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ABSTRACT

This note presents conditions under which a quadratic form based on
a g-inverted weighting matrix converges to a chi-square distribution as
the sample size goes to infinity. Subject to fairly weak underlving con-
ditions, a necessary and sufficient condition is given for this result.
The result is of interest, because it is needed to establish asymptotic
significance levels and local power properties of generalized Wald tests
(i.e., Wald tests with singular limiting covariance matrices). Included
in this class of tests are Hausman épecification tests and various good-
ness of fit tests, among others. The necessary and sufficient condition
is relevant to procedures currently in the econometrics literature, be-
cause it illustrates that some results stated in the literature only hold

under more restrictive assumptions than those given.



1. Introduction

This note is concerned with the convergence in distribution of quadratic
forms based on g-inverted weighting matrices. The latter are being used
increasingly in econometrics and statistics., Examples include testing pro-
cedures for the rank deficient Iinea; model (e.g., see Mitra (1980)},
Hausman specification tests (see Hausman and Taylor (1981), Holly (1982),
and Duncan (1983)), goodness of fit tests (see Andrews (1985a, b), Heckman
(1984), and Moore (1977)), generalized method of moments specification tests
tsee Newey (1984)), and more generally, all Wald tests basgd on statistics
that have singular asymptotic normal distributions, i.e., generalized Wald
tests (see Moore (1977)).

The purpose of this note is to provide a general asymptotic result
for g-inverse quadratic forms that can be applied to numerous existing and
prospective inferential procedures. This result is relevant to procedures
currentl} in the literature, since it illustrates that some results stated
in the literature only hold under more restrictive assumptions than are
presented.

The g-inverse of an estimator An of a singular covariance matrix
A often is used to replace in a quadratic form some g-inverse A~ of the
covariance matrix A . Commonly, the claim then is made that if An is
consistent for A , the use of A; rather than A will not affect the
asymptotic distribution of the quadratic form in question., This claim is
important because it is used to determine the critical regions of various
tést proéedures {such as those listed above). 1In some céses, it is justi-
fied by the second claim that if An is consistent for A, then A;
is consistent for A’ {where (-)+ denotes the Moore-Penrose inverse).

In this note we show that neither claim is true in general, but that both

are true under additional conditions.



2. Asymptotic Distributions of g-Inverse Quadratic Forms

We consider the asymptotic distribution of a g-inverse quadratic form

given by XQA;Xn » where xn is an asymptotically normal real random
L-vector with singular covariance matrix A , and An is a conformable
real random matrix that converges in probability to A .

I1f the limit matrix A were non-singular, then AL would be non-
singular with probability that goes to one as n -+« , and by straight-
forward application of the continuous'mapping theorem, the quadratic form
XQA;Xn would have an asymptotic chi-square distribution., Since A is

singular, however, the continuous mapping theorem does not apply, because

g-inverses are not continuous,

As the following example illustrates, a problem arises when A is

. . ' 1 0
singular, beyond that of just the method of proof., Let A = [ ] ,

0 0
' 1 1/n
Xn = X = (Xl, 0) where Xl ~ N(0,1) , and An = Un T/nz , for
some constant T € R . For the case t > 1, we have An A ’ An is

symmetric and positive definite, for all n, and Xn is in the column

space of both An and A, for all n . The example is quite "regular,"

T -
except that A is singular, Notice that A;l = ?%T[ 2 } , and so,
-n n

XﬁA;lxn = (?§T)x§ . Thus, XAARIXB does not have an asymptotic chi-square
distribution for any v € R . 1In fact, its asymptotic distribution depends
crucially on the sequence of matrices {An} . Depending on the value of
t , its mean could be any number in (-w,») .

