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Introduction

In discussions of distributional ethics using the standard conceptual-
ization of people as utility-maximizing agents, many seemingly paradoxical
situations can arise when different agents are given suitably incompatible
utility functions. Kolm [1972] attempted to go beyond the standard concept-
ualization through the notion of fundamental preferences: agents with
apparently different preferences over a certain specified set of goods should
be thought of as having the same preferences over a wider set of goods,
some of which have already been allocated. A classical example of this
phenomenon might be the folk observation that one's preferences for ideolo-
gies are strongly correlated with the size of one's endowment of money,

To account for the many everyday differences among people with similar
socio-economic situations the '"goods' over which agents have equal funda-
mental preferences would presumably have to include aspects of our internal
chemistry.

This paper is not concerned with the questions of what fundamental pref-
erences should or might be., However, the main result (Theorem 2.2) we prove
implies that, within the usual formal framework which represents preferences
as concave, non-negative functions on the positive orthant in Rr" , the
notion of fundamental preferences is mathematically feasible. A weaker
result (Proposition 2.3) is used in Roemer [1985], and the results of this

paper were motivated by conversations with John Roemer related to that paper.



1., Generalities on Concave Functions

For our main results we will construct sought-for functions as limits
of decreasing families of functions satisfying appropriate conditions. A
very pleasant technical aspect of these constructions is that the limit
functions are automatically continuous. The first section demonstrates this
automatic continuity. The minimal results necessary for our purposes could
be gleaned from Section 10 of Rockafellar [1970] with slight adaptations,
but the phenomenon involved seems interesting so we have developed it in
more detail than in Rockafellar,

Let V be a real vector space of dimension n <« , Let X<V bhe
a closed convex body. Let ¢ be a concave, non-negative function on X .
Define G (¢) , the sub-graph of ¢ , as the subset of V x R specified

by
(1.1) G (¢) = {(x,t) : XEX, 0<t<op(x)},

If ¢ 4is not identically zero then G (¢) will be a convex body in V xR ,

We will say ¢ 1is semicontinuous if G (¢} is a closed subset of V xR .

Observe that this is equivalent to the superlevel sets
(1.2) L7 (4,8) = {X € X :4¢(x) >s}, s3>0

. + -
being closed. Observe alsc that L (¢,s) is convex,
Conversely suppose for some t > 0 we have a closed convex set

Y <V x [0,t] such that
{(1.3a) Ynv={0} =XxX=x{0}
(1.3b}) If (y,r) €Y, then (y, r') €Y for 0 <r' <r.

Then the recipe



¢Y(x) = maxir : (x,7) € Y}, x€X
defines a concave non-negative function on X , and
(1.4) Y =G (¢Y) .

Denote by SCNC(X) the set of semicontinuous non-negative concave func-
tions on X . It is straightforward to check that the sum of two functions
in SCNC(X) is again in SCNC{X). Also a positive scalar multiple of an ele-
ment in SCNC(X)} is again an element, Thus SCNC is a cone in the space of all
real-valued functions on X . Also given a family {¢i}i€l of functions
in SCNC(X) (here the index set I may be infinite), we may form their

infimum:
{1.5) inf{¢i}(x) = inf{¢i(x) 1 €1} .

It is well-known and easy to see that inf{¢i} is concave and non-negative.
Moreover we clearly have
(1.6) G (inf{¢;}) =n G (s,)

i
so that inf{¢i} again belongs to SCNC(X).

Let Z < X be an arbitrary (not necessarily convex) subset of X ,

and let f be an arbitrary real-valued function on Z . Consider the sub-
set of SCNC(X) consisting of functions which dominate (take as least as large
a value at each point} f on Z . Evidently the infimum of such functions
will again dominate f ., Thus if there are any elements of SCNC(X} dominat-

ing £ on Z , there is a minimum one. In particular, given a point

X, € X , there is a minimum element of SCNC(X) taking the value 1 at x

0 0 *



Proposition 1.1. Denote by Ex(xo, x) the value at x of the function in

SCNC(X) which is minimum among all elements of SCNC(X) taking the value 1

at x Then we have the formula

0
(1.7) Ex(xo, x) = sup{(t-1)/t : Xg +t(x-—xo) € X} .
Proof, In V xR , 1let C(X, xo) denote the c¢losed convex hull of the

peints (x,0) , for x € X, and the point (xo, 1) . Since X 1is com-

veXx, the convex hull of X x {0} and (xo, 1) is the set
{(sxO +(l-s}y, s) : y €X, 0<s <1}

and C(X, x will be the closure of this set. Suppose

0
(x,r) = (sx0 + (l-s)y, s)

Then r =s , and

<
n

-1
XO + (1-8) (x-—xo)
belongs to X . Setting t = (l-s)-l we have

re=s=1-¢t"!= (t-1)}/t .

