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0. ABSTRACT

This paper providés an analyticai study of linear regressions involv;
ing the levels of economic time series. An.asymptotic theory is developed
for regressions that relate quite general integrated random processes. This
includes the spurious regressions of Granger and Newbold (1974) and the
recent cointegrating regressions of Granger and Engle (1985). An asymptotic
theory is developed for the regression coefficients and for conventional
significance tests. It is shown that the usual t and F ratio test sta-
tistics do not possess limiting distributions in this context but actually
diverge as the sample size T + = , The limiting behavior of regression
diagnostics such as the Durbin-Watson statistic, the coefficient of deter-
mination and the Box-Pierce statistic is also analyzed. The theoretical
results that we present explain many of the earlier simulation findings of

Granger and Newbold (1974, 1977).
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I, INTRODUCTION

In an important, influential and frequently cited article in this
Journal, Granger and Newbold (1974) examined some of the likely empirical
consequences of nonsense or spurious regressions in econometrics. Many of
the points made by Granger-Newbold center on the classic textbook warning
about the presence of serially correlated errors invalidating conventional
procedures of inference in regression. The failure of conventional test
procedures in tﬁis context was given dramatic demonstration by the Monte
Carlo evidence reported in their article, More discussion and further evi-
dence of the danger of spurious regressions can be found in their subsequent
monograph, Granger and Newbold (1977, pp. 202-214) and in related work by
Plosser and Schwert (1978),.

A focal point of the Granger-Newbold study is the specification of re-
gression equations in terms of the levels of economic time series. Granger
and Newbold argue persuésively that: the levels of many economic time series
are non stationary; their sample paths are well represented by integrated
processes of the ARIMA type popularized by Box and Jenkins (1970); and often
they appear to be near random walks. It is fufther argued that regression
equations which relate such time series frequently have high R2 yet also
typically display highly autocorrelated residuals, indicated by very low
Durbin-Watson statistics. In such situations they rightly contend that the
usual significance tests about the regression coefficients are very mislead-
ing. The sampling experiments they conduct provide strong evidence that
the conventional significance tests are seriously biased towards rejection
of the null hypothesis of no relationship and hence acceptance of a spurious

relationship, even when the series are generated as statistically independent



random walks,

The failure of the conventional significance tests in the Granger-
Newbold expefiments has attracted a good deal of attention in econometric
research and teaching programs. Yet, surprisingly, no analytical study
has been made of what exactly goes wrong with the conventional tests in
their Monte Carlo set up. Granger and Newbold themselves emphasize the
inappropriateness of the usual tests, given the heavily autocorrelated
residuals. They point to the difficulty of the distribution problem involveq,
But they provide no further analysis. Subsequent researchers appear to
have ignored the problem,

The present paper develops an asymptotic theory for regressions that
relate quite general integrated random processes. This includes spurious
regressions of the Grangef-Newbold tyvpe as a special case, It turns out
that the correct asymptotic theory goes a long way towards explaining the
experimental results that these authors obtained. In many cases their find-
ings are quite predictable from the true asymptotic behavior of the relevant
statistics, Thus, our theory demonstrates that in the Granger-Newbold re-
gressions of independent random walks the usual t-ratio significance test
does not possess a limiting distribution but actually diverges as the sample
size T + = , Inevitably, therefore, the bias in this test towards the
rejection of no relationship (based on a nominal critical value of 1.96)
will increase with T . (In fact, T = 50 in the Granger-Newbold experi-
ments.) We alsc show that the Durbin-Watson statistic actually converges
in probability to zerq, while the regression _R2 has a nondegenerate limit-
ing distribution as T + @ , These and other related results are given 1in
Section 2 of the paper.

Section 3 extends the theory to multiple regressions in which the variablés



. are generated by a very general vector integrated process. This framework
allows for cointegrating regressions of the type recently advocated by
Granger and Engle (1985). The latter authors work under a null hypothesis
of no cointegration in the series. Under this null, the relevant asymptotics
for such regressions are given by the general theory that we develop in this
Section of the paper. Some discussion is also provided of the appropriate
distribution theory under the alternative hypothesis that there is cointe-
gration in the series in question (i,e, some linear combination of the series
is stationary).

Some concluding remarks are made and some further extensions of the
theory are discussed in Section 4 of the péper. A Mathematical Appendix
is provided which contains proofs of results which appear in the body of
the paper together with some related material on funétional central limit

theory and the multivariate Wiener process that is needed in our mathemati-

cal derivations,

2. LARGE SAMPLE (T 4 =) ASYMPTOTICS

FOR SPURIQUS REGRESSIONS

Granger and Newbold (1974) take the following stochastic environment
as their prototype of a spurious regression. The variate Ve is regressed

on a constant and angther variate Xy giving the least squares regression:

(1) yt=&+éx +u,: t=1, ..., T.

