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ABSTRACT

This note‘presents {1) necessary and sufficient conditions for
the consistency of estimators of Moore-Penrose inverted matrices, and
(ii) sufficient conditions for convergence to a chi-square distribution
of quadratic forms based on g-~inverted weighting matrices. The latter
results are needed to estabiish asymptotic significance levels and
local power properties of generalized Wald tests (i.e., Wald tests with
singular covariance ma;rices). Included in this class of tests are
Hausman specification tests and various goodness of fit tests, among
others. The results are relevant to procedures currently in the lit-
erature, since they illustrate that some results stated in the literature

hold only under more restrictive assumptions than those given.
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1. Introduction

This note is concerned with the consistency of estimators of Moore-
Penrose inverted matrices and with the convergence in distribution of quad-
rafic forms based on g-inverted weighting matrices. Such results are impor-
tant, since g-inverses, and in particular the Moore-Penrose inverse, are
being used increasingly in econometrics and statistics. Examples include
inferential procedures for the rank deficient and/or singular covariance
matrix linear model (e.g., see Mitra (1980)), Hausman specification tests
(see Hausman and Taylor (1981),Holly (1982), and Duncan (1983), goodness of
fit tests (see Andrews (1985a,b), Heckman (1984), and Moore (1977)),
generalized method of moments specification tests {see Newey (1954)), and
more generally, all Wald tests based on statistics that have singular
asymptotic normal distributions, i.e., generalized Wald tests (see Moore
(1977)).

The purpose of this.note is to pro;ide several general asymptotic
results involving g-inverses that can be applied to numerous existing and
prospective inferential procedures. The results are relevant to proce-
dures currently in the literature, since they 1llustrate that some results
stated in the literature only hold under more restrictive assumptions than
are presented.

The g-inverse of an estimator An of a singular covariance matrix
A often is used to replace in a quadratic form some g-inverse A of the
covari;nce matrix A. Commonly, the claim then is made that if An- is
consistent for A, the use of A; rather than: A-‘ will not affect the
asymptotic distribution of the quadratic form in question. This claim is
important because it is used to determine the critical region of various

test procedures (such as those listed above). In some cases, it 1is
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justified by the second claim that if A.n is consistent for A, then
A: is consistent for A+ (where (-)+ denotes the Moose-Penrose inverse).
In this note we show that neither claim is true in general, but that both

are true under additional conditions, including a rank condition on the

matrices An'



2, Consistency of Estimators of Moore-Penrose Inverted Matrices

It is easy to see that Au'+ A does not necessarily imply A;-+ A+.
Consider the scalar case with An =1/n, for n=1,2,..., and A = 0.
Then, A;l =n—> e ¢ A+ = 0. The result A: -+ A+ fails in this case, and
in others, because the Moore-Penrose inverse is not a continuous function.
The following Lemma establishes the conditions under which this discon-
tinuity does, and does not, affect the convergence of A: to A'.
Let An. n=1,2,..., and A be nonrandom complex r X s matrices.
Let rk[An] denote the rank of 4 , let ji-]] denote the Euclidean norm,
and let ev., i.0., and iff abbreviate "eventually” (i.e., for atl but a
finite number of n, or equivently, for all n sufficiently large), "infinitely

often" (i.e., for .infinitely many n), and."if and only if," respectively.

Lemma 1. Suppose An 2. A. Then, A: e At iff rk{An] = tk[A] ev.

iff lim supHA:H < =,
W

Proof of Lemma 1. Without loss of generality, assume rk[An] =g, Vn,

for some constant g. Then, either g = rk{A] or g > rk{a].

The following is well known: A: ., A+ iff every subsequence of
+ N

{A;} has a sub-subsequence that converges to A . Let {nk s k=1, 2, sss}

be a subsequence of {n} . By the singular value decomposition (e.g.,

see Rao (1973, pp. 42-3), we can write

. A0
A_ =B D C_ , for D_ = | "k , (1)
b Y T % .|l o o
*
where (-) denotes the conjugate transpose of a matrix, B and C
are unitary complex matrices (i.e., B: B, =B Bi = Ir) ,and A is a
k k k k

g x g diagonal nonsingular matrix with diagonal elements given by the
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eigenvalues of A*A . The elements of B, C_, and D are bounded

above, since (i) B and C are unitary, and (1i) A* A k= o A%

implies that the set of eigenvalues of a* An converges to that of A%a.
k
~ Hence, there is a subsequence {nm} of {nk} such that Bn ’ Cn s and
ol m
An. converge to some matrices B, C, and A as m->=

b 4 0O
Form the r x s matrix D = [0 0

A=BDC, B and ¢ are unitary, A is nonsingular if g = rk([A]

] . It is easy to show that

(ptovided rk{A] > 0), and A is singular if g > rk{a].