See Figure 1.

j}(t-l)/t

X X

Yy =X, +t(x-—x0)

FIGURE 1



From Figure 1 and the convexity of X it is clear that if (x,r) is in

C(X, xO) , then so is (x, r') for 0 <r'" <r . Hence C(X, x satis-

0

fies conditions (1.3), and comparing (1.4) with definition (1.7) shows
CX, X)) = 67 (By(xy, ) .
Furthermore, if ¢ 1is any function in SCNC(X) such that ¢(x0) > 1 then

obviously G (¢) = C(X, Xg) » whence ¢(x) 3-EX(XO’ x) . Thus Proposition

1.1 is proved,

Given a point %X in X, we say X 1is conical at X, if there
exist
i} a neighborhood U of X5 in V and
ii) a closed convex cone CcV
such that
(1.8) Xnus= (C-+x0) nu.

That is, near Xy s the set X 1looks like a translated cone. Note we do
not require C be a proper cone. In particular, C could be all of V ;

2

thus X is conical at all of its interior points,

Proposition 1.2. a) If Ex(xo, *}  (cf., formula (1.7)) is continuous at

Xy then all functions in SCNC(X) are continuous at x

0 *
b) The function Ex(xo, *) is continuous at X, if and only if X

is conical at xo .

Proof. a) Suppose Ex(xo, *) is continuous at Xq - This means that given

€ >0 there is a neighborhood U of Xq such that EX(XO’ x) » 1-¢ for

x in UN X . Consider ¢ € SCNC(X) . To show ¢ is continuous at X5



we must be able to find a neighborhood U' such that ¢(x0) - < ¢(x)
< ¢(x0) +¢ for x in U' . By semicontinuity the superlevel set

L+(¢, ¢(x0) +e) 1s closed, and it clearly does not contain x 50

0’
Ut = v - LY(s, #(xy) + €) is a meighborhood of x, . If ¢(xy) =0,
then U" will serve for U' since ¢ is non-negative, If ¢(x0} 0,
then by scaling ¢ we may assume without loss of genmerality that ¢(x0} =1,
Then set U' =UNU", Then for x in U' N X we have ¢(x) > Ex(xo, x)
> 1l-g = ¢(x0) - ¢ . Thus we have found the desired neighborhood U' .
This proves part a).
b) Let U be a convex (open) neighborhood of the origin in V , with

compact closure U . (One may think of a Euclidean ball,) Then any neigh-

borhood of Xy contains a set of the form

Xq * sU = {xo + 6u ¢ u € U}

for suitably small § > 0 .
Let S =U ~ U be the boundary of U . If C 1is any closed convex
cone in V , then we have

C= Us(Cnsy .
s>0

Suppose Ex(xo, =) is continuous at Xy - Then we can find § > 0

such that Ex(xo, x) »1/2 for x in (xo + 8U) n X . Set

=]
]

(xo + (o)) n X
and

C= Us(B-xO) .
s>0

Then C 1is a cone (a union of rays), and clearly



(C+x0) n (xo +38U) @ X n (x0+éU)

I claim that in fact this inclusion is an equality. To verify this, con-
sider a point y in [x0‘+6U) N X . Assume y # Xg - For suitable t > 1 ,

the point
z = X, + t(y—xo)

will be in Xy * §(3U) . We will show that z € X, and the claim will be
established, Since X is convex there is some a , with 0 <a <1 such

that

Xy * r(z - xo)

belongs to X for 0 <r <a, and does not belong to X for a <r <1,

If a=1, then z€ X . If a<l , then EX(XO, Xy

Xy * alz -xo) exn (x0-+6U) , this is a contradiction. Thus we have shown

0 then X 1is conical at Xg

Conversely, suppose X is conical at Xy - Suppose that U is a

that if Ex(xo, *} is continuous at x

convex neighborhood of the origin, and C is a closed convex cone such that

(1.9) xn (x0-+U) = X5+ cnu.,
Then for ¢ > 0 , the set
n (xO+EU) = X5+ g{Cnl)

is a neighborhood of X, in X, and from formula (1.7) and relation (1.9)
we see that Ex(xo, y} > 1-e for y in XN (xO +¢l) . Hence Ex(xo, <)

is continuous at Xy - This concludes Proposition 1.2.