In fact, Ve and x, are generated by the independent random walks:

(2) Yo = ¥eq * Ve s Xp =X +w,; t=1, 2, ...



in which v, is iid(0, 03) and W is 1iid(0, oﬁ) . In their simula-
tions Granger-Newbold set initial conditions as Yo = % % 100 and draw
Ve Wy from independent N(0,1) populations,

For our own theoretical development we shall make much weaker assump-
tions about the innovations in (2). It will be convenient for our purpose

here and for our analysis in the next Section of the paper to work at quite

a general level, Thus, we introduce a sequence {£_}

+ of random mn-vectors

1
defined on a probability space (Q,B,P) . Let St E§=1Ej be the partial

sum process and set S0 = 0 . We require:

ASSUMPTION 2.1
(a) E(E) =0, all t;

<w for some 8 >2 and & > 0 ;

3

(e} I = limp,, TulE(STS+) exists and is positive definite;
(d) {Et}? ig strong mizing with mixing numbers o satisfuing:

Zmal-Z/S

< oo
I'nm

If we now set n = 2 and E{ = (vt, w._) then the conditions implied

t
by Assumption 2.1 on the innovations of (2) are quite weak. In effect,
they permit Yy and X, to be rather general integrated processes (of
order one) whose differences are weakly dependent and possibly heterogen-
eously distributed innovations. This includes a wide variety of possible
data generating mechanisms, such as the ARIMA(p,1,q) model, under very
general conditions on the underlying errorss Note. that condition (b) of
Assumption 2.1 controls the allowable heterogeneity of the process, whereas

(d) controls the extent of permissable temporal dependence in the process

in relation to the probability of outlier occurrences. Thus, the summability



condition [4) is satisfied when the mixing decay rate is o = O(muk) for
some A > B/(R-2) . As B approaches 2 and the probability of outliers
rises {under the weakening moment condition (b)) the mixing decay rate
thereby increases and the effect of outliers is then required under (d) to
wear off more quickly,

Note that if {Et} is weakly stationary then
= 1 e
(3 L = E(g48]) + I, _E(5,8p + ELE])

and the convergence of this series is implied by the mixing condition (d)
(Ibragimov and Linnik (1971), theorem 18.5.3). Moreover, when
E% = (Vt’ wt) and Ve and w, are independent, as in the spurious regres-

sions context, we have

03 0
L =
0 2
w
where
2 _ . -1 2 2 _ -1 2
ay, = 11mT+m T E(PT) s Oy = IJLm.I._mo T E(QT)
and P, = zt

We denote the standard errors of « and B in the regression (1)

by s~ and sé . The customary t-ratios are then tOl = ﬁ/s& and

2

&

.
A

&3
tB = S/SQ . Let DW be the usual Durbin-Watson d-statistic and R

be the
coefficient of determination. The Box-Pierce statistic is Q, = Tx§=1r§
- T ~ A Taz
where T = Es+1utut-s/zlut .

Theorem 2.3 below provides the correct (T + =) asymptotic theory for



the least squares regression estimates in (1), the associated t-ratios and
the commonly used regression diagnostics W, R2 and Qk . The following

Lemma is useful in the derivation of this theorem and our other results,

LEMMA 2.2. Suppose {yt}? and {xt}? are generated by (2). If the inno
vation sequences {vt}? and {wt}T are independent and if {(vt, wt)}T

satisfies Assumption 2,1 then, as T 4+ = :

-3%. T 1 -3%.T 1
(a) T zlxt=GWIOW(t)dt ; T zlytsoVJ’OV(t)dt,
-2 T.2 . 21 2. . .-2.T2 2¢1 2., .
(b) T orx=o [W(©)de; T zlyt»ovfovm dt ;
-2.T

(@ T(x,-D°= Gi[féW(t)zdt - {fél'l(t)dt}z] ;
T¢22¥(yt‘_—32 ,.ci[f;V(t)zdt - {féV(t)dt}z] ;

(@ Tryx = cvowj‘é\’(t)w(t:) dt ;

(@) Tl (v, -y = (/2 VD2 ea ) + Bl (-0, 5

121xt(xt-xt_r) - (r/2) {c‘fv:(l)z +q 0} + zljf:l(r-j)nwj .

-
-1.T -1.T
() T Iy (x -x J+T7Tx(y -y, J= ro o V(1)W(1)

where W(t) and V(t) are independent Wiener processes on C[0,1] and

where

. -1.T s
ﬂvj = limp, T Ej+1E(vtvt_j) ;3 i=20,1, ...
g . = lim 71T Eww, ) 3 §=0,1 .
Wi T-oo j*+17 vt e-3 ? Pt

Moreover (a)-(f) hold irrvespective of the initial conditions assigned to

Yo and Xy -

In the statement of Lemma 2.2 C[0,1] denotes the space of all real

valued continuous functions on the interval [0,1] . The Wiener processes



W(t) and V(t) that occur in the Lemma are stochastically independent.
Their sample paths lie in C[0,1] . Results (a)-(f) of the Lemma establish

that suitably standardized sample moments of the sequences {yt}i and

{x,}

o=

X }y converge weakly to appropriately defined functionals of the Wiener
processes W(t) and V(t) . Each of these functionals has a well defined
non degenerate distribution. The notation " = " in the Lemma is used to

denote weak convergence of the relevant probability measures. Thus, in

_3
the case of (a) we deduce that T éZTxt converges in distribution to the

distribution of the functional cwféW(t)dt of the Wiener process W(t)
on C[0,1] . Since W(t) is Gaussian with mean zero and independent incre-
ments (see, for example, Billingsley (1968)) we further deduce that the

3
limiting distribution of T ézixt is normal with zero mean and variance

given by

1r

it

5 (11 | 5
UWE{f f W(t)W(s)dtds} 205[ [ E{W(x)W(s) }dsdr
00 v |

/
g0

1}

2 1r
265 [ sdsdr
W
00

_ 2
= Uw/3 .

