(2) goodness-of-fit, heterogeneity over the space of covariates, incorrect
functional form, linearity of the effect of a single covariate, omitted
covariates, heteroskedasticity, exogeneity, normality of errors, and
outlying errors, in normal linear regression, multivariate regression,
seemingly unrelated regressions (SUR), and simultaneous equations models
with or without censoring or truncation, in generalized linear models,
and in normal nonlinear regression and simultaneous equations models,

(3) multivariate normality of errors in linear multivariate regression, SUR,
and simultaneous equations models with or without censoring or trunca-

tion, as well as in selection and switching regression models,



(4) correct specification of the marginal distribution of unobservables, and
overall goodness-of-fit in duration data models,

(5) time homogeneity, and independence of covariates and random effects in
panel data models, and

(6) correct specification of the error distribution in frontier production
function models,

The parametric models considered here consist of parametric families
of conditional distributions of response variables given covariates. The
marginal distributions of the covariates are left unrestricted--as is almost
always the case in practice,

The proposed chi-square test statistic is constructed by partitioning
the region in which the response variables and covariates lie into disjoint
cells. Then, one calculates a quadratic form based on the difference be-
tween the observed number of outcomes in each cell, and the conditionally
expected number in each cell given the observed covariates. This conditional
expectation is calculated using the parametric model, If the parametric
model is correct, then the observed differences are due solely to random
fluctuations, and the (suitably weighted) quadratic form converges in dis-
tribution to a chi-square random variable, as the sample size increases.

In contrast, if the parametric model is incorrect, then the observed differ-
ences are due to both random and systematic components in general, and the
quadratic form diverges to infinity, as the sample size increases.

Three features of the chi-squared tests introduced here are noteworthy.
First, the tests are applicable in models with covariates that may be dis-
crete, continucus, or mixed. This feature differentiates the present results
from the chi-square tests considered in the statistical literature. Also,

it yields a broad range of applicability of the tests for econometric models.



Second, the cells may be chosen using the data itself, may have flexible
shapes, and may partition the product space of the response variable and
covariate spaces (as opposed to just partitioning the space of the response
variables or the space of the covariates separately).

A parameter estimator is needed to decide which parametric conditional
distribution to use when calculating the conditionally expected number of
outcomes in each cell. The third feature of note is that this estimator
can be chosen quite generally. Any regular, asymptotically normal estimator
can be used, This contrasts with the Pearson chi-square test for which a
rather unusuzl estimator, called the multinomial maximum likelihood (ML)
estimator, must be used.

As will become evident below, it is the combination of the first two
features above that alloﬁs one to use the proposed test statistic to test
the specification of a wide range of econometric models, and to direct power
against a rich array of different alternatives of interest. The flexibility
afforded by these features also allows cne to design the cells so that the
asymptotic properties take hold with as small a sample size as possible.

The third feature above makes the chi-square test more convenient and
more tractable, since one is not forced to re-estimate the model to compute
some special estimator required by the test statistic. It also has some
power advantages, because it allows one to choose the estimator one finds
most appropriate.

The derivation of the asymptotic distribution of the chi-square test
statistic is complicated by the introduction of random cells, and by the
use of an estimator in the calculation of the conditional expectations.
Following the lead suggested in the statistical literature (see references

in Andrews 1I), the theory of weak convergence of empirical processes can



be exploited. We introduce a new process called the conditional empirical

process, which is a stochastic process indexed by partitions, This process
is shown to converge to a particular tied-down Gaussian process, dubbed a
trampoline, as the sample size increases. With this result, convergence

in probability of the random cells, and the continuous mapping theorem, com-
bine to yield the desired chi-square asymptotic distribution of the test
statistic.

The remainder of the paper is organized as follows: Section 2 describes
and motivates the chi-square test introduced here. Section 3 discusses ex-
tensions in the statistical and econometric literature of Pearson's chi-square
test, and the relationship between these extensions and the test introduced
here. Section 4 considers applications of the test. Nonparametric methods
of constructiné cells are described., Numerous examples are presented. These
examples illustrate the choice of random cells for power against particular
alternatives of interest. In addition, the diagnostic information provided

by the test is discussed. A brief conclusion is given in Section 5.

2. THE RANDOM CELL CHI-SQUARE TEST

This section introduces a class of random cell diagnostic tests, and
motivates their consideration., Basic notation, definitions, and assumptions
are presented. The specific assumptions used to establish the asymptotic
chi-square null-distribution of the test statistics are left to Andrews II.

The observed sample of size n consists of the first n terms of the
sequence of random vectors (Yi, X}, i=1,2, ... . Yi denotes a vector

1

of response variables, and Xi denotes a vector of covariates (e.g., regres-

sors in the linear regression model},

Let P denote the distribution of this infinite sequence of random



vectors (rv's) under the null hypothesis., The rv's Yi and Xi take values

v

in ¥ rY and X< &g , Trespectively. We assume:

M1 {(Yi, Xi) :i=1, 2, ...} are independent and identically distributed

{(iid) under P .

For cross-sectional data the iid assumption is not as restrictive as
it may appear at first. The standard method of generating observations is
by random sampling. The resultant observations satisfy Ml, and the
conditional distribution of the response variables given the covariates
may exhibit heterogeneity or heteroskedasticity. Alternatively, the
observations may be generated by stratified sampling. Even in this case
the iid assumption can be fulfilled, in many cases, by judicious choice of
Yi and Xi . For example, suppose there are two strata and observations
are drawn from these strata in a two to one ratio. We can define the ith
observation (Yi, Xi) to include three underlying observations (independently
chosen}, two from the first strata and one from the second. In this case,
a sample of size n consists of 3n wunderlying observations. The sample
is iid and the two to one ratio of the stratified sampling scheme is fulfilled.2
Even endogenous stratified sampling, such as that considered in the negative
income tax experiments by Hausman and Wise [21], can be placed in the iid

framework using this method.

The null hypothesis of interest is the following:

Hy : The conditional distribution of Yy given X; 1is in the parametric
family {f(y|x,8) : & € 9} , where f(y|x,8) is a density with

s . . L
respect to a o-finite measure p , and @ 1s a parameter space in R~ ,

Since u 1is not restricted to be Lebesgue measure, this hypothesis can



accommodate cases where the response variables are discrete, continuous,
or mixed, Section 4 contains examples of all three cases. As is usual,
the densities f(y]x,e) must be reasonably smooth in & (see Andrews II).

Let Py denote the distribution of xi under P , Py is not re-
stricted by the null hypothesis. Thus, the covariates Xi also may be
discrete, continuous, or mixed,

Let 9, denote the true parameter value, when the null hypothesis is
true.

The general alternative hypothesis is that the conditional parametric
model is incorrect, i.e., the model is misspecified. This is the standard
alternative hypothesis for goodness-of-fit tests, and is usually of interest.
In addition, if the alternative hypothesis is true, then one often wants
not only to reject the null, but also to get some information about the
direction of departure from the null of the true conditional distribution.
The chi-square Eest statistic defined below provides such information.

Although the general alternative hypothesis is simply the negation of
the null, one may be more interested in certain alternative distributions
than others. This interest may arise because one has reason to believe that
these distributions are especially plausible alternatives, or because of
‘their adverse affect on the validity of other inferences that one may be
interested in making. 1In either case, the chi-square test statistic can
be designed to test specific aspects of the parametric model, and hence,
to have higher power against alternatives of particular interest. This is
illustrated by the examples of Section 4 below,

Having outlined the basic model and hypothesis to be tested, we now
consider several items used in the definition of the chi-square test statis-
tie, First, the test statistic introduced here relies An an estimator &
of the unknown parameter 80 . The estimator may be any regular, asymp-

totically normal estimator (see assumption El of Andrews II, Section 2).