+a(z—x0)) = 0 . But since



A convex set X < V is called polyhedral if it is defined by a finite

number of linear inequalities
A(v) > b
where X 1is a linear functional on V and b is a number.

Proposition 1.3. If X<V is a polyhedral closed convex body, then X

is conical at each of its points. Consequently every element of SCNC(X)

is continuous on X .

Proof. The second statement follows from the first and Proposition 1.2. Let

the polyhedral set X be defined by inequalities

Ai(x) z_bi » l<i<m,

for suitable linear functionals A; on V and numbers bi . Given
X, € X , we may suppose, perhaps after permuting the indices i , that

for some 2 < m we have

A5 (%)

n
o
-
—
)
o)
| A
=

v
o
-
=
A
=
N
=1

Ai(xoj
Define the cone C by

C={v: Ai(v) >0, 1<1i<yg}
and define the neighborhood U of X5 by

U= {u: [Ai(u-xo)] < (Ai(xo)-bi}/Z} s 4 <i<m,

Then it is clear that



UNXs=({x;+C) NU.
This proves the proposition,

Remark: Conversely one can show that if X 1is conical at every point,
then X 1is "locally polyhedral," that is, any compact subset of X is
contained in a polyhedral subset of X .

Let ¢ be a function in SCNC(X). Given a point X, € X, the point
(X4 ¢(x0)) € VxR is on the boundary of G (¢) . Since G (¢) is con-
vex, standard separation theorems (Rockafellar [1970]) allow us to find a
supporting hyperplane to G (¢} at (x> ¢(x5)) . Thus we can find a linear

functional X € V* , and a number b , not both zero, such that

Ax) + bt¢(x1.i A(xo) + b¢(x0) », X€eX, 0<t<1l,

Suppose X, is in the interior of X . Then necessarily b # 0 , and taking

X = XO and t

to say

1/2 , we find b > 0 . Thus we can rewrite this inequality

(1.10} $(x)

I A

$(x5) + AT (x-x4)

where A' = -b_ll . Thus we see that given ¢ in SCNC(X) and any

Xy € int X , there is an affine (linear plus constant) function a such
that a(x) > ¢(x} for all x with equality for x = Xy . In other words,

any element of SCNC(X) is the infimum of all affine functions dominating it.
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2. Sections and Extensions of Functions on Orthants

Let ]Rn+ be the positive orthant in r" . We want to study SCNCCJRIH) .

Recall an affine map A ; R" >R" is a map of the form

(2.1) AD =y, + L0, xE r®

where Yo €R" and L is linear. If A is an affine map from R" to

RII

and A(Rm) _r:_Rn+ we call A positive. It is clear that if

A R™ S R™ s positive affine, then for any ¢ € SCNC(Rn+) the pull-
back @°A is in SCNC(Rm+) .

Given x, vy € Rr" , wWe say x >y provided x-y € R" . Given a real-

valued function f on R we say f 1is increasing provided £(x) > f(y)

whenever x >y .

Lemma 2.1. Any @ E SCNC(Rm) is increasing.

Proof. Consider x >y € R"™ . Define A : R +R" by
A(t) =y + t(xy} , tER

Then A 1is positive and affine, so @°A € SCNCOR+) . Clearly @(x) > w(y)
if and only if @eA(l) > @°A(0) . Thus it is enough to prove the lemma
when n =1 . But this is a straightforward matter which will be left to
the reader,

We note also that R is polyhedral so that elements of SCNC(RH+)
are continuous. Thus in addition to being semicontinucus and non-negative,
elements of SCNC(Rn+) are increasing and continuous.