Lemma 2.2 and the subsequent results of this paper are proved in the Mathe-
matical Appendix using functional central limit theory. An introductory

discussion to this form of asymptotic theory and references to the recent

literature on the subject are given there,



THEOREM 2.3, Suppose (1) is estimated by least squares regression and the

conditions of Lemma 2.2 are satisfied., Then, as T + = :

Uv{févtt)}v(t)dt - f(l)V(t)dtf(l)W(t)dt}

(a) 8= =
cw{féwm “dt - (féW(t)dt) 2}

= (o, /o )c 3

RV
M) T 25w cv{févct)dt - z;f(l)W(t)dt} ;

(c) T-I/Zt8 = u/\)l/2 , where
u o= j’(l)v-(t)h'{t)dt - f(l)V(t)dtféW(t)dt , and
v o= {f(l)V(t) zdt-(fé\f(t)dt) 2}{[3'&(0 Zdt—(f(l)W(t)dt) 2}-{féV(t)W(t]dt..f(I)V(t)dtf
1
(@ 1R, "'{fé"(t) dt - g fgH(D) dt}{f I(e 2t - ([ an  ofhien %

- Aol - Jwwan?
e = ;

L

fovtm e - (fpyman?®
() DW g 0‘; and

TON = {(Q,0/02) +52(2, o/a2) }[IéV(t) Zat - (fpvinan 2 - cz{]éW(t) 24t - (fhce)
(g} For all fimed s > 1

T(r - 1) = -A_/B
and

-1

r, = 1+ OP(T )]

where
. 1 1 2 I 1.
A, = (33| -y -{fivenac - oo aet] s sra{fivenae <oy

2. .8 . 2 2 2.2 .. 2
+{§zv0/cv+zj=1(s—3)ﬂvj/crv} 4+ {nwo/cw+Zj=1(s—-3)s’awj/cw}



and

B = fovin dae - (fivnan? - cz{féwm “dt - (fcllW(t)dt)z}

-1, _ ko2 .
(h) T Qk - Es:lrs P ks

where W(t) and V(t) are independent Wiener processes on C[0,1] .

Theorem 2.3 goes a long way towards explaining the Monte Carlo results
reported by Granger and Newbold. In the first place, parts (c) and (d) of
the Theorem show that the conventional t ratios, tcl and tB , that are
used to assess the significance of the coefficients in regression analysis do
not have limiting distributions in this context. In fact, the distributions
of tOl and tB diverge as- T + = , so that there are no asymptotically
correct critical values for these conventiqnal significance tests. We should
expect the rejection rate when these tests are based on a critical value
delivered from conventional asymptotics (such as 1.96) to continue to in-
crease wifh the sample size. The high rejection rate that Granger and New-
bold found in their experimental investigation (where T = S0 )} therefore
comes as né surprise, Indeed, it is predicted by the correct asymptotic
theory. From their experimental results, Granger and Newbold (1974, p. 115)
suggest the use of a new critical value of 11,2 (rather than the usual value
1.96) when assessing the significance of the coefficient of Xy in the re-
gression at the 5% level. Qur results now show that this suggestion has no
foundation in asymptotic theory. On the contrary, if asymptotics were to
be used in this context then the correctly standardized statistic is
té = té//T » Whose limiting distribution is given by the functional defined
in (c) rather than the standard N(0,1} distribution that is used in con-

ventional asymptotic tests. Note that after such standardization the critical
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value suggested by Granger and Newbold transforms as 11,2 -+ 11.2//50 = 1.58.
This transformed value is, in fact, an approximation to the percentage point
of the asymptotic distribution givem in (c).

However, {(a) and (b) of Theorem 2.3 show that, in contrast to the usual
results of regression theory, the coefficients & and £ do not converge
in probability to constants as T + « ., In fact, B has a nondegenerate
limiting distribution as T + » and the distribution of & actually diverge
as T ¢+ » , Thus, the uncertainty about the regression (1) that stems from
its spurious nature ( Ye and Xy being generated by (2)) persists asymp-
totically in these limiting distributions. The contrast with usual regres-
sion theory extends further to the cése where Y and X, are generated
by independent stable autoregressive processes. In that case both a and
3 converge in probability to zero.

The reason for the distinctive nature of the present results is that
the processes Yy and x, are nonergodic. In fact, the sample moments
of Y and Xy and their joint sample moments do not converge to constants,
as they do for ergodic processes. As shown by the results of Lemma 2.2
quite different limiting behavior occurs. Upon appropriate standardization
the sample moments of Y and X, actually converge weakly to random var-
jables. Theorem 2.3 demonstrates that, when the regressors are nonergodic,
we obtain limiting behavior for regression coefficients which is also quite
different from that predicted by conventional theory.

Theorem 2.3 also shows that IW v 0 , whereas R2 has a nondegenerate
* limiting distribution as T + « ., Low values ‘for the Durbin-Watson statis-
tic DW and moderate values of the coefficient of determination R2 are

therefore to be expected in spurious regressions such as (1) with data gen-

erated by integrated processes such as (2}. The asymptotic distribution of
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the standardized statistic TDW 1is also given im part (f) of the Theorem.
From part (g) of the Theorem we see that the serial correlation coef-

ficients of the regression residuals converge in probability to unity.

The limiting distribution of the standardized coefficient T(rS -1) is

also given in part (g) of the Theorem. From part (h) we deduce that the

distribution of the commonly used Box~Pierce statistic Qk diverges as

T 4« , All of these results differ from the conventional theory of regres-

sion with stationary processes,

3. EXTENSIONS TO MULTIPLE REGRESSIONS

WITH INTEGRATED PROCESSES

The results of the previous section are readily extended to the multiple

regressions of the form:

- 21 . _
(5) Y, =a+B'x . +u 3 t=1, ..., T

where Ye . (a scalar) and Xy {an m~vector) are quite general integrated
processes of order one. It is not necessary to require that Ve and Xy
be independent. In fact, the main requirement is that the vector time series
(yt, xé) is not cointegrated in the sense of Granger and Engle: that is,
there does not exist a linear combination of (yt, x%) which is integrated
of order zero (i.e. is a stationary process). When (yt, x%) is cointegrated,
different results apply as we shall indicate below. The reader is referred
. & .

to Pﬁillips and Durlauf {1985) for the theory in this case.