This example illustrates that problems can arise when forming test

statistics using g-inverse quadratic forms. Since the use of g-inverse

quadratic forms is becoming frequent in econometrics, it seems useful to



establish precisely those conditions under which such problems do and do
not arise., This is done below. Before discussing such results, however,
we consider the question of whether such problems actually may arise in
econometric applications. The following example illustrates that they may.
We consider a Wald test of a nonlinear restriction in a linear regres-
sion model with an intercept and one regressor. Suppose the regressor and
the error are independent for each observation, and are independent ident-
ically distributed over observations, with the error having mean zero and
variance 02 » and the regressor having variance oi . The parameter vector
8 equals (u, B, 02)‘ , where ao and B are the coefficients on the
intercept and regressor, respectively, We wish to test the restriction
a8 = 0 . A Wald test is formed using the least squares estimator & . The
test statistic is W_= nh(§)'(ﬁ?ﬂ')'1h(§) , where H = H(8) = ggh(é)
and V is a consistent estimator of the asymptotic covariance matrix of g .
For the above restriction, H(eo) = 0 for any null parameter vector
of the form 8y = (o, 0, cg)' , for some ug . Thus, HW' has a singular
probability limit (viz., zero) under 6, , and the problem exemplified
above may occur. In fact, it is not hard to show that nh(a)2 converges
in distribution to a random variable that equals zero with probability zero,
and HVH' converges in probability to zero, under 8y - Thus, the Wald
statistic does not have a chi-square asymptotic distribution under 8g >
and further, the test rejects with probability that converges to one as
n+= _, In addition, for null parameter vectors for which (a,8) does
not equal (0,0}, but is close to (0,0), we would expect the test statistic
to converge very slowly to a chi-square distribution, and hence, to exhibit

undesirable finite sample properties in all but very large samples. To

conclude, this example serves to illustrate that the potential problems



associated with the limit behavior of g-inverse quadratic forms, which are
investigated below, are not strictly pathological, but may create difficulties
in actual econometric applications,

We now give conditions under which XAA;XH does, and does not, have
an asymptotic chi-square distribution, For this purpose, we introduce the

following conditions:
DL X L X~ N,
p2 A -Bsa,
D3 P(An is symmetric and psd) + 1 as n+= ,
D4 P(Xn € M(An)) +1 as n+=,
D5 P(Anvis symmetric} -+ 1 as n -+« ,

where " —g+ " denotes convergence in distribution as n 4+« , " N(p,A) "
denotes the normal distribution with mean vector 1 and covariance matrix
A, "L+ denotes convergence in probability as n—+= , " psd " abbrev-
iates positive semi-definite, and M(An) denotes the column space of the
matrix An -

Let r = rk[A] and r, = rk[An] , where tkf+] denotes the rank

of the matrix + . By the singular value decompgfition, the L xL real.

. . A0
matrix A_ can be written as B D C' , where D_ = [ n ] is an L xL
n nnn 0 0

diagonal matrix, An is an T, *T, full-rank diagonal matrix with diagonal
elements non-increasing in absolute value from the uoper left, and Bn

and C_  are each L xL orthogonal matrices. Let (Gnl’ ""Gnrn) ,



(bnl’ ...,an) , and (cnl’ ...,an) denote the diagonal elements of

An , the columns of Bn s and the columns of Cn » Tespectively. Then,

{Gﬁl, ...,Gir s 0, «..,0) are the eigenvalues of both AnAﬁ and AﬁAn M

(bnl’ ...,an) are eigenvectors of AnAﬁ ordered to correspond to its

eigenvalues; and (c c

nL)

ously. If An is symmetric, we can take Bn = C

nl® *"** are eigenvectors of AﬁAn ordered analog-

n ° In this case,

(5n1, ""5nrn’ 0, ...,0) are the eigenvalues of An ordered in non-

increasing absolute value, and (bnl’ ...,an) are eigenvectors of A

ordered to correspond to its eigenvalues,

Let
"
rl'l
jgﬂ(b;ljxn)(c;ljxn)/anj when r >r
Q, = ¢
. 2
0 otherwise,

As the following Theorem indicates, the behavior of the random variable
Q, is crucial in determining whether XﬁA;Xn has an asymptotic chi-square
distribution. Qn is zero if the ranks of A, and A are equal, or if