We are interested in the fellowing question. Suppose Qs 0p5 wees O,
belong to SCNC(]Rm') . Under what conditions on the ('s can we find an
m>n, a function ¢ € SCNC(RHH) , @ positive linear map L : R" > R"

and points y,; € R™  such that (pi[x) = Y(L{x) +yi) for x ER™ 7
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Suppose we can find such a ¢ , such an L , and such Yi o Then

in fact we can take m = n+{ , we can take L to be the standard injection

. T T
Jn’n+£Cx1, * a0y xn) -+ (xl, XZ, a8 8y xn, O, 0, ."’0)

of R into Rn+£ , and we can take Yi = €44 0 the (n+i)-th standard

basis vector of ]Rn”' . For suppose ¢ , L and Y exist, Define

T : Rn’{"Q > R
by the formula
- 2
(2.2) L(x,, ""xn+2) = L(x;, cees X)) ¥ iglxrﬁiyi .
Then it is clear that
~ _ n
LGy neg(¥) *ep3) =L +y; , x€ER .

50 setting 'ﬁ: = 1p°'L" , We can reduce to the standard situation described
above, So in trying to determine whether ¢ , L and the Y exist we
may as well reduce to the standard situation.

Consider ¢ € SCNC(Rm) . For t € R’ define

t” 1(p(tx) .

(2.3} th(x)
Since for any t > 1
-1 -1
W(x) > (L-t Jo(0) + t "o(tx)

by concavity, we see that Dtgp(x) is decreasing (more precisely, non-

. +
increasing) as t increases. If Dt(_o=t_o for all t € R , we say
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¢ 1is homogeneous. Because (» is concave, one can see that if Dt(p =
for a single t > 1, then ¢ 1is homogeneous.

In general, if ¢ 1is not homogeneous, the functions Dttp form a
n+)

monotone decreasing family in SCNC(R ,» 50 according to Section 1, we

can take the limit
{2.4) @' (x) = inf Dtkp(x) = lim(p(tx)/t)
t>0 tom
and this will again belong to SCNC(Rn+) . In particular it will be continuous.
Replacing x by sx, forany s > 0,in equation (2.4) shows that Q!

is homogeneous, Evidently it is the largest homogeneous function on R

dominated by o .

Theorem 2.2. Let W1s Ups eees @ belong to SCNC(Rn+) . In order that

{(n+2) +

there exist ¢ € SNCN(R )  such that

n+

(2.5) @ (x) = v(J () +e,,;) s, XER

n,n+% +1

(see discussion surrounding equation (2.2) for notation) it is necessary

and sufficient that

(2.6) (o)) = (0]

for all i, j <2 .
Proof. The necessity of condition (2.6) is easy to establish. Set
Wy = v°J

n,n+g °

Then since y 1is increasing (Lemma 2.1) we see from formula (2.5) that

@y < W for 1 <i <4 . Hence (lpo);i((,pi); for 1 <i <=, On the
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other hand
U9 = Ll 4Gy 1, (0 + te, )
-1
> lim tw(J (t "x) +e_ )
0 ST+R m+i

= lim to; (t” x) = () 1 (x)
t-0

Thus (¢b); 3_(@i); , and so (mo); = (q&); for 1 <i <2 ., Equation
(2.6) follows,

To establish the sufficiency of condition (2.6}, we consider the set

Z= U G, ® re ) RO

15}5& n n+4

Define a function ® on Z by

(x) +e_.) = wi(x) , XE R » 1l <i<g,

w(Jn,n+2 m+1

We want to let y be the smallest element of SCNCGR(H+R)+)

which dominates
@ on Z . To prove the theorem, we need to show that ¢ exists and that
it satisfies equations (2.5). According to the discussion at the end of

Section 1, to do this, it suffices to show that, for any Zy € Z and any

e >0 we can find an affine function o on 'R(n+2)+ such that a]Z >0,
and u(zo] < w(zo) + e,
Let Zg = n n+£(x0) e We know we can find an affine function

a on R" such that o >@; on RY™  and a(xo) < wi(xo) + e ., Write
a(x) = b + A(X)

where A 1is linear. Then X = ol . Let p be a linear function on R"

which is strictly increasing along all rays in R (For example
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n
M(Xps vees X)) = _zlxi will do.) Since o > @, we have A =a! > (0]} .
1=

By adding a very small multiple of p to @ , we may guarantee that in

fact

(2.7) al > (@)}

while maintaining a(xo) < qa(xo) + e,

From (2.6) and (2.7) we have, for any j , 1 <j <, that

1 t
[0 > (Qj)m .