If g = rk[A] > O, then

A;]' 0-I 2l o
+ m mw _nt
Dn = 0 —> 0 0 =D, and
m
* * - *
lim AT =1imc D' B =08 = Bc)t = A", 2)
1 n n n

me m W W m m

as desired. (The same result is trivial when g = rk[A] = 0.) Alternatively,

155 T 0 o1 B =, and

if g > rk[A]l, then for some j = g, [An
m

+ *

limAY || = Umfc_ DT B | == @
n n n n

me o mre m m mnm

Lemma 1 caﬁ be used to establish necessary and sufficient conditions
for weak and strong consistency of estimators of Moore-Penmrose inverted
matrices. Suppose {An:n =1,2,...} are random matrices, but otherwise
are as above. Let a.s. abbreviate "almost surely" (i.e., with probability

one), and let "B denote convergence in probability.

Theorem 1. (a) Suppose An B A a.s. . Then, Az s A+ a.s. 1ff

rk[An] = rkiA] ev. a.s. iff lim supHA:ﬂ < % a.8.

e + +
(b) Suppose An BA as n -+ =. Then, An BA" as n-w iff
P(rk[An} = rk[A]) hinaclN iff {A::n =1,2,...} are stochastically

bounded (i.e., 3IM < = such that P(HA:“ <M 2. 1.
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Comment: The Theorem shows that if the rank condition rk{An] = rk[A] ev., a.s.

(or P(rk[An] = rk[A]) 2. 1) does not hold, then not only is A:
inconsistent for A+. but the error of estimation is unboundedly large

~as n -+ =,

Proof of Theorem 1. Part (a) follows immediately from Lemma 1 by a sample

path by sample path argument.
The first equivalence of part (b) is obtained as follows: A: B A

1ff every subsequence of {n} has a sub-subsequence {nk}

such that An'k 5—"3—-; A a.s. (e.g., see Lukacs (1968, Theorem 2.4.4)) iff

évery subsequence of {n} has a sub-subsequence {nk}- such that
l(rk[Ank] = rk[A]) 3—_19 1 a.s. (where 1l{(-) denotes the indicator
function) iff P(rk[A ) = rk{A]) .

. +
To show the second equivalence of part (b), first suppose An B A+.

For M> [[Al, P(A)l = M) = P(ja_ - A} + Al £ > 1. For the

converse, suppose P([]An" < M) —= 1, for some M < =, Then, every

el
subsequence of {n} has a sub-subsequence on which 1(||An|l =M LU, §
a.s., and hence, on which lim sup]iA:H <« a,s,, and by Lemma 1, on which

+ now + i +
An B . A" a.s. The latter implies An E A. O



3. Asumptotic Distributions of g~Inverse Quadratic Forms

In this section we consider the asymptotic distribution of

g-inverse quadratic forms given by KQA;XR, vhere X 1is an asymptotically

. normal real random vector with singular covariance matrix A, and An is a
conformable random matrix that converges in probability to A. Quadratic
.forms of this type are used to construct generalized Wald tests, including
Hausman specification tests and chi-square goodness of fit tests, among
others. The rank condition and results of Section 2 above are used to
determine sufficient conditions for convergence of the g-inverse quadratic
form to a chi—séuare random variable.

We introduce the following conditions:

cl Xn 4 X ~ N(,A) as n —+ =,
CZ A R A as n—+ =,
n
c3 P(rk{An] = tkiA]) -1 as n~+=,
C4 P(Xn € M(An)) -1 as n > =,

C5 P(An is symmetric) + 1 as n -+ =,

where no denotes convergence in distribution and M(An) denotes the
column space of An. Also, let Xz(rk[A],b) denote a non-central chi-
square random variable (or distribution) with rk[A] degrees of freedom
and non-centrality parameter &.