For our development here we set z% = (yt{ x%) and suppose that Zy

is a vector integrated process of dimension n = m+l whose generating

mechanism is:



12
(6) 2, =2t t=1,2, ..

The process {F,t}? in (6) is required to satisfy Assumption 2.1 and we
allow either of the commonly used initial conditions: (i) zp = conmst,

with probability one; or (ii) Z, is random with a certain specified dis-

tribution,

Our main result is the following:

THEOREM 3.1. If (5) 18 estimated by least squares regression, if z. ie

generated by (6) and if the irmovation sequence (& t}? satisfies Assump-

tion 2,1 then ag T + =
(a) B=A,,a
-1 -

(b) T “a=b, -bIA _a

-1
1 .
(c) R™=ajArqa,/a));

1 v atla /{a1 - at A_éa 1 ;

(d) T 2182222171211 " 221%22% 01

FB = (1/m)a

1 _ _ 1 - 1
(e T étei ”’(Azéazl)i/{(all"351A2é321) Bl b} ;

-1 i
(f) TDW = n‘ZEn/{au - aélAZZaZZ} ;

where
1 m

a1 3 1 uia 1 1 L

(7 A= =z {jozct)Z(t)'dt-fOZ(t)dtIOZ(z)'dt}z 2,
[ 3y A P
b 1 1
b=| 1| =1 bféf(t)dt ]
b 5 |m

-1
' - —-—
o= (L, -ayA) s
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Z(t) <g a vector Wiemer process on C' , ¢ 1is defined in Assumption 2.1

and
. -1.T .
EE = llmT T ZIE(gtgt) .

In part (d) of Theorem 3.1, FB denotes the customary regression F
statistic for testing the signficance of B in (5); and, in part (e},

g represents the conventional t-statistic for assessing the significance

i
of Ei . We observe that the distributions of both F8 and ty diverge

i
as T t = and so there are no asymptotically correct critical values for
these statistics., As in the case of the t-ratio statistics considered in
the previous section, the use of conventional asymptotics in setting the
critical values of these tests leads to a rejection rate which increases
with the sample size. We note that the divergence rate of the distribution
of FB is Q(T) . This is gréater than the divergence rate of O(T%é) for
the individual t tests (and that of the t-ratio statistics t, and tB
in the simple regression context), In a regression with many regressors,
therefore, we might expect a noticeably greater rejection rate fof the block
F test than for the individual t tests or for a test with fewer Tegressors.
This is, in fact, precisely what we do observe in the Granger and Newbold
experiments. For regressions invelving independent random walks their
Table 2 (p. 116 of Granger and Newbold (1974)) reports a rejection rate of
76% when m = 1 (one regressor) and a rejection rate of 96% when m = 5
(with T = 50 "in both cases)., For regressions ingblving indépendent
ARIMA(0,1,1) series the corresponding rejection rates are 64% and 90%. Thus,

asymptotic theory is again helpful in explaining these simulation findings.

- - - - - - ~
As in the case of simple regression, the regression coefficients a
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and § do not converge in probability to constants as T + = . Once again
8 has a nondegenerate limiting distribution while the distribution of ¢

diverges as T 4+ = ., From part (f} of Theorem 3.1 we see that DW 5 0

and, from part (c)}, that R2 has a nondegenerate limiting distribution,

both as in the case of simple regression. Again, low values for the Durbin-
Watson statistic and moderate values of R2 are to be expected in regres-
sions such as (5) that involve integrated processes.

It is worth emphasizing that in the present case Ye and x_ are, in

t

general, correlated time series., In the previous section we retained the

Granger-Newbold hypothesis of independent Y and x, to underscore the

t

spurious nature of the regression. However, it is clear from the results
of Theorem 3.1 that the major conclusions of the present theory continue

to hold irrespective of whether Y, and x. are independent or not. Of

t

course, the correlation properties of these time series do have quantitative

effects on the limiting distributions. These effects are introduced through

the parameters of the limiting covariance matrices I and Zg . Under the
conditions of the Theorem, however, these effects do not interfere with

the main qualitative results of the theory: viz. that the regression coef-
ficients & and £ do not converge in probability to constants; that the

distributions of test statistics such as FB and tg diverge as T t « ;

b

and that the Durbin-Watson statistic converges in probability to zero whereas
R2 as a nondegenerate limiting distribution as T + = ,

There is, in fact, one case of major importance where the correlation
properties of Ye ;nd Xe do interfere wikh these qualitative results.
Assumption 2.1(c} requires that the limiting covariance matrix I be non

singular, If we allow the matrix I to be singular then the asymptotic

theory of Theorem 3.1 no longer holds as stated. We may suppose, for examplé;
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that £ has rank m = n-1 and the submatrix 222 has full rank m in

the partition:

1 m
o G 1
: - 11 21 .
931 Iy} m

1

- ) -1
= = T - -t 1 =
Then o1y = 051222021 and Iy = 0 where «' = (1, -a') and a s}

]

21%22 -
The singularity of I 1is, it turns out, a necessary condition for (yt, xt)
to be cointegrated in the sense of Granger and Engle (1985). 1In this case, .

the cointegrating vector is vy and under weak additional conditions (it

is sufficient that y'z  satisfy Assumption 2.1) we find that the regres-
1(5
2721 ¢

Thus, the asymptotic theory of regression for cointegrated series is quite

sion coefficient é in (5) is a consistent estimator of a = 25

different in certain respects from that given in Theorem 3.1. The reader
is referred to Phillips and Durlauf (1985) for a detailed investigation
of the regression theory in this case.