Next, following the approachof Pollard [44] (who considers models without
covariates)}, the random cells used in the construction of the test statistic
are chosen from a class € of measurable sets in X x¥ . Not all measur-
able sets can be included in (¢ --a restriction is necessary (see assump-
tion RC2 of Andrews II, Section 2). Let J denote the number of cells upon
which the test statistic is based. J 1is assumed fixed for all n . (The
choice of J 1is discussed in Andrews II, Section 5)., Let & be a class
of partitions of X xJY , each partition being comprised of J sets from
¢ . That is,

3 J
(2.1) G‘={1€C =_U1Yj=X><3’, YjﬂYk=¢,Vj#k},
j=
where Yj and Y denote elements of the partition Y . For each sample
size n, the J cells used to construct the test statistic are given by
a random element of G—, denoted T (where T depends on n in general).

We assume that f comverges in probability to some fixed partition
of cells T € &, as the sample size increases. The precise definition
of convergence in probability of random sets and partitions is given below
in Andrews II, Section 2., It relies on a natural measure of closeness of
sets. If the cells depend upon 8§ in a continuous fashion, for example,
and 3 converges in probability, then f owill converge in probability to
a fixed partiticon, as required. The above definition of the random cells,
however, allows for much more general specification of the cells, than simply
dependence on an estimator & . The random cells may be defined directly
as random functions of the data {(Yi, Xi) :i=1, ...,n} . Examples of
numerous different methods of constructing the randoem cells are given in
Section 4. By choosing different random cells we can construct test statistics
whose power is directed against different alternatives of interest, if so

desired.



We now define a new stochastic process, called the conditional empirical
process, that is the basis of the chi-square test statistic. Let Pn(-)

denote the empirical measure of the sample {(Yi, Xi), i=1,...,nr, in-

dexed by elements ¥ in & . That is,

= 1
2.2 P =g

Y(Yi 3 xi) 3

ne—-1s

1

where Y(Yi, Xi) denotes the vector of indicator functions of
(Yi,_xi) € Yj , for j =1, ..., J . Let Fn(-,a) denote the conditional

empirical measure constructed using the parametric conditional distribution

of Yi given Xi . That is,

=1k

1
=3
N1

2.3 F(v,0) ;

. [yY(Y, Xi)f(ylxi, 8)du(y) = .

L Fly, X, 8) .
i =1
Note that the conditional empirical measure is a random function of

(Xl, ey X_) only.

n

DEFINITION: The conditional empirical process vn(-,e) indexed by elements

vy of ¢ is defined as

2.4 v (-9 = /E(Pn(-) - Fn(-,e)) :

The conditional empirical process evaluated at €y and some partition

Yy, 1i.e., vn(y, BO) » 1s a normalized measure of the difference between
the observed nunber of observations in each cell Yo cess Yy and the

number expected in each cell according to the conditional density f(y|x, eo)

and the observed covariates (Xl, ...,Xn) . If the null hypothesis is true,

then the expected values of Pn(y) and Fn(y, 80} are equal (by iterated



expectations), and so, the strong law of large numbers (SLLN} implies that
pn(Y) —Fn(y, 801 converges in probability to avector of zeroes. Further, the
central limit theorem (CLT) implies that vn(y, eo) converges weakly to

a multivariate normal distribution. On the other hand, if the null hypo-

thesis is false, then Pn(y) and Fn(Y’ 80) generally have different ex-
pectations, and so, the SLLN implies that Pn(y) - Fn(Y’ BOJ converges in
probability to a vector different from the zero vector and ||v (v, 8,

diverges to infinity, This difference in behavier of the conditional em-

pirical process under the null and under the alternative is the basis for
using it to construct the test statistic.

For reference, we note that the standard empirical process indexed by

elements of & is defined as:

(2.5) n,(+,8) = fﬁ(Pn{-) - 'f-‘(-,e)) ,

where ?(y,e) = [xlyy(y,x)f(y\x,e)du(y)dPx(x) . The second summand ?(y,e)

of the standard empirical process is non-stochastic, whereas the second
summand of the conditional empirical process Fn(y,e) is a function of the
random variables (Xl, ...,Xn) .

The Pearson chi-square statistic is based on the standard empirical
process nn(-,e) . This test statistic could be used in situations where
covariates are present, It generally is not used, however, for the reason
stated above. Namely, it requires knowledge of the marginal distribution
of the covariates (in order to calculate ?(Y,B} )}, and such marginal dis-
tributions are very rarely specified in practice. The conditional empiri-
cal process vn(-,e) does not depend on the unspecifieq marginal distribu-
tion of the covariates, Hence, it is the appropriate basis for a chi-square

test statistic in medels with covariates.3



10

Since BO and T are unknown, vn(r, 80) cannct be used to form a
test, Instead, the estimator 8 and the random cells [ are employed,
and we consider a test based on the statistic un(f,g) .

ToIf vn(f,é) is sufficiently different from the zero vector, then the
test should reject the null hypothesis. How does one measure difference
from the zero vector? A natural method is to choose the critical region
such that, asymptotically, its boundary is a constant pfobability density
contour, This method has the advantage that a local perturbation of the
boundary of the critical region cannot reduce the volume of the critical
region while maintaining the same significance level., If vn(f,é) has
asymptotic normal distribution, then this criterion leads to defining the
test statistic as a quadratic form in vn(f,é] with weighting matrix given
by a consistent estimator of a g-inverse of its asymptotic covariance matrix.

The limit distribution of vn(f,g) does not follow directly from the
CLT, because the cells T and the estimator 8§ are random. Nevertheless,
using the weak convergence of vn(-, 60) as a process indexed by partitions
vy € &, vn(f,é) can be shown to have asymptotic normal distribution under
the null, with mean vector zerc and some covariance matrix EO {see Andrews
II, Section 3). Furthermore, a consistent estimator W of some generalized

inverse of Iy can be constructed. Hence, we define the test statistic

as follows:

DEFINITION: The random cell chi-square test statistic is given by
(2.6) X

The chi-square test rejects the null hypothesis if Xi(f,é) is suffi-

) . 2 A oa
ciently large. Given the results stated above, the test statistic X;(T,B)
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has limiting chi-square distribution under the null with degrees of freedom

given by the rank of ZO {denoted rk[XO] ). Generally, the rank of I

0
is J-1 . If a special estimator called a minimum chi-square estimator
(defined in Andrews II, Section 3) is employed, however, then the rank of
Iy is J-1-L ({(where L 1is the dimension of By }. This estimator is un-
natural and unlikely to be used, except in the case where the model has
response variables and covariates that take on at most a finite number of
different values, and the cells completely cross-classify the response var-
iables and the covariates. In this case, ML estimation and minimum chi-
square estimation are asymptotically equivalent. This is the situation
considered by McFadden [31] in the particular case where the conditional
parametric model is multinomial logit.

A second special case where rk[zo] # J-1 , arises when no covariates
are present and the parameter 6 1is estimated by the multinomial ML esti-
mator. This estimator maximizes the likelihood of the data after grouping
the data into J cells. In this case, the chi-square statistic of (2.6)
reduces to the classical Pearson chi-square statistic (for appropriate choice
of W }, and the rank of Zy is given by the familiar expression J-1-L .

If the parameter & is not estimated by the multinomial ML estimator
(or some asymptotic equivalent)4 in this case, then the Pearson chi-square
statistic has a limit distribution under the null that is an intractable
mixture of chi-square distributions, see Chernoff and Lehmann [8]. In con-
trast, with the weighting matrix considered here, the test statistic of (2.6)
adjusts appropriately with the form of the estimation procedure, and has
¢chi-square limit distribution under the null, with degrees of freedom given
by rk[zo] . In this case, rk[EO] equals J-1 in general, rather than

J=-1-L .
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As mentioned above, the random cell chi-square test provides informa-
tion about the direction of departure from the null hypothesis, in the event
that the null hypothesis is rejected. This information is garnered by con-
sidering the pattern of deviations of the observed number, from the expected
number, of outcomes in each cell. That is, one compares Pnj(f) with
Fnj(f, 8

the jth elements of Pn(-) and Fn(-,-) , Tespectively.

n) , for j=1, ..., 3, where Pnj(-) and Fnj(-,-) denote

Since different cells may have different expectations, it is appropriate

to re-scale these numbers initially. This rescaling can be carried out using

~

an estimator © of the asymptotic covariance matrix I of vn(f,a) .