Xn is orthogonal to those eigenvectors of AnAﬁ and AﬁAn that correspond

to eigenvalues of AﬁAn that are non-zero, but converge in probability to

zero (given their orde?ing in Dn ). 1f An is symmetric, then bnj = cnj
and Qn is a weighted sum of squared residuals from the projections of

X, onto the spaces spanned by those eigen;ectors of A, that correspond
to eigenvalues of An that are non-zero, but that converge in probability
to zero. If An is symmetric and psd, then Qn.i 0 . This is important
below for establishing a necessary condition for XAA;XH to have an asvmn-

totic chi-square distribution.



Let xz(A,u) denote a non-central chi-square randem variable (or dis-
tribution) with rk[A] degrees of freedom and non-centrality parameter
p'ATy , and let iff abbreviate "if and only if."”

The main result is the following:

Theorem 1. (a) Suppose DI-D2 hold. Them, Q 2+ 0 implies

Ak, =3 A .

(b) Suppose D1, D2, D4, and DS hold. Then, Q —E+ 0 implies

XQA;Xn 4, xz(A,u) for all sequences of g-inmverses {A;} of {An} .
3
(¢) Suppose D1-D3 hold., Then, Q, £+ 0 iff X;A;xn 4, x (A1) .

d

(d) Suppose D1-D4 hold. Then, Q, L, 90 iff XIA —_ x2(A,u) for

“X
n'n
all sequences of g-inverses (A} of {A} .
Comments: 1. If P(rk[An] = rk[A]) 1 as n -+« , then Q, 2,0,
Thus, D1, D2, and P(rk[A ] = tk[A]) » 1 are sufficient for x;l;\;xn to
have a chi-square asymptotic distribution. These are particularly conven-
ient sufficient conditions. Note that given D1-D3, the condition

P(rk[An] = rk[A]) - 1 1is the weakest sufficient condition that does not

involve an interaction between Xn and An .

2. The Theorem shows that some results in the literature are not conm-

pletely accurate. It is not sufficient to establish D1-D3 or D1-D4 in order

to assert that a g-inverse quadratic form has an asymptotic chi-square dis-
tribution.

3. Conditions D1 and DZ alone are sufficient *to yield an asy@ptotic
chi-square distribution of XﬁA;Xn when A 1is non-singular, Since
P(rk[An] = vk{A]) =1 and Qn 25 0 are necessarily satisfied when A
is non-singular, Theorem 1 part (a) contains the general result for non-

singular A as a special case. This is not true of part (c), because part



(¢) imposes D3.

4. The difference between the sufficient conditions of parts (a) and
(¢) of the Theorem, is the additional condition D3 in the latter. D3 usually
is not restrictive. For example, any asymmetric covariance matrix estimator
;an, and usually should, be symmetrized before being employed in a quadratic
form. Similarly, most covariance matrix estimators are psd with probability
one, for all n . In the presence of serial dependence, however, some co-
variance matrix estimators are not psd with probability one (see the dis-
cussion of Newey and West (1985)}, and hence, could fail to satisfy D3 even
though they satisfy D2, For such estimators, it is certainly easier, and
may be necessary, to rely on part (a) rather than part (c).

5. The proof of parts (b) and (d) actually shows that XAA;XH is
numerically identical for all choices of g-inverse of A~ with probability
that converges to one as n + = , when D4 and either D3 or D5 hold.

6. The noncentrality parameter u'A+u of the limit distribution is
invariant with respect to the choice of g-inverse of A, if ﬁ € M(A)

See Vuong (1986) for some results where u € M(A) .

The proof of Theorem 1 uses a result that establishes the consistency
of Moore-Penrose inverted matrices. Since this result helps one to under-
stand the need for the condition Q, -E+ 0, and since it may be of inde-
pendent interest, we briefly discuss the problem and present the result.

The proofs of Theorem 1 and Lemma 1 below are given in Section 3.