In developing tests of cointegration Granger and Engle (1985} prescribe
as their null hypothesis that the series in question are not cointegrated.
The asymptotic distribution theory under this null of the cointegrating
regression (5) is then given directly by Theorem 3,1. To test this null
hypothesis against the alternative that the series are cointegrated Granger
and Engle (1985) suggest a number of different statistics. One of these
is the Durbin-Watsqn statistic, DW, constructed «from the residuals of the
cointegrating regression. As we have seen above, under the null of no co-
integration, DW B 0 as T 4+ = , Moreover, the limiting distribution of
TDW given by part (f) of Theorem 3.1 may be used to construct an asymptotic

critical value for the Granger-Engle test, thereby approximating the
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critical values reported in Tables IT and III of Granger and Engle (1985)
for this test,

This DW test was earlier suggested by Bhargava (1984). By virtue of
its construction, it would seem to be an intuitively appealing test for
discriminating between stationary and nonstationary alternatives or, in
the present context of regression residuals, between cointegration and no
cointegration. However, as Granger and Engle (1985) remark, the correct
critical value for this test is parameter dependent upon the dynamics of
the errors. Our result makes this dependency explicit and shows how the
limiting distribution of the statistic TDW, and hence the implied asymptotic
critical value for DW, depends on the serial correlation and heterogeneity

characteristics of the innovation sequence {Et}? .

4, SOME CONCLUSIONS AND FURTHER EXTENSIONS

To the extent that the levels of economic time series are nonstation-
ary and nonergodic, regressions that relate such variables will typically
require the use of asymptotic methods and results that are quite different
from those that are well established in current econometric theory and
practice. The present paper has developed an asymptotic theory of regres-
sion which is applicable when the variables are quite general integrated
processes. This includes the spurious regressions of the type considered
in the simulation studies of Granger and Newbold (1974, 1977). When the
correct asymptotic theory is brought into play in this context we have
found that the simulation findings.of Granger and Newbold offer no surprises.
In many respects these findings are well predicted by the relevant theory.

The asymptotic theory of regression that we have developed here also

applies to the cointegrating regressions that have recently been introduced
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by Granger and Engle (1985). Interestingly, the essential characteristics
of the‘regression theory in this case are the same as they are for spurious
regressions which relate independent time series. Some major differences
in the theory do arise when the time series in question are cointegrated.
However, methods similar to those that we have employed here may be used

to analyze such regressions. For a detailed treatment of this case the
reader is referred to recent work by Phillips and Durlauf (1985) and some
related work by Stock (1985},

The theory derived in this paper is based on large sample (T + «)
asymptotics. An alternative asymptotic theory ma& be developed which works
in terms of the time interval (h) between sampled observations, As h 4+ 0
we obtain a pontinuous record of observations over a finite time span,

Such continuous recording of data has been a feature of statistical data
collection in certain physical and medical sciences for many years. Trends
in this direction for economic and financial statistics are now well estab-
lished. For example, with the electronic monitoring of activity in certain
financial and foreign exchange markets it is now possible to work with data
recorded at very high frequencies (daily, hourly or even minute by minute

in some cases)., It is, therefore, of natural interest to study the asymp-
totic behavior of statistical procedures when h + 0 as well as when

T+« for a given fixed h . Continuous record asymptotics of this type
were first developed rigorously by the author in a recent paper (1985a).

The regressions considered in the present paper may also be analyzed using
continuous Tecord asymptotics, When the innovation sequence {Et} is gid
some especially interesting and intuitively appealing results are obtained
by this approach. For example, we find that the regression coefficient

8 1in (1) as the same limiting distribution in this case as h + 0 over a



18

fixed span of data as it has when T + = (with h fixed) over an infinite
span. Thus, the same limiting distribution theory applies in two different
directions. One might therefore expect the asymptotic distribution of this
regression coefficient to yield an unusually good approximation in finite
samples. The reader is referred to an earlier version of the present paper
(Phillips (1985b)) for a detailed analysis along these lines,

1t is also possible to gain insight into the édequacy of the asymptotic
theory presented here by means of higher order asymptotics. Since the limit.
ing distribution theory in the preéenf paper is nonnormal and relies on
functional central limit theory the mathematiﬁal development of such expan-
sions is quite difficult and is of a very different character from the con-
ventional theory of Edgeworth expansions. In another paéer the author (1985¢)
has developed the theory of such higher order asymptotics in a general setting
which extends to the present case. It may be shown from these results, for
example, that the erfor on the asymptotic distribution of B given in
Theorem 2,3 is of OP(T"I) under quite genmeral conditions. This gives
us another reason for expecting the asymptotic theory of the present paper

to work well, at least in certain cases,



MATHEMATI CAL APPENDIX

1. Functional Limit Theory and the Wiener Process

Define the partial sums Pt = Eivj s Qt = waj and set P0 = Q0 =0 .
In view of (2) we may write Yy = Pt * ¥y and Xe = Q. *+ X5 . In what
follows we sﬁall permit either of the commonly proposed initial conditions:
(i) Yo (respectively Xg } = c, a constant, with probability one: or
(i1) Yo (xo) has a certain specified distribution. We construct the

standardized sums:

V = 1 - 1 . s < < 3 7 = -

Tp(t) = o= ch[Tt] = vaj_l 3 (G-D/T=<t<3i/T (5=1,...,7)
-_— 1 -— 1 - '_ 1 3 -

Xplt) = 7’FTWQ[Tt] - ﬁqj-l o G-D/Tse<y/T (G=1, ..., M

=1 =1 _

where [a] denotes the integer part of a .
We shall also have occasion to work with the more general sequence

{5t}T of random n-vectors satisfying Assumption 2.,1. Using the partial

sum process St = zlgj (SO = 0) we construct:
-1 -1 -Yo - Y, . : .
(0 = T RS = T .05 G-L/Tst<i/T (=1,...,7)
-1
ZT(I) =T <t ST .