0
In particular, consider the J deviations VEIPnj(f) -Fnj(f,é))/ajj
A oAy A . ~2 . .+th
= .(r,8 .x ), T =1, ..., J, where 0. denotes the ’
( vnj(. )/UJJ) or j jj (3,3
element of I . These deviations have standard normal asymptotic distribu-

tions, Hence, one can calculate easily which deviations are individually
statistically significantly different from zero, and one can compare in a
straightforward fashion the patterns in the signs and magnitudes of the
deviations from one cell to another,

The interpretation of these patterns in terms of the direction of de-
parture from the null hypothesis is straightforward in some cases, but less
so in others. The examples of Section 4 below illustrate how these inter-

pretations can be made.
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3. EXTENSIONS OF PEARSON'S CHI-SQUARE TEST

This section describes the developments and extensions of Pearson's
chi-square test that have been made in the statistical and econometric liter-
ature. It also discusses the relationship of these extensions with the test
introduced in Section 2 above,

Pearson's [42] chi-square test was the first method devised for test-
ing the appropriateness of a specified statistical model, Its introduction
was an important step in the development of statistical methodology, and
in some sense, ushered in the age of statistical inference. In fact, the
historical significance of the Pearson chi-square test was recognized recently
when Science magazine included it in a list of the "20 discoveries in science,
technology, and medicine that we believe rank among this century's most
significant historical developments in any field.”5

Pearson's test applies when one has a sample of n iid random variables
or vectors and a parametric family of distributions that one believes con-
tains the true distribution of the rv's. Let {Yi :1i=1, ...,n} denote
the sample of rv's and {Fe : 5 € 0} denote the parametric family of dis-
tributions. Pearson considered the goodness-of-fit problem of testing the
composite null hypothesis H_  : F = F

0 g ?
: F#F

for some 8 € © , against the

alternative hypothesis H for any 6 € & , where F denotes

1

the distribution of Yi . He suggested partitioning the range space of Yi

B 3

into J cells, and forming a test based on the difference between the number
of observations in each cell, and the expected number in each cell when the
null hypothesis is true. Sihce the expected number in each cell depends on
the value of 8 , he used an estimator & of 6 when calculating his test

statistic. (He was not specific regarding the choice of estimator 6 .)

In particular, Pearson proposed the following statistic:
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n 2
~ Y, ) =N*ba .
2 J [observed(yj) -expected(yj)]2 J [izllc i EYJ) n FB(YJ)]
RIRKOR : B
j=1 expected(yj) j=1 AR
where {y. : j=1,...,J} are the J cells that partition the range space

of Yi , l(Yi Eyj) is the indicator function that equals one when Yi € Yj

and zero otherwise, and Fé(Yj) is the probability under Fé that Yi € Yj .
Pearson claimed that the distribution of Xi(é) in large samples is
approximately chi-squared with J-1 degrees of freedom--just as it would be
if 60 was known, rather than estimated. His claim turned out to be incor-
rect. Fisher [13] proved that if the multinomial maximum likelihood esti-

mator is used to estimate 8 , then the actual asymptotic distribution of

Xﬁ(ﬁ) is a chi-square distribution with J-1-L degrees of freedom, where
6

L is the dimension of 60 . {The multinomial ML estimator is the estimator
n J 1(Y .€v.)
that maximizes n u Fe(yj) J over & € Q .)

i=1 j=1
Fisher's proof was improved by Cramer [10], Birch [5], and Rao [48]

in terms of rigor and breadth of applicability. Neyman [39] showed that
the Pearson chi-square test {with the multinomial ML estimator) is consis-
tent against all alternatives. In one of the first uses of local power,
Eisenhart [12] found its asymptotic distribution under local alternatives
to be non-central chi-square.

Unless the original model is multinomial, the use of the multinomial
ML estimator is unnatural and inconvenient. It is asymptotically inefficient
and requires the evaluation of J integrals in each iteration of the solu-
tion of the maximization problem. In consequence, Chernoff and Lehmann [8]
investigated the asymptotic distribution of Pearson's chi-square statistic
when the standard ML estimator is employed. They found the limit distribu-

tion to be a mixture of independent chi-square rv's under the null, with
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the mixture depending on the unknown parameter o Hence, the use of the

0
standard ML estimator is problematic.

Roy {51] and Watson [54, 55, 56] suggested a clever method of circum-
venting the Chernoff-Lehmann problem by making use of data-dependent random
cells. Their method only works, however, when & consists of location-
scale parameters,

A second method of circumventing the Chernoff-Lehmann problem was pro-
posed by Nikulin [40] and Rao and Robson [49]. This method is not restricted
to location-scale problems, and hence, is of interest for the general prob-

lems considered here.

The Pearson chi-square statistic is a quadratic form in the J-vector

n
A : a2 1 .
v (8) with elements vnj{e) = 7I=1=iEl[l(Yi EYj) -Fé(yj)] , =1, oo, T,

and with JxJ weighting matrix W(§) = diag[1/Fg(y), «oo, VF5(v D1 .
For—most estimators 8 s vn(é) has an asymptotic normal distribution under
the null hypothesis. In the special case where 8§ is the multinomial ML
estimator, the weight matrix evaluated at the true 80 s i.e., W(eo) ,
is a generalized inverse of the asymptotic covariance matrix of vn(é) .
In consequence, the quadratic form given by the Pearson chi-square statistic
has asymptotic chi-square distribution.

For other estimators, including the standard ML estimator, vn(a)
generally has a different asymptotic covariance matrix, for which the Pearson

weighting matrix W(® is not a generalized inverse, In consequence, the

o
Pearson chi-square test is not asymptotically chi-squared for arbitrary
estimation methods.

Nikulin [40] and Rao and Robson [49] suggested the natural solution

to the problem. Instead of considering the quadratic form used by Pearson,

they proposed a quadratic form whose weighting matrix is a consistent estimator
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of a generalized inverse of the asymptotic covariance matrix of vn(§) .
The resulting quadratic form then has a chi-square asymptotic distribution
with degrees of freedom given by the rank of the asymptotic covariance
matrix of vn(é) . This method is adopted in the present paper.

The introduction of random cells in the thecoretical work of Roy and
Watson was instigated not only by the desire to circumvent the Chernoff-
Lehmann problem, but also to reflect the procedures actﬁally used in practice.
It is fairly common in practice to use the data, to a greater or lesser
extent, when choosing the cells to be used in chi-square tests (e.g., see
Kendal and Stuart [27, p. 448]). The potential advantages of doing so in-
clude: improvement of power properties, more rapid convergence to the
limiting chi-square distribution under the null, and the ability to construct
tests that are invariant under various transformations of the data, Further-
more, as the examples of Section 4 illustrate, the use of random cells allows
one to construct chi-square tests with high power directed toward particular
alternatives of interest. This feature of random cell chi-square tests is
exploited greatly in the present paper and Andrews II.

Watson presented only a sketch of the prbof of his results for tests
with random cells. In the early seventies, however, Chibisov [9] and Moore
[33] independently established results (including Watson's) for Pearson chi-
square tests with data-dependent random cells, using the theory of weak con-
vergence, Moore and Spruill [35] extended these results, but still required
quite restrictive assumptions on (i) the shape of the cells, viz., rectangular
with edges parallel to the coordinate axis, and (ii) the way in which the
data could determine the cells, viz., through a finite dimensional parameter
estimator. These restrictions were relaxed greatly in a very elegant paper

by Pollard [44], whose approach is followed here, Pollard used the weak
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convergence results of Dudley [11] to obtain his generalizations., Tauchen
[53] also has relaxed Moore and Spruill's assumptions on cell shapes,
Tauchen's results, however, require that the cells depend on the data only
through the maximum likelihood estimator.

All of the results discussed above (in this section) assume that a para-
metric model is given that completely specifies the distribution of the data
up to an unknown parameter. Few econometric models fit into this framework.
For models with covariates, one usually specifies a conditional parametric
model for the response variable(s), given the value of the covariates.

With this approach, one avoids placing restrictive and unnecessary assump-
tions on the marginal distribution of the covariates.

To apply any of the above chi-square tests to a conditional parametric
model, one would have to specify a marginal distribution for the covariates.
Rejection of the null hypothesis, in this case, may reflect incorrect choice
of the marginal distribution of the covariates, rather than misspecification
of the conditional parametric family, which is of primary interest. Hence,
this solution is not satisfactory.