It-is easy to see that for -non-random ﬁatrices Hn-+ H does not neces-
sarily imply H; +H* . Consider the scalar case with l-ln =1/n , for
n=1,2, ..., and H=0 _, Then, H;I =n-+=fH =0. The result

+ + . . - . .
Hn + H fails in this case, and in others, because the Moore-Penrose inverse

is not a continuous function, The following Lemma establishes the conditions



under which this discontinuity deoes, and does not, affect the convergence
of H; to H' . For the case of real matrices, this Lemma already apnpears
in the applied mathematics literature, see Stewart (1969). We extend
Stewart's result slightly by considering complex matrices, which allows for
applications in multivariate spectral analysis. MHore importantly, the proof
given in Section 3 below is much shorter and more transparent than that
given by Steﬁart.3

Let Hn , n=1,2, ..., and H be nonrandom complex V xW matrices.
Let ||+]| denote the Euclidean norm, and let ev., and i.o., abbreviate
“eventually" (i.e., for all but-a finite number of n ), and "infinitely

often” (i.e., for infinitely many n ), respectively.

Lemma 1 (Stewart). Suppose A DA . Then, A; —r A 1]

tk[A ] = Tk[A] ev. iff lim sup{|at] <= .
b b

Lemma 1 can be used to establish necessary and sufficient conditions
for weak and strong consistency of estimators of Moore-Penrose inverted
matrices. Suppose Hn tn=1, 2, ... are random matrices, but other-
wise are as above. Let a.s. abbreviate "almost surelv" (i.e., with prob-

ability one). By standard arguments, Lemma 1 yields the following:

Theorem 2. (a) Suppose H_ IH a.s. Then, H; 2 WY a.s. iff

tk[H ] = tk[H] ev. a.s. iff lim supllH;“ <® a.8, (b) Suppose

by e
H -BrH . Then, ny B+u" iff P(xk[H ] = k[H]) B2 1 iff

+

{H :n=1, 2,...} are stochastically bounded (Z{.e., 3M <= such that

PRI s B2 1),



Comments: 1. Theorem 2 shows that if the rank condition rk[Hn] = vk [H]
ev. a.s, (or P(rk[Hn] = rk[H]) = ) does not hold, then noﬁ only is
H; inconsistent for H' s, but the error of estimation is unboundedly large
as n -+« ,

2. It is the potential for inconsistency of Moore-Penrose inverted
matrices, as demonstrated by Theorem 2, that necessitates the condition
Qn £, 0 in Theorem 1 above. Note, however, that An 2 a plus the con-
dition P(rk[An] = rk[A]) -1 as n =+ jis both necessary and sufficient
for consistency of A; for A’ » but is only sufficient for Qn 0.
Thus, there exist cases where the g-inverse quadratic form XﬁA+X has an

asymptotic chi-square distribution even though A; -

3. Proofs

Proof of Theorem 1. Write the real L xL matrix An as in Section 2,

i.e., A = BnDncﬁ . Let 3; denote the diagonal matrix formed by the

upper left rx=r block of L Vith probability that goes to one, r.>r

and A is well-defined. Let ﬁ; be an L xL matrix defined by

D =[ n ] if & is well-defined, and [0] otherwise. Let
n 0 0 n
X =8DcC.

To prove parts (a) and {¢) of Theorem 1 we write

st = Y17 veat U3t
XnAan XnAan * Xn(An An)xn ’ (2

and show that the first summand has asymptotic chi-square distribution, and

the second summand equals Qn .

»

B i —~= -D '—-R-P ry D
y construction, An An Bn(Dn Dn)Cn 0 . Thus, An —+ A



10

Since P(rk[K;] = rk[A]) > 1 as n -+« , Theorem 2 implies K; ~Es At

The continuous mapping theorem now gives

X&KL A a0 | (3)
- where X'R&X-vxz(A,u) follows by Theorem 9.2.3 of Rao and Mitra (1971).