-]

By Dini's Theorem {Kelley, 1955) the convergence of D{pj to (mj); as
t + = 1is uniform on compact sets. Hence we have a(x) > oj(x) for x
outside some compact set. Hence @j[x) -a{x) 1is bounded above. Choose a

constant

cj z_max{wj(x) -o(x), 0}, xE€ R

for 1 <j <2 . We can and do take ¢, = 0

Define an affine function 8 on R(n+£) by
L 2
B(Jn’n+£(x) + jlejemj) = a(x) + jElcjsj .

Then by our choice of o and the constants cj we see that § > ¢ on

Z , but B(zo) < w(zo) + € . This finishes the proof of Theorem 2.2.

One can ask for refinements of Theorem 2.2. For example, pgiven
D1 eens @, as there, what additional conditions de the @0 need to satisfy

in order that for given k < &, there is y € SCNCGR(n+k)+J such that

©; (0 = 30, pa (3 *yy)
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. {n+k) + . . .
for suitable Yy ER . This is a more involved matter. Here we will
only consider a simple case.

Proposition 2,3, Let ¢, , ¥, be two functions in SCNCGR“+) . In order
P 1 2

that there exist ¢ € SCNC@R(n+1)+) and numbers a >b >0 such that
0 (x) = ¥(x,a) , ©,(x) =v(x,b)

it is necessary and sufficient that

(2.8) 9 (x) 29,0 > @I = (@HLx) , xERT,

If one wishes to specify a and b , then the corresponding condition is

(2.9) ©) 2@y 2D, (0

Proof. We use the same strategy as in Theorem 2.2, The necessity of
(@1); = (mZ); is seen exactly as in that proof. The necessity of 0 20,
is implied by Lemma 2.1 and the second inequality in (2.9) is implied by the

fact that th is decreasing in t :

© (0 = ¥(x,a) = (%)(%—)w(%{ 'EK: b))= (%)Da/bw(z—x, b)
< (BHGo ©) = (FlodZ) = vpyu 0

Now assume wl and mz satisfy inequalities (2.8) or (2.9). Let

Y be the smallest element among elements ¢ of SCNCGR(n+1)+) satisfying

(2.10)  ¥(x,a) > 0;(x0 , F(x,b) > ©,(x)

The function ':I?l(x,t) = @, (x) satisfies the inequalities (2.10) , with

equality in the first one, so ¢ will exist and y(x,a) = wl(x,a) . If
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b >0 , define
V(60 =0, @) .

It is straightforward to check that ?p“z is in SANC®™ DY) | and that
Eé(x,b) = wz(x) . If inequality (2.9) holds, then so does (2.10). Hence
in the case of conditions (2.9) the proposition is proved,

Suppose we know only the weaker facts (2,8), Then we may have to
take b = 0 . In this case fix X, ER™ and € >0 . Let o be an affine
function on R such that a 2%, on R , and a(xo) < wz(xo) + e .
As in Theorem 2.2 we may assume al > (mz); . Then by (2,8) we have

al > (wl); , hence @, - a 1is bounded above. If

1

c = max{wl(x) - a(x), 0} .
Then

V(x,t) = a(x) + ct/a

is an affine function on mﬁ“*l)*

satisfying inequalities (2,10), and such
that ﬁ(xo, 0) < wz(xo) + £ , Hence the remarks at the end of Section 1
again tell us that in this case we will have ¢(x,0) = mz(x) for x € R ,

as desired. This establishes the proposition.



17

REFERENCES

Keiley, J. L., General Topology, Princeton, NJ: van Nostrand, 1955,

Kolm, Serge-Christophe, Justice et éqpité, Paris: Centre Nationale de la
Recherche Scientifique, 1972,

Rockafellar, R. Tyrrell, Convex Analysis, Princeton: Princeton University
Press, 1970.

Roemer, John, "Equality of Resources Implies Equality of Welfare," University
of California at Davis, Department of Economics Working Paper Series
No. 256, February 1985,