Two chi-square tests suggested in the econometrics literature avoid
the specification of the marginal distribution of the covariates, The first
is by McFadden [31], and is designed for the multinomial logit model when
the covariates take on only a finite number of different values, As McFadden
recognized, this is a very special case, with only a limited number of appli-
cations in econometrics.

A second test has been suggested by Heckman [22]. Heckman considers
a parametric model for the conditional distribution of a univariéte, abso-
lutely continuous response variable, given a vector of covariates.7 He

partitions the range space of the response variable, and considers the
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deviations of the observed number of outcomes in each cell from the condi-
tionally expected number, given the observed sequence of covariates. This
conditional expectation is calculated using the postulated conditional
parametric model evaluated at the ML estimator. Heckman then constructs
a quadratic form in these deviations, with weighting matrix that adjusts
for the estimation of & (as in Nikulin [40] and Rao and Robson [49]).
This quadratic form is his test statistic, and it has chi-square asymptotic
distribution under the null.

Since Heckman's test statistic does not require the marginal distribu-
tion of the covariates to be specified, it has fairly wide applicability.
It is limited, however, by the following factors: It requires fixed cells,
rather than data dependent random cells; the cells are allowed to partition
only the range space of the response variable, rather than the product space
of the response variable and covariates; the cells must be of a specific
shape, viz., intervals; the response variable is restricted to being uni-
variate and absolutely continuous; and the parameter vector & must be-
estimated by maximum likelihood.8

The test statistic proposed in Section 2 above is not subject to these
restrictions. It utilizes the random cell approach of Chibisov [9], Moore
[33], Moore and Spruill [35], and Pollard [44], but allows for covariates,
as in McFadden [31] and Heckman [22]. The random cells may be of general
shape and may partition the product space of the response variables and
covariates., The response variables and covariates may have continuous, dis-
crete, or mixed distributions. The test statistic uses the adjusted weighting
matrix approach introduced by Nikulin [40] and Rao and Robson [49]. Hence,
arbitrary asymptotically normal estimators can be employed. As the examples

of Section 4 illustrate, the above conditions give the test considerable
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flexibility and wide applicability.

The results given here and in Andrews II extend those of Moore and
Spruill [35], Tauchen [53], and Pollard [44] by allowing covariates. They
also extend [35] and [53] by allowing more general cell shapes, and {53]
and [44] by allowing more general estimation methods. Finally, they extend
Heckman's [22] results by eliminating the above-mentioned restrictions on
his test.

In special cases, the test statistic proposed here reduces to
(i) Pearson's chi-square statistic, (ii) Moore and Spruill's chi-square
statistic, (iii) McFadden's chi-square statistic, and (iv} Heckman's chi-

square statistic,

4, APPLICATIONS

In this section, we discuss applications of the random cell chi-square
test. We begin by considering 'nonparametric" methods of constructing random
cells, These methods are particularly appropriate for testing overall goodness-
of-fit. Then, we discuss methods for testing a wide variety of different

aspects of model specification, using an array of different examples.

4.1. Nonparametric Partitioning

Nonparametric partitioning methods are ones that do not rely on the
specified conditional parametric model to form cells. These methods can
be used when constructing general goodness-of-fit tests, and can be used,
in part, when constructing tests of various specific aspects of a model.

For goodness-of-fit tests, four basic nonparametric partitioning methods
are possible: (1) group the response variables and covariates together, and

nonparametrically partition Y x X, (2) nonparametrically partition Y
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and X separately, and form cross-product cells in y X.Jf, (3) first par-
tition X, and then separately partition Y for each X cell, and
(4) first partition ¥ , and then separately partition X for each Y cell,

Method (1) is the least structured approach. It disregards the inves-
tigator's distinction between response variables and covariates. Method
(2) has the distinct advantage that one can use the normalized cell devia-
tions vnj(f,é)/ajj , j=1, ..., J, to see which regions in X, eor
in ¥ , are inadequately modelled by the conditional parametric distribu-
tions. This method has the disadvantage, however, that it may create numerous
low probability cells with few observations., Methods {3) and (4) avoid this
problem. Method (3) allows one to see which regions in X are inadequately
modelled by the conditional parametric distributions, using the normalized
cell deviations. Method (4) does the same for regions in Y . These two
methods are probably the most useful, in general, for testing goodness-of-fit.
The choice between the two depends on which set of direction of departure
diagnostics one finds of greater interest.

When testing particular aspects of a model, nonparametric partitioning
methods often are useful at one stage in the formation of cells. For example,
one might nonparametrically partition X , and then partition YV wusing a
parametric method that directs power against specific alternatives of inter-
est. The reverse procedure, of course, also arises. Alternatively, one
might nonparametrically partition X based on a single, or small number of,
covariates, and then partition ¥ in some fashion.

We now describe a number of nonparametric partitioning methods. First,
consider partitioning the space of a single, real-valued variable, say w ,
based on n observations of the variable, into a predetermined number of

cells. A simple method, that has been used for some time (see [54, 55, 56]),
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is to calculate the sample mean W and standard deviation s of the var-

W
iable, and form cells centered at the mean, with width proportional to the

standard deviation, That is, take the cells as follows:

[W +beces W+(b+1)-c-sw), (W'-(b+l)-c-sw,W-b-c-sw], W +Beceg, =)

4.1 W

and (-, W’-B-c-sw} , for b=1, ..., B, where ¢ is a constant.

A second method is to use the k-means clustering procedure, see [17, 45].
This procedure forms k cells that minimize the within cell sum of squares
for the n observations, Equivalently, it finds k optimal centers that
minimize the sum of squared deviations of the observations from the nearest
centers. To each center there corresponds a cell that includes all points
that are closer to it than to any other center. Algorithms are available
for carrying out the k-means clustering procedure, see [17, 50, 52].

A third method of partitioning a real-valued variable is to form cells
to have an equal number of observations per cell, with the cell boundaries
given by the mid-point between observations that fall into two di fferent
groups. Additional partitioning methods are given in the literature on
cluster analysis (e.g., see [17, 50, 52)]).

Next, consider the general problem of partitioning a vector-valued var-
iable, say W , based on n observations of the variable, into a predeter-
mined number of cells. The first method discussed above can be generalized
to vector-valued variables by taking the cell boundaries to be concentric
ellipses centered at the sample mean E, and with shape determined by the
sample covariance matrix SW . In particular, for constants a1, 8y, ..., @

B

with a; = 0 and ag ==, form cells given by

(4.2) M :a < (W -Wrsit-F) <a ), for b=1, ..., B .
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If desired, these cells can be split along the axes of the ellipses. These
cells are particularly easy to construct.

The k-means partitioning method generalizes to vector-valued variables
without change. This method forms cells by grouping points that are close
to each other in Euclidean distance. In contrast, the k-means method groups
points that are approximately equidistant from the center of the observa-
tions (using a metric based on the sample covariance matrix). It should
be pointed out that the k-means procedure is not invariant to scale changes
in the variables. Hence, appropriate scaling must be carried out before
applying a k-means algorithm, see [17].

The third method discussed above, for partitioning a real-valued var-
iable, does not generalize in a straightforward fashion to vector-valued
variables. The reason is that there is no natural ordering in multi-
dimensional spaces, and so, there are many different ways of forming cells
such that each cell contains the same number of observations. On the other
hand, numerous additional clustering procedures apply for vector-valued
variables, see [17, 50, 52].

The final nonparametric partitioning method we consider is ome in which
a vector-valued variable, say of dimension D , 1is reduced to a real-valued
-variable, and then one of the partitioning methods discussed above for real-
valued variables is applied. A reduction te¢ a real-valued variable can be
carried out by considering the first principal component of the D n-vectors
of observations. Other methods of reduction to a real-valued variable also

can be used.
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4,2, Examples

We now consider a number of different econometric models, and illus-
trate how random cell chi-square tests can be applied in these models for
various purposes. The examples illustrate the flexibility and general
applicability of the tests.

To avoid repetition, we note here that in any of the models considered
below, the parameters may be subject to restrictions of any sort, linear
or nonlinear. For econometric applications, this greatly increases the
range of applicability of the tests.