The main result is the following:
Theorem 2. (a) Suppose C1-C3 hold. Then,

X;A:Xn 4 3% (rk[A],5), where 6 = p'ATu.

(b) Suppose C1-C5 hold. Then,

-, d .2
X;Anxn =+ X" (rk[A],B),



for all sequences of g-inverses {A;} of {A}.

{(c) If A is non-singular, none of the conditions in parts (a)

and (b) is redundant.

Comments: 1. Part (c) does not assert that each condition used in parts
{(a) and (b) is necessary. Rather, it makes the assertion that the if-then
statement given in each part does not hold when any of the conditicns is
dropped.

2. Part {c) shows that some results in the literature are not
completely accurate. It is not sufficient to establish Cl and C2, or
€1, C2, C4, and C5, in order to assert that a g-inverted quadratic form
has a chi-square asymptotic distribution.

3. The proof of part (b) actually shows that X;A;Xn is numer-
ically identical for all choices of g-inverse of An with probability
that converges to one as n + =.

The proof of Theorem 2 uses the following lemma. The result of
the Lemma is fairly well-known, e.g., see Rao and Mitra (1972, p. 615}.

For completeness, however, we include the Lemma and its brief proof.

Lemma 2. Given any fixed vector X and any fixed, conformable, symmetric
matrix H, 1if X € M(H), then X'H X is numerically identical for all

choices of g-inverse.

Proof of Lemma 2. Since X € M(H), there exists some vector Z such

that X = HZ. Hence, X'H X = Z2'H'H HZ = Z'HZ, using the symmetry of H.

The right—hand~éide is independent of the choice of H. o

Proof of Theorem 2. Under the assumptions, Theorem 1 and the continuous

mapping theorem give X;A:Xn 4 XJAfx as n =+ o, The result of part (a)




follows, since Theorem 9.2.3 of Rao and Mitra (1971) implies that
X'A'% ~ x2(zk[A].5).
By Lemma 2 and assumptions C4 and C5, X'A X - X'A’Xx Bo as
nnn nnn
. n—+=o, for all g-inverses A; of Au' Hence, part (b) is proved.
Next we prove part (c¢). It is clear that neither Cl nor C2 is
redundant in part {a) or part (b). To show that C3 is not redundant in

part (a) or part (b), let A = [1 0] s An = {11 I/n:]’ ¥n, and

0 0 /n ©
X =X+ (0,1/vn)', where X = (%,,0)" ~ N(0,A). The conditions C1, C2,
-1 _10 n -1 2
C4, and C5 all hold. But, A~ = [n -nZ] and X'A X = zﬁxl-n i x* (rk[A]L0)]

as n e “‘
To show that C4 is not redundant in part (b}, take A and X

as above, and let A = A, for all n. Conditions Cl1-C3 and C5 are satis-—

fied. Consider the g-inverse A = [1 02} of A ., For this g-inverse,
n 0 n n.

147 = 2 . 2 o
XnAan Xl +n i X" (rk[Aa]l,0) as n -+ =,

Lastly, tc show that C5 is not redundant in part (b), take A and

X as above, and let Xn = X and An = [é 1(/)“] s for all n. Conditions

Cl-C4 are satisfied. For the g-inverse A_ = n 0 ., X'AX =
n n(l-n) 0O nonn

24 2
nX1+X (rk{A],0) as n =+ =, u]



4. Conclusion

The use of g-inverse quadratic forms is becoming frequent in
econometrics. This note provides results concerning the asymptotic
) distriﬁutions of such statistics. In addition, it considers estimation of
Moore-Penrose inverted matrices. Consistent estimation of Moore-Penrose
inverted matrices is showm to require the fulfillment of a rank condition.
If this condition is not fulfilled, not only does inconsistency result,
but the error of estimation is unboundedly large as the sample size increases.
The rank condition also is shown to be important in deriving the asymptotic
distributions of g-inverse quadratic forms. If the rank condition holdg,
then g-inverse quadratic forms have x2 asymptotic distributions under
weak additional conditions. These distributional results are useful for
determining asymptotic significance levels and local power properties of

generalized Wald tests.
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