Since 3; = Cnﬁ;Bﬁ s Simple algebra yields

+
XI'I(An - An) Xn

= X! +_?q' Y =

xncn(Dl'l Dn) ann - (4)
Equations (2), (3}, and (4) combine to give Theorem 1 part (a). If An
satisfies D3, then Qn-i 0 (with probability that goes to one)}. In this
case, (2), {3), and (4) combine to show that Qn L2, 0 is both necessary
and sufficient for the asymptotic chi-square result of Theorem 1 part (c).

Part (b) follows from part (a) and part (d) follows from part (c) in

Theorem 1 by noting that X, € M(An) implies the existence of a vector

Zn such that Xn = Anzn , and so, Xr'lAan = Zr‘lAI'lAnAnzn = z;lAnzn , using
the symmetry of An . Thus, the quadratic form X‘;A;Xn is invariant with

respect to g-inverse, o

Proof of Lemma 1. Without loss of generality, assume rk{Hn] =g, VYn,

for some integer g > 0 . Then, either g = rk[H] or g > rk[H] .
By the singular value decomposition (e.g., see Rao (1973, pp. 42-3)),

A0
. n
we can write H = Rnnns;l , for Qn = [ o o ]; where Rn and Sn

are VxV and WxW unitary complex matrices, réspectively (i.e.,

R;Rn = IV ), An is a gxg nonsingular diagonal matrix whose diagonal

elements squared equal the eigenvalues of H*H

tn > and (<}* denotes the

conjugate transpose,
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We use the result: H; D nY iff every subsequence of H; has a
sub-subsequence that converges to H' . Let {nk} be an arbitrary subse-

quence of {n} . Since the elements of R, >, S, , and Q. are bounded

n
above uniformly in n , there is a subsequence {nm} of {nk} such that

Rn R Sn , and An converge to some matrices R, S, and A as

m m m

A O
m->e« , Form the VxW matrix § = [ } . It is easy to show that
0 0

RiS* =H , R and § are unitary, A is nonsingular when g = rk[H]

and A is singular when g > rk[H]

-1 -1
A 0 A 0
If g = rk[H] , then Q; = n = =q' s, and
m 0 0 ¢ 0 '
limHB. =1imS_ Q' R* =sa'R* = H* , as desired. Alternatively, if
n n n n .
|| aad m me m m m
g > tk[H] , then for some j <g, [A ] o, ][A;IH e, and
‘ m jj
. +
lim|H_ || = lim|[s_ szn R;; | == .0
e m Mo

4. Conclusion

The use of g-inverse quadratic forms is becoming frequent in econo-
metrics, This note provides results concerning the asymptotic distribu-
tions of such statistics., Sufficient conditions are given for a g-inverse
quadratic forms to have a non-central chi-square asymptotic distribution.

Also, subject to weak underlying conditions, a necessary and sufficient

condition is given for this result.
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2When An is symmetric, Q

n is uniquely defined provided Gn £ 8

'y nr+l ’

even though bnj .

Thus, under D2 and D3 or D5, Qn is uniquely defined with probability that

for i =1+l, ..., T, , may mot be uniquely defined.

goes to one as n + ™ ,

When An is asymmetric with probability bounded away from zero for
infinitely many n , howevér, 'Qn is not necessarily "uniquely defined
with probability that goes to one as n -+ « ," Non-uniqueness may result
if an = 6nj+1 for some j € (r, rn) . Unlike the symmetric An case,
the choice of which eigenvecior to match with 5nj and which to match with
an+1 may affect the value of Qn when An is asymmetric. And, the prob-

ability of non~-distinct elements 3§ for j = r+}, ..., T, does not

nj °’
necessarily go to zero as n -+ w ,

3A special case of Stewart's (1969) result is given by Tyler (1981, Lemma
2.2) for symmetric real matrices. Tyler's proof is quite brief, due to his
application of well-developed spectral results for symmetric matrices.
Unforfunately, his result precludes applications in asymmetric cgses, as
occurs, for example, in covariance matrix estimation when the covariance

matrix is of the form A B(A)' , for A asymmetric. It also precludes

applications in multivariate spectral analysis,
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