We also mention here that alternative tests exist for some, but certainly
not all, of the testing situations considered below. The chi-square tests
discussed here are of a different nature tﬁan most existing tests in the
literature, and hence, normally have maximum power against different alter-
native distributions, than existing tests. Thus, we do not advocate
supplanting existing tests by random cell chi-square tests, Rather, we
argue that they may be useful, even when alternative tests exist, depending
upon the alternative distributions of most interest. Further, in a variety
of circumstances, random cell chi-square tests provide tests where no other
tests are available. They also provide valuable direction of departure

diagnostics.

1., Categorical Response Models--references: Amemiya [1], McFadden [32],
Maddala [28, Chs, 3, 5], Nerlove and Press [38], Cavanaugh [6].

The models considered here include binomial and multinomial logit,
probit, nested logit, modified logit, generalized extreme value (GEV), and
log-linear models. The space of the response variable Y is p#rtitioned
into a finite number of classes, by the nature of the model itself. Two

basic methods arise for partitioning V¥ x X : (1) Partition X, and then
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form cells in ¥ xX by taking the product of cells in X with those in
Y , see Figure 1, (2) For each cell in ¥ (i.e., each value of Y ),
partition X by some procedure, see Figure 2. This method has the advan-
tage that it can be designed to avoid cells with very low probability,

The best procedure for partitioning X , for either of the two methods
above, depends on which alternatives are of greatest interest. The possi-
bilities include the following: (i) Nonparametric. Any of the nonparametric
methods discussed above can be utilized. This approach is appropriate for
constructing general goodness-of-fit tests, Such tests measure the goodness-
of fit of the conditional parametric model for each cell of covariates, and
50, also indicate whether there exists heterogeneity over the space of co-

~

variates, (ii) Value of Xis (Qhere the conditional distributional of

Yi given X; depends on Xi only through XiBO , and 8 is an estimator
of BO ). For example, the cells can be formed using the sample mean of

X{é pPlus or minus several multiplicative factors of its standard deviation,
as in (4.1). In the case of method (1) above, the sample mean and standard
deviation are calculated using the whole sample. With method (2), they are
calculated separately for the observations in each ¥ «cell, Tests based

on the value of Xié partition X such that the variation of within cell
probabilities is small, With this method, one can determine if high or low
probability outcomes are systematically over- -or under-estimated, (iii) Value
of Some Power(s) of X{é . By analogy with the RESET test for linear regres-
sion, one can test the linear functional form X{BO by partitioning based

on (X{é}z, (x{§)3, «e. - [(iv) Value of a Single Covariate. By partitioning
on a single covariate, one can test whether linearity in this variable
adequately captures its effect. (v) Omitted variable. A variable addition

test can be carried out by appending a variable Z , which does not appear
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in the conditional demsity f£(y|x,8) , to the vector of covariates. One
dimension of X corresponds to Z , then, and one can partition X based
on values of Z , see Figure 3. The resultant test indicates whether the
omitted variable Z actually belongs in the parametric model.

The statistics unj(f,é)/ajj , for j =1, ..., J are the normalized
deviations of observed from expected cell counts (see Section 2). By in-
specting the pattern of these statistics one can see wﬁich cells are over-
or under-estimated. For example, with test (ii), one can see if high or
low probability cells are over- or under-estimated; with test (iv), ome can
see if large or small values of the covariate of interest are over- or under-
estimated; and with test (v), one can see how the omitted variable is asso-
ciated with cell deviations. In the case of nonparametric partitioning (i),
the cell deviations can be used to get an idea of the regions in X where
the model is adequate, and the regions where it is less adequate or inade-

quate.

2, Structured Categorized Response Models
(a) Count Models (Poisson Regression)--references: Holland [25], Hausman,
Hall, and Griliches [19], Hausman, Ostro, and Wise [20].

The most widely used count data model is the Poisson regression model.
In this model, Yi takes values 0, 1, 2, ... . Some grouping of the
response variable is necessary to restrict consideration to a finite number
of cells. As with all models considered here, this grouping can be done
using the data. Thus, we can form groups in such a manner that no group
is too large or too small in terms of its probability of occurrence.

Three basic methods can be used to partition ¥ x X : (1) Partition
Y and X separately, and form cross-product cells in Y x X . (2) Parti-

tion Y , then for each ¥ cell partition X . This method is appropriate
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if one is particularly interested in certain outcomes of the response var-
iable, perhaps low or high count outcomes. (3) Partition X, then for
each X cell partition Y . This method is appropriate if one is inter-
ested in assessing the relative adequacy of the parametric model over dif-
ferent regions in X . The partitioning of Y for a given cell in X

may make use of an estimated value of 8 . The power properties of the test
may be enhanced by using an estimator of & based on all the data except
those falling into the X cell in question. The reason is that there is

no fitting of the estimated value of 5 to the observations under consider-
ation. On the other hand, this pfocedure is more burdensome computationally,
than just using the estimator of 6 based on all of the data.

When partitioning ¥ , two criteria arise. First, one may want to
create a finer ﬁartition for counts of greater interest. Second, one usually
wants to avoid creating cells with too low probabilities, When partitioning
)(, the procedures (i)-(v) of Example 1 can be used to tést the same items
of interest as discussed there. The cell deviations can be used anaiogously
to obtain information regarding direction of departure from the null hy-
pothesis,

(b} Ordered-Response and Sequential-Response Models--reference: Maddala

[28, Ch. 2].

These models have a finite number of outcomes for the response variable,
and hence, J does not need to be partitioned. Y x X can be partitioned
in the same manner as in Example 1 for unstructured categorical response
models, Alternatively, the choice of cells may reflect the structure on
the categories. For example, in a sequential response model one might test

for adequacy of the model in describing some particular stage of the sequen-

tial process in question.
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The natural ordering or sequencing of the outcomes of the Tesponse var-
jable can be used to help interpret the pattern of cell deviations, and
hence, to help identify the direction of departure from the null hypothesis,

when the test rejects.

3. Normal Linear Regression Models

The model considered here is the linear regression model with normally
distributed errors. As mentioned above, the parameters can have restric-
tions of any sort, linear or nonlinear, so many models usually considered
to be nonlinear regression models actually fall into this category.

We consider several different aspects of the model that one may be
interested in testing:

(i) Overall goodness-of-fit. Partition ¥ x X non-parametrically
by any of the methods discussed in Section 4.1 above. The resultant test
statistic may be a more interesting goodness-of-fit statistic than the con-
ventional R2 statistic, because the latter simply measures the degree of
association between the covariates and the response variable, as opposed
to measuring the fit of the parametric model. In many cases in econometrics,
a high degree of association is known to exist a priori, and the R2 mea-
sure is not particularly relevant.

(ii) Heterogeneity over X . Of interest here is the question of whether
the regression function is different in different regions of X . A test
can be constructed by partitioning X mnonparametrically, or based on values
of Xiﬁ (where X{BO is the regression function), and then partitioning
V¥ for each X cell according to the values of the residuals, see Figure 4,
As in Example 2, if the estimator of 6 - that is used in partitioning Y for
a given X cell is calculated without using the observations in the X cell,

the power of the test may be enhanced.
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(iii)} Incorrect Functional Form. An analogue of the RESET test can
be constructed by partitioning X based on powers of X{é , and then par-
titioning ¥ for each X cell based on values of the residuals, perhaps
into equiprobable cells. To minimize power against incorrect specification
of the error distribution as normal, Y can be partitioned into just two
cells, one above the estimated median regression line and one below the
estimated median regression line. For this choice of cells, the normality
assumption only is used in estimating one component of the weighting matrix
of the chi-square statistic. Future research will consider non-parametric
estimation of this component, so that one can test for incorrect functional
form, and various other aspects considered here (such as (ii), (iv), (v},
(vi}, and (vii)), without assuming normality (or some other distribution
for the errors).

(iv) Linearity of the Effect of a Single Regressor. In this case we
are interested in the correctness of the functional form with respect to
a single regressor (covariate)., As in Example 1(iv), partition X based
on the covariate in question, and then partition Y based on values of the
residuals. X can be partitioned using its sample mean plus or minus several
multiplicative factors of its standard deviation (see (4.1) above), or by
some other nonparametric method.