When g{ = (vt, wt) and the sequences {Vt} and {wt} are independent

we have:
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[») 0 YT(t)
=l S B :

2 X0

(o]

XT(t) and YT(t) are random elements of the function space D[0,1] ,
the space of all real valued functions on [0,1] that are right continuous
at each point of [0,1] and have finite left limits., Similarly, ZT(tJ is
an element of the product space p" = D{0,1] x ... x D[0,1]1 ( n copies).

We endow. p" with the metric

dn(f,g) = maxi{do(fi, gi) tis=1,...,n; fi’ 9 € D[0,11]}

>

where d0 is the modified Skorohod metric [Billingsley (1968), p. 112].
With this metric D" is a separable and complete metric space. Under quite
general conditions on the underlying process {Et} we may establish a
central limit theory for ZT(t) on the function space D" . e shall, in

particular, make use of the following result which is proved in Phillips

{1985¢c, theorem 2.2):

LEMMA A.1. Let {St}j be a sequence of random n-vectors satisfying Assurp-
tion 2.1, Then, as T + =, Z(t) = Z(t) a multivariate Wiener process

on C%=C[0,1] x ... x C[0,1] .

The notation " = " in the statement of Lemma A.l is used to signify
the weak convergence of the probability measure of ZT(t) to the probability
measure {(here, multivariate Wiener measure) of the random function Z(t) .
The result is a multivari;te functional céntral iimit theorem (CLT) i.e:
a CLT on the function space p" . It may also be described as a multivariate
invariance principle following early (univariate) work by Donsker (1951}

and Erdos and Kac (1946}. Univariate results similar to Lemma A.l1 were
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obtained by McLeish (1975a) and Herrndorf (1984). The reader is referred
to Billingsley (1968), Hall and Heyde (1980) and Pollard (1984) for an in-
troduction to the subject and excellent reviews of the literature,

The 1limit process Z(t) in Lemma A,! is popularly known as the vector
Wiener process or as vector Brownian motion., The sample paths of  Z(t)
lie almost surely (Wiener measure) in c? = c[0,1] x ... x C[0,1] ( nm
copies) where C[0,1] 1is the space of all real valued continuous functions
on [0,1} . Moreover, the vector random function Z(t) is Gaussian, with
independent increments (so thatl Z{s) 1is independent of Z(t) - Z(s) for
0 <s <t<1) andwith independent elements (so that Zi(t) is inde-
pendent of Zj(t) s 1 £ 3.

In the case where n = 2 , E% = (V£, wt) and the sequences {v_}

t

and {wt} are independent we obtain

Xp(t) = W(t) , Yp(t) =V(t) ; as T 4w

where W(t) and V(t) are independent Wiener processes on C[0,1] .

2. Proof of Lemma 2.2

To prove (a)-(d) we write each statistic as a functional of XT(t) or

YT(t) or both as is appropriate, Thus, in the case of {a) we have:

-%,T =¥ T
T oyxe =T 72 1(Q5_q +v; + %)

T
1(%5, * %)

- 23
o T (/T 0 )Q;_y + T %2

i/T
=g 5

T
wl

(t)dt + o_(1)
(i-l)/TXT P

1
ol Jr(Bdt + o, (1)

1
s g f W(t)dt ; as T 1 «
"0
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The third line of the argument follows since T-%éxo = op(l) (under either
of the initial conditions (i) or (ii)) and T'lzzwi +0 a.s. as T+« by
the'strong law of McLeish for weakly dependent (a-mixing) sequences [McLeish
{1975b), theorem 2,10 or White (1984}, Corollary 3.48]. The final line

of the derivation follows from Lemma A.1 and the continuous mapping theorem
(e.g. Billingsley (1968), pp. 30-31}. Note that the result holds irrespec-
tive of whether the initial condition X is prescribed to be a fixed con-
stant or a random variate with a specified distribution., Since the same

" point applies in all the derivations that follow (at least for large T
asymptotics) we will set Xg = ¥y = 0 without loss of generality to simplif
derivations,

Arguments entirely analogous to those of the proof of (a) yield results

(b)-(d). For example, in the case of (d) we have:

-2.T -1 T
T EyeXe =T cvowzl(l//f GV)Pi_l(l/VT'ow)Qi_l
-2.T
F TR (VX YWy PV
. T Ii/T
(A1) =001 Yo ()X (£) dt + o_(1)
vowl (i-1)/T T XT P

1
= cvcwonT(t)XT(t)dt + op(1)
1

= GVOWIOV(t)W(t)dt ; as Tt =,

The final line of the argument follows once again from Lemma A.l1 and the

continuous mapping theorem. The second line of the derivation is a com-

sequence of the fact that
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T-lzﬁvt e = Oy zy fi/T Xp(t} Y (t)
- vw©l (i-1) /T T
1
=0.q, joxr(t) dY ()
1
(A2) ﬁUVUWIOW(t)dV(t) i as Tt e

as in Lemma 3.1(e) of Phillips and Durlauf (1985). The integral in (A2)

is, of course, a stochastic integral. Similarly, we have

1

-1.T =o. 06 [ V(t)dW(t) ; as T + =
vwo

T Ly, 1Y

and by the strong law of McLeish for weakly dependent (a-mixing) sequences

lZTV w, >0 a.s.