(v) Omitted Regressor Variable. To test whether a variable Z has
been erroneously omitted from the regression function, add the variable to
the vector of covariates and partition X based on its values, see Figure 3,
and then partition Y based on the values of the residuals.

(vi) Heteroskedasticity. Depending upon the information available re-
garding the aspect of the covariates that is related to the variance of the

errors, one can partition X as in (ii), (iii), {(iv), or (v) above, and then



partition Y for each X cell based on the absolute values of the residuals.
By partitioning based on absolute values of the residuals, power is directed
towards heteroskedasticity, rather than incorrect functional form, omitted
variables, etc. If little or no information is available to guide the par-
titicning of X', then a nonparametric partitioning can be used,

(vii) Exogeneity. Suppose one wishes to test whether a regressor xli
1s independent of the errors. A test can be constructed by estimating ©
using an instrumental variables (IV) estimator, partitioning X' based on
the values of X,. , and then partitioning ¥ for each X cell according
to the values of the IV residuals,

(viii) Normality of Errors. To test for normality of the error distri-
bution, partition ¥ x X according to the values of the residuals alone,
see Figure 5. Do not partition on X f€irst. The same method can be used
to test for any specified distribution of errors, the only difference arises
in the calculation of the expected number of observations in each cell,

(ix) Outlying Errors. To test for outliers in the errors, estimate
the parameter vector robustly, and partition Y x X according to the values
of the residuals alone. The partitioning should be crude near the regression
line, and more fine in the tail areas. Robust estimation of the parameters
is necessary, because least squares estimation may hide outliers in the
process of minimizing the sum of squared residuals,

For the tests (i}-[(ix) above, one may design the cells such that the
test statistic is invariant under various transformations of the data and
the parameters, such as changes in their units. Only with data-dependent
random cells can such invariance properties be achieved.

By looking at the normaiized cell deviations vnj(f,éJ/ﬁjj ,

J=1, ..., J, one can detect the direction of departure from the null
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hypothesis, in much the same fashion as in Example 1. For example, with

test (ii), one can see for which regions of X the model is inadequate.

With test (v), one can detect directions of curvature of the regression func-
tion in different regions of X . With test (vi), one can find regressors
that are related to the error variances. With test (viii), the cell devi-
ations show if the normal distribution has tails that are too thin or too
fat, as well as whether the true error distribution is skewed or not,
Finally, with test (ix)}, cell deviations of cells in the tails exhibit the
character of outliers that may be present,

Numerous tests already exist in the literature for testing aspects
(1)-(ix) of the linear regression model. Many of the existing tests are
of a single basic type, viz., variable addition, where the added variable
often is continuous in nature, see Pagan [41]. These tests are of a dif-
ferent nature than the random cell chi-square tests considered here. In
consequence, their power properties usually can be expected to be superior

for some alternatives, but inferior for others.

4. Censored and Truncated Normal Linear Regression Models--references:
Amemiya [3], Maddala [28, Ch. 6]

The models considered here are censored and truncated normal linear
regression models with single or double censoring/truncation points. The
same items of interest arise here as in the standard regression model, viz.,
tests (i)-(ix) of Example 3. The satisfaction of certain assumptions is
more crucial in the present context, however, than in the standard linear
regression model. For example, the quasi-maximum likelihood estimator
(based on the assumption of iid normal errors) is inconsistent, rather than
just inefficient, if heteroskedasticity is presenf, or if the errors are

non-normal, in the present situation, Of course, inconsistency also arises,
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with or without censoring or truncation, when various other assumptions are
violated (such as those tested in (ii), (iii), (iv), {v), and (vii) of
Example 3}.

One of the attributes of random cell chi-square tests is their flexi-
bility. This is illustrated here by the fact that each of the tests (1)-{ix)
can be applied in the presence of censoring or truncation. All that is re-
quired is a straightforward adjustment of the cells to reflect the censoring
or truncation. Figure 6 illustrates cell choices to test (iv} of Examplé 3
in the presence of censoring or truncation of Yi at zero.9 In both cases,
the cells only partition the region where Yri 0 . The normalized cell
deviations can be used as in Example 3 to detect the direction of departure

from the null hypothesis, if the test rejects.

5. Normal Linear Multivariate Regression, Seemingly Unrelated Rggression
and Simultaneous Equations Models--references: Malinvaud [29], Hausman
(18]

For any of the three models considered here, one may be interested in
any of the tests (i)-(ix) of Example 3 for some single equation in the multi-
equation model. In the case of multivariate regression and seemingly unre-
lated regressions, exactly the same methods apply as in Example 3. In fact,
the only difference between these cases and that of Example 3 is the method
of parameter estimation.

For simultaneous equations, one can proceed exactly as in Example 3 to
test (i)-(ix), except in those cases where a preliminary partition of X is
made. In such cases, one has the option with a simultaneous equation of
doing {1) a preliminary partition of X or (2) a preliminary pértition of
the space of covariates plus included endogenous variables. Either choice

may be of interest when testing heterogeneity over the space of included



variables (ii), incorrect functicnal form (iii), or linearity of the effect
of a single covariate (iv). Option (2) does not make sense in the case of

a test of heteroskedasticity (vi). In carrying out a test of an omitted
variable (v), the omitted variable could be either an exogenous or endogencus
variable, without affecting the procedure outlined in Example 3. For test-
ing exogeneity (vii), it only makes sense to consider exogeneity of one of
the covariates in the equation. Finally, tests of normality (viii) and out-
lying errors (ix) can be treated identically in the simultaneous equations
case, when one equation is of interest, as in Example 3.

Of special interest in multi-equations models is a test of the multi-
variate distribution of the errors. The quasi-maximum likelihood estimator
(based on the assumption of multivariate normal errors) and numerous other
common estimators are not asymptotically efficient in general, when the
assumption of multivariate normal errors is violared. Further, the finite
sample properties of most estimation procedures are much mere fully under-
stood with multivariate normal errors, than with other error distributions,
due to the extensive array of exact results, see Phillips [43], and the wide
variety of Monte Carlo results that utilize normal errors.lO In consequence,
a test of multivariate normality often is of interest.

One carn test for multivariate normality by partitioning ¥ x X based
on the values of residuals. Do not partition X first. It is natural to
consider residual-based ceils that are formed using ellipses. For testing
multivariate normality of an observed vector (rather than unobserved errors) ,
Moore and Stubblebine [36] consider cells whose boundaries are given by con-
centric ellipses centered at the sample mean, and with shapes determined by
the sample covariance matrix. The same cell shapes can be used in the present

context. These cells have power against peakedness, broad "shoulders,'" and
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heavy tails. The normalized cell deviations can be used to determine which
of these departures from normality is prevelant, if the test rejects. The
cells used by Moore and Stubblebine do not have power against asymmetry.

To enhance the test's power in this direction, one can partition the cells
along the axes of the ellipse, see Figure 7. It may be desirable to choose
the cells to be equiprobable or nearly so (see Andrews II, Section 5 for
further comments on this issue), but perhaps with lower probability cells
in the tails,

The above procedures can be extended straightforwardly when non-normal
multivariate distributions are assumed for the errors. For example, Prucha
and Kelijian [46] consider estimation of simultaneous equations with multi-
variate t-distributions for the errors.

To test for multivariate outliers in the errors, a similar procedure
can be used as that above, but with the adjustments of (a) making the inner-
most cells larger and the cells in the tails more refined, and (b) estimating

the parameters robustly.

6. Selection Models--reference: Maddala [28, Ch. 9]

The variety of different selection models is extremely wide. The simpl-
est such model consists of a single linear regression equation and a single
selection equation with binomial response variable. The latter equation
determines when the dependent variable in the regression equation is censored.
Various aspects of the selection equation can be tested in the manner indi-
cated in Example 1 for categorical response variables. Alternatively, once
the parameters of the regression equation have been estimated, any of the
tests (i)-(ix) of Example 3 can be any carried out on the regression equa-
tion, in a manner analcgous to that of Example 4 for censored regression.