T 1'tt

This verifies the op(l) error on the right side of (Al)}. Thus, (d) is
established.
To prove (e) we first consider the case r =1 . We shall demonstrate

the result for Ye o writing

-1.T
T Lyyeve

1

-1.T

1

i

-1.7T 2 -1.T
(A3) T Elvt + T zlyt—lvt .

We note that the process {vi -E(vz)}? is a meigurable function of (a finite
stretch of) {Et}§ and is, therefore, strong mixing with mixing numbers

that satisfy the summability condition {d) of Assumption 2.1 (e.g. White

(1984), theorem 3.49), Set B = 2r with r > 1 in this summability
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condition and note that in view .of Assumption 2.1(a) suptE]Vt[Zr+E < o

for some € > 0 . Thus, by the strong law of McLeish for a-mixing sequences

we have

-1.T 2 i -1.T. . 2, _
{(A4) T Elvt s 11mT+m T EIE(vt) = QVO

as T 4 « ., Taking the second term of (A3) we write:

-1.T 11T 2 ~1.T.2 S1.T.2
T EBYe Ve = %‘ By ey #vd " - T Ly - T E_lvt}
i/T
= (022t o7 - (/v
- (i-1)/T

2 2 T 2
(OV/Z)YT(I) - (1/2T)Elvt

(A5) = (03/2)\1(1)2 - (1/2)9V0

as T 4+« , (A5) follows by Lemma A.1 and the continuous mapping theorem
(applied to the first term) and the strong law of large numbers (A4). Com-

bining (A3), (A4) and (AS5) we deduce that

1.T

o) Ty v, -y, ) = @YV e (e, s as T

which is the stated result with

i
—
-

Suppose (e) holds for some r > 1 . Write

-1.T

-1, T
(A7) T 1Y Ve ~Yeor

-1.T
1) =T Er+lyt(yt"yt—r) T el tVtor

and
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-1,T 1T 1T .t
T r+lyt t-r T zr+1yt—(r+l)vt-r * r+l j=t-rvjvt—r
| T r -1.T
=T I e (r+1)Veer ¥ Fic0T Era1VeeiVeer
(A8) - (/DYDY - (/20 - + 35 2 s as T 4w .
v v0 T Fj=0"vj ?

The first term of (A8) follows in the same way as (A5) above. The second

. -1.T
term follows from the strong law applied to T Zr+1{vt-ivt-r"E(Vtwivt—r)}
for i=20,1, ..., T . In particular, it is easily verified that the se-
m - - - -
quence {(Vt~ivtwr"E(Vt-ivt-r))}r+l satisfies the moment condition
sup,E|v, .v - E(v,_ .v )[r+6 <
t t-i't-r t-i't-r

in view of Assumption 2.1(b) with B =2r, r>1 and € =28 >0 ; and

(v - E(v is a measurable function of a finite stretch of

t-iVt-r t-iVe-p))

the process Et s SO0 that it is also strong mixing with mixing numbers
that satisfy the summability condition (d) of Assumption 2.1. It follows
by the strong law of McLeish that

-1 T

T r+l( t-1 t -T

- E(v )) 75705 as THe

t-ivt-r a.s,

or

-1_T .
r+1Vt-i't-r 3.5, timy e T J+1E(V v -j) - SZvj >

This proves (A8)., Combining (A6), (A7) and (A8) we obtain:

T l 1+1Y (Yt Vi e 1) = ((r+1)/2) (o V{l) +Q O) + Z 1(r+1 J)Q

as T 4+« , proving (e) by inductionon r .

To prove (f) we first consider the case T =1 . Write
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from which we deduce that

1T

- 1is 1.7

W1 = Xe) v T 5% -y p)

_ -1.T
= cvowYT(l)XT(l) - T Elvtwt

"’GVUWV(].)W(I) ; as T'froo

by Lemma A.1 and the continuous mapping theorem (applied to the first term)

and by the strong law applied to T'lz'{vtwt since E(v.w.) =0 all t.

Suppose (f) holds for some r > 1 . We write

-1.T ~1.T

L A LML M LC ) SN D

-1.T 1T

=TI e e XtV ) T T X Ve Y Ve

Now consider

-1.T -1.T
Z1:'-!-1Yt‘"i1:--r+T zr+1xtvt-r

T
-1.T ~1.T

T £r+1yt-r-1wt-r * Er-let—r-lvt-r

T -1.T -1.T
+zi=0{T zr+1Vt-:'Lwt—r+T Er+1wt—ivt-r}

-1.T
=17 z:r+1(yt--r—lwt-a:')'Xt-r—lvt—r) +op(1) ’
since Ve and W, are independent. This summation converges weakly to

ovowV(l)W(l) as in the case r = 1 considered above. (£f) now follows
b

by induction on T .
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3. Proof of Theorem 2.3

- e —
Eyt(xt—?c) T ZZytxt - Ty x

E(Xt—az 2

T-ZE‘(X -X)

. ovcw{ffl)V(t)W(t) dt - féV(t) dtféW(t) dt}

Uilféh‘(t) Zat - ([0 (1) dt}z]

;5 as T 4 =

by Lemma 2.2 and the continuous mapping theorem. We define

. [reemenat - [ivende it a

foWiey®at - {[iuce)aer?

as in the statement of the theorem, so that B = (Uv/cw)z; s Pproving (a).