In order to estimate selection models, one usually specifies a parametric
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family for the joint distribution of the errors of the equations involved.
If this parametric family does not include the true error distribution,
then most estimation procedures are incﬁnsistent. Hence, it is important
to be able to test the distributional assumptions made on the errors,

We now suggest a method for constructing such a test, in the case of

the simple selection model referred to above. Suppose the model is given by

] . *
. XliB Uy if Ii >0
! 0 if 1f<0,
* 1
I = X339 * Uy »

where I; is an unobserved censoring variable, and (uli’ uZi) are errors

that are assumed to have a bivariate normal distribution. Cells in V¥ x X

. ~ -~ - . ' ~ & _ ' ~
are constructed based on the residuals (uli, uzi) = (Yi XliB, Ii XZia)
The residual G,, is not fully observed, however. It is only observed to

2i

be greater or less than -Xéi& . Hence, the ce¢lls must be chosen so that
only this information regarding Uy is required, The cells of Figure 8
have this property, The heights of the horizontal edges of the cells are

specified using the assumed (asymptotic) normal distribution of U and

1i
its estimated mean and variance. The expected number of observations in
each cell is given by the bivariate normal distribution using the estimated

variance of Uyg oo the estimated covariance of (uli, u2i) s and the

normalized variance one of Uy, -
The choice of bivariate normal distribution in the above example is
innocuwous, a similar test with similar cell shapes can be constructed for

any bivariate distribution.
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7. Simultaneous Equations Models with Mixed Discrete, Continuous, Censored,

and/or Truncated Endogenous Variables--reference: Maddala [28, Ch. 9]

The selection models of Example 6 are special cases of a class of simul-
Vtaneous.equations models with endogenous variables that may be discrete,
continuous, censored, or truncated, Various aspects of these models can
be tested using the approaches suggested in Example 5 for simultaneous equa-
tions models, coupled with the sort of adjustments for censoring and trunca-
tion that are illustrated in Example 4.

As in the case of selection models, the distributional assumptions placed
on the errors are very important in these models, since their fulfillment is
necessary for consistency for most estimators suggested in the literature.

We illustrate how these assumptions can be tested in a simple two equation

model with both endogenous variables censored. The model is

* w* '
Mg = o¥py v X{Bp v uyy

(4.4)
Y

* >, ]
21 = B¥yy ¥ X5iBp ¥ My s

* e .
where (Yli, Yzi) are latent endogencus variables and (uli, uZi) are un
observed errors that are assumed to have a bivariate norml distribution.

The observed variables are X . , XZi , Y and Yoy o where

11 1i 2
Y*, if ¥Y¥. >0 Y*. if YI. 50
(4,5) Y., = 11 11 - and Yo = 2 2=
0 otherwise 0 otherwise.

The parameters a; s Oy Bl , 62 , and the covariance matrix of {ul, u2)

can be estimated by maximum likelihood, or by a two-stage procedure (see

Maddala [28, Sec. 8.8]). Cells in ¥ xX are formed based on valued of

- *

. -~ Y ~ -~ -~ * -~
the residuals (Uyy, Uy;) = (Y -ag¥5; = X{38y, Yy -uy¥y; - X);8,) . Both
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*

%
1i and Y

residuals are chserved only when Y 23

are positive. Hence, the
cells are formed as those parts of concentric ellipses that lie in the region
where the residuals are observed, see Figure 9. The expected cell frequencies
are determined using the assumed bivariate normal distribution of the errors
with estimated means and covariance matrix, Of course, different cell shapes
in the upper right quadrant of Figure 9 are possible. Those chosen, however,
are particularly convenient for detecting directions of departure from the
null hypothesis (such as peakedness, broad shoulders, fat tails, or asymmetry),
using the normalized cell deviations.

Note that the same method as zbove can be applied to any choice of bi-

variate distribution of the errors, not just bivariate normal errors.

8. Switching Regression Models--references: Maddala [28, Chs, 8, 9], Quandt

and Ramsay [47], Gourieroux, Laffont, and Monfort [14, 15]

Here we consider switching regression models with or without endogenous
switching. Most of the tests discussed in Example 3 for linear regression
have analogues for switching models. As in Examples 6 and 7, the assumed
error distributions must be correct for consistent estimation of the param-

eters. For example, consider the following endogenous switching model:

B. +u,, if IF¥ >0

oY1
X1iBy * vy i

(4.6) Yi
N *
Xéisz * Uy if Ii < 0,

* = X! +
I = 2340 T uyy

where I; is a latent indicator variable, and the errors {uli, u3.) and

1

(uZi’ uSiJ are bivariate normal.
Two-stage estimation methods of this model (see [28]) start with esti-

mation of o by maximum likelihood probit. The normality of wu,. , which

3i
justifies this technique, can be tested using the methods of Example 1.

The second stage of such estimation methods uses the bivariate normality
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of (uli, usi} and (u2i’ u3i) . These distributional assumptions can be
jointly tested by partitioning ¥ x X based on the values of the residuals
ﬁli (= Yi-xiiél for 1; >0) , ﬁZi (=Y, 'xiiéz for I} <0) , and

aSi (= I; -}%i&) . ﬁSi is only observed to be greater than or less than
-Xgi& . Gli and ﬁ2i are only observed when I; >0 and I; <0, re-
spectively. The cells illustrated in Figure 10 only require this iﬂformation.
Note that the cells to the right of the vertical line through -Xéi& cor-
respond to values of (ali’ ﬁSi) » while the cells to the left of this line
correspond to values of (GZi’ ﬁSi) . To calculate the conditionally ex-
pected nunmber of observations in each cell, one uses the bivariate distribu-

tions for (uli’ u31) and (uZi’ u3i) with estimated means, variances,

and covariances.

9. Continuous Time Duration Models--references: Heckman and Singer [23, 24]
In duration models, the response variable Yi is the length of time.
something lies in a given state. For example, it may be the length of time
that a person is unemployed. For multi-state and multi-spell models, the
response variable is vector-valued., In econometric applications, the dis-
tribution of Yi is usually assumed to depend on a parametric linear combi-
nation of observed covariates Xi , and a vector of unobserved variables
Zi . That is, one specifies the parametric conditional distribution of Yi
given Xi and Z.l . In most cases, econometricians also specify a finite
dimensional parametric family of marginal distributions for the unobservables,
in order to facilitate estimation of the parameters of the conditional dis-
tributions of Y, given X,- and Z, . Heckman and Singer [23] argue that
the choice of distributions for the unobservables is ad hoc. Fﬁrther, they

find that empirical results are often very sensitive to the choice of marginal

distributions of the unobservables. In consequence, it would be useful to
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be able to test the goodness-of-fit of the conditional distribution of Yi
given Xi , which is implied by the specified conditional distribution of
Yo given X and Zi and the marginal distribution of Zi .

Such a test can be constructed using random cell chi-square test sta-
tistics. Numerous methods of partitioning ¥ x X are possible. When interest
is centered on the adequacy of the marginal distributionsrof Zi s, 4a natural
procedure is to partition X based on values of Xié (where X!, is the
linear combination of covariates that affects the conditional distributiom
of Y, given X; and Z; ) and then to partition Y , for each X cell,
by one of the methods discussed in the examples above. For example, Y
could be partitioned into equiprobable cells, perhaps with lower probability
cells in the tail of the distribution.

If the specification of the conditional distribution of Yi given Xi
and Zi also is suspect, then one may be interested in other tests, such as
the analogues of tests of Examples 1 and 3 that are designed for general
goodness-of-fit or for detecting heterogeneity over X , omitted variables,

or nonlinear functional form (of the affect of the covariates).

10. Panel Data Models--references: Chamberlain [7], Judge et al.[26]

The models considered here include most of the models discussed above,
but the observations are assumed to be generated in a panel structure. Many
of the same tests as above can be employed to investigate different aspects
of the model in question. In addition, there are special aspects of panel
data models that one may wish to test, For example, one may be interested
in time homogeneity of the model, If a learning or start-up effect of a
survey is of concern, one may want to test whether the model is the same
for the first period, as for subsequent periods.

Consider a linear non-dynamic panel data model. Treat the observations
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for a given individual over the entire time span as a single observation.

A test of the above hypothesis can be constructed by estimating the param-
eters of the model using all observations but those of the first time period,
and then partitioning ¥ x X based on variables corresponding to the first
time period alone, using these parameter estimates. For example, one can
partition X using only the covariates of the first time period, and then
partition ¥ , for each X cell, using the residuals from the first time
period. A similar procedure can be used if there is censoring or if the
response variable is categorical. Inspection of the normalized cell devi-
ations provides information regarding the way in which the model differs
between the first and subsequent periods, if the test rejects.

A second question of special interest in random effects panei data
models is whether the random individual effects are independent of the co-
variates. To test this hypothesis in a normal linear random effects model,
estimate the parameters using the within estimator, to ensure consistency
of the estimator whether or not independence holds. Then, partition X
based on covariates that are thought to be related to the random effect
(perhaps, certain time invariant covariates), and partition Y , for each
X cell, based on the estimated random effects, The expected cell frequencies
are calculated under the assumption of independence, using the normal dis-
tribution of the random effect. The normalized cell deviations give evidence
of the nature of the association between the random effects and the covariates,

in the case of rejection of independence,

11. Generalized Linear Models--references: Nelder and Wetterburn [37],
McCullagh and Nelder [30]
In generalized linear models (GLMs), the response variable has an expon-

ential family distribution (such as normal, Poisson, binomial, or gamma)
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with parameters that are a known function of an unknown linear combination
of covariates. The normal linear regression and the Poisson regression
models are examples of GLMs.

) A number of tests suggested in Example 3 for linear regression can be
extended to GLMs. Test (i) for general goodness-of-fit can be extended,
as can tests (ii)-(v), which investigate different aspects of the assumed
linearity of the effect of the covariates on the respoﬁse variable. To form
cells for these tests when applied to GLMs, one can partition X by some
method, as in Example 3, and then partition Y , for each X cell, based
on values of the response variable (rather than the residuals). For example,
for each X cell, one might partition Y into equiprobable cells,

Alternatively, one might be interested in testing the adequacy of the

assumed exponential family distribution, over the range of values that its
parameter takes on (for different covariate values). This can be done by
partitioning X acéording to values of Xié , and then partitioning Y for
each X cell. By partitioning X based on Xié , one minimizes the within
cell variation of the parameter values of the assumed exponential family
distribution., By inspecting the normalized cell deviations, one can see the
regions of X for which the exponential family distribution is adequate and

those for which it is not adequate.

12, Nonlinear Regression and Simultaneous Equations Models With or Without

Censoring and Truncation--reference: Amemiya [2]

The same tests as given above for linear regression and simultaneous
equations models can be performed with nonlinear regression and simultaneous
equations models (including implicit simultaneous equations modéls), except
that cells cannot be based on residuals--at least without some assumptions

on the form of nonlinearity.ll This presents difficulties when trying to
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construct tests for multivariate normality of the errors, but in other cases
it can be circumvented, Instead of partitioning ¥V , for a given X cell,
based on residual values, one can partition Y using any method that gives

straight edges to the cells. For example, one can linearize the curved re-

gression surface (see Figure 11), or one can take edges perpendicular to

the response variable Yi (see Figure 12).

13, Frontier Production Function Models--references: Maddala [28, Ch. 6],

Judge et al. [26, Ch. 20]

Frontier production function models often are used in measurement of
technological inefficiency. These models take account of the fact that tech-
nological constraints impose an asymmetry on the distribution of errors in
linear regression models for production functions. A number of alternative
distributions have heen suggested to replace the conventional normal error
distribution., These alternatives include convolutions of normal distribu-
tions with half-normal distributions, and with exponential distributions.

The measure of inefficiency adopted for a given model depends on the
assumed error distribution. Hence, it is important in these models to
assess the adequacy of the assumed error distribution., This can be done,
as in test (viii) of Example 3, by forming cells based on residual values.
The shape of the cells can be designed specifically for the assumed error
distribution, or the support of the distribution can be divided straight-
forwardly into equiprobable cells (perhaps with lower probability cells
in the tails, see Andrews II, Section 5). The normalized cell deviations
can be used to detect directions of departure from the null hypothesis, as

discussed in Example 3,
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5. CONCLUSION

This paper and Andrews II extend Pearson chi-square tests to models
with covariates. The extension allows for data-dependent random cells,
flexible cell shapes, and general methods of parameter estimation. These
features yield great flexibility for the test. As illustrated by the
examples above, one can choose random cells to test goodness-of-fit, or any
of a wide variety of more specific aspects of a parametric model.

The introduction of random-cell chi-square tests is useful for three
reasons, First, they provide tests in cases where no other tests are avail-
able. Second, since these tests are of a different nature than many exist-
ing tests, their power characteristics often are complementary to those of
existing tests, in the sense of having maximum power against different al-
ternatives than existing tests. This feature allows one to choose that test
which is most powerful against alternatives of particular interest, in the
common case where no uniformly most powerful test exists. Third, chi-square

tests provide valuable direction of departure diagnostic statistics.
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2A difficulty arises with this approach if the integer values in the ratios
defining the proportions in each strata are large relative to the sample size
of interest. For example, if the observations are assumed to come from two
strata in the ratio 67 to 33, and there are 200 underlying observations,

then n 1is only equal to 2, Nevertheless, one would expect the asymptotics
to '"take hold" in this case for very small values of n .,

SWhen no covariates are present, the conditional empirical process reduces
to the standard empirical process, and so, tests based on either process
are equivalent,

4By an asymptotically equivalent estimator, we mean an estimator that has
the same linearized form (see equation {2.6) of Andrews II).

5Hammond [16], p. 9.

®The reduction of the degrees of freedom of the limiting chi-square
distribution by one for each dimension of the parameter vector arises
because the multinomial ML estimator is asymptotically equivalent to

the estimator that minimizes xi(e) over & € @ ., The first order condi-
tions for this minimization put L constraints on the partial derivatives
of Xi(a) . Asymptotically, only the linearization of the L constraints
are relevant. Hence, Xi(ﬁ) behaves in large samples like a quadratic form

in J independent normal variates conditional on the satisfaction of L
linear constraints due to estimation, plus an additional constraint due to
the fact that the variates must sum to zero. The quadratic form and linear
constraints are such that the former has chi-square distribution with J-1-L
degrees of freedom. This heuristic explanation indicates the special char-
acter of the multinomial ML with regard to the effect of estimation on the
limit distribution.

7Heckman assumes that the conditional distribution of the response variable

given the covariates has a density. We presume this density is with respect
to Lebesgue measure, otherwise his later statement regarding the degrees
of freedom of the test statistic is not always correct.
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8Heckman points cut that the restriction to ML estimation can be relaxed
by adjusting the test statistic appropriately. With some added complexity,
due to additional terms in the weighting matrix, his asymptotic chi-square
results still go through.

Also, note that the requirement that the cells be intervals is not
very restrictive in Heckman's set-up, where the response variable is uni-
variate and partitioning is based on that variable alone. If the response
variable is allowed to be multivariate, or if partitioning can be based on
both the response variables and the covariates, then the restriction to
intervals or rectangles is restrictive,

gln the case of censoring, the cells that abut the Xi-axis have conditional

probabilities that include the positive probabilities of outcomes occurring
on the Xi-axis. In the case of truncation, the probability of an outcome

on the X;-axis is zero, and this is reflected in the cell probabilities.
In consequence, if one desires roughly equiprobable cells, the pattern of
cells has to be different in the censored and truncated cases,

10The same reasons can be used in Example 3 to motivate interest in the test

(viii) of univariate normality of the errors.

11The reason 1s that with residual-based cells ¢ is not necessarily a
Vapnik-Cervonenkis class, see Andrews II, Section 2,

12The cells in the 2-dimensional space of (ﬁli, ﬁZi) depend on the sub-

script i through Xi s and hence, may appear to be different for dif-

ferent observations--a feature that is not allowed in the present frame-
work. In the 4-dimensional space of (Yli’ YZi‘ Xli’ X2i) s, 1l.e., in

¥ x X', however, the cells illustrated in Figure 8 correspond to cells
that are independent of i , as required.
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