Again by direct application of Lemna 2,2 we have:
_1/2,, __3/2 a _3/2 .
T “a =T Zyt—BT Ext
1 1
=g {f V(t)dt - ¢f W(t)dt} ; as T 4 e
i 0

proving (b). Define 52 = T'l):'{(yt -a -éxt)z and then:

7152 - T-ZZ{(yt—ﬂ —é'(xt-?{')}z
- T"zz(yt-ﬂz-ézT'ZZ(xt ke
J 1 1 A 1 3
(29) = o[ v(©ydt - (f v(tyde) -z {hwm dt - (f W(t)dr) } ;as T4
0 0 o 0 :

once again by Lemma 2.2. Now
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-gé é é
T"2¢ = =
B P 1 -%
T%sp g /ZS(E(Xt -9
_ 1
AT %2 (x, -0 )
) (T ¥25)
L

1 1 2
- ;{j W(t) 24t - (f w(r)dt) }
0 0

1
B 1 5 1 2 2 1 2 1 2 2
s Hf v “at - ( v(tydt) -t {f W(t) “de - (f W(t}dt) } ;oas The
10 0 0 _ 0

1 1 1
= [ v(w(t)dt - [ V(t)dt] W(t)de
0 0 0

1
A
1 1 2y 1 1 2y 1 1 1 2
: {j V(t)zdt-(f V(t)dt) }{j W) 2-(f W(e)de) }-{j V(tW(t)dt- v(t)dtf W(t)dt} }
0 0 0 0 0 0 0

%

= /v

proving (c). Next
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a T 2 1/2
T-lét 1/& ) o ( E(Xt 'z)j;
o
T%s; T%ﬁs(2xi)

%
G/ (T2 (x -0 )

Y
(s//D) (T 2xd)

1 1 1, 1 2, %
=-{j V(t)dt -z W(t)dt}{[ W(t) “dt - ([ W(t)de) }
0 0 0 0

1
1 1 2 1 1 271% 1 Y
: [[ v(e) 2at - (f Vi) d) -;2{f Ww(w 2dt - (f W(t)dy) }} S wnlay
0 0 0 0 0

as T + =,

1 1 2
{IDV(t)dt-z;f wct)dt}{f W(t) dt-([ W(t)dt) }

) S 1 2
{f v(t) dt-([ V(t)dt) }{j W(t) “dt - (f W(t)dt) }
0 0
1
3 1
1 1 1 2 1 £
_{J’ V(OW(t)dt - [ v(t)dt] W(t)dt} } (f Wee) 2at) 2}
0 0 0 0

as required for (d).

The coefficient of determination is

~ =2 22.-2 2
2 Z(Yt'Y) _ B T z(xt-_x—)

R™ = =
- 2 -2 2

RN 1 2
z {f W(t) “at - (f W(t)dt)}
= —7 0 I 0 ;3 as *T + =

2
J vio 2at - ([ v(r)dr)
0 0

proving (e).
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Next we consider the Durbin-Watson statistic:

T.» ~ 2 -1.7T ~ 2
- Ez(ut-ut_l) 1 T Ez(vt -Bwt)
N T~2 T T L -2.T - 2
Elut T Zl(yt v —B(Xt_-iﬂ)

Now

-1.T 2 2.2 2

T Ez(vt-swt) =-QVO + 0.z Qwolow ; as T 4=
whereas

i 1 1 2 1 1
T'Z};I[yt -§T-B(xt._—))2 w.oi[fov(t)zdt-(IOV(t)dt) 'Qz{fow(t)zdt —(IOW(t)dt}}

as T 4+ =« ., Thus, Dw'ﬁ 0 proving the first part of (f). The asymptotic

distribution of the standardized statistic, TDW, is given by:
2. 2 2 1 .2 ! L 1 2
TOW = {(Q,4/0,) +27(29/0) Y/ [ v{t)“dt - (f v(©)dt) -¢ {f W(t) “dt-(f W(t)de) }
0 0 0 0

as required for the second part of (f).

To prove (g) we first write:

T ~ ~ ~ T"'Z _1 SAz _.2 T.\z
S+1ut(ut--ut_s)/zlut - {T" 7t ut}/{T Zlut} .

T(r -1) = -I 1

Then, in view of (A9) we have:

R 1 1 2 1 1 2
(A10) T 25102 = o2l f V() 2dt - (f v(e)dt) -cz{J’ wee) 2dt - (f W) de }
0 0 0 0

£

as T+« ; and since s 1is fixed
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1522 _ -1_s - A 2
(A1) T 'Ejuy =T zl{yt-y-ﬁ(xt—ﬁ}

o 1 1 2
= scv{j v(t)dt - zf W(t)dt}
0 G

as T + =« . Finally,

-1 T ~ ~ ~ _ -1 T — A _ -J\ _
DUl -ug = Tr Ll -y -8(x - My -y -80x -x

and by Lemma 2.2 we have as T 4+ « 1

-1.T 2 2 5 ;
(A12) T Ly (Ye-Ye ) = (/2o V(1)" +a 4} + Ej=1(s—3)9\,j
-1.T 2 2 S -
(a13) T Esxt(xt-xt_s) - (5/2){owW(I) +Qw0} + Ej=1{S~J}ij
and
(A14) T x (v, -y, ) + T Yy (x,-x, ) = so o V(1)W(1)
stt t-s st t t-s vV w
as T+ = Moreover, vy _ -y =5t v, and x_ - X =Lt W,
) : t t-s t-s+1°j t t-s t-5+1

depend only on a finite stretch of the process {&!

t = (vt, wt)} and thereby

satisfy the moment and mixing conditions of Assumption 2.1. It follows

that as T 4 =

5T . 22
{Al5) T Zs(yt -yt_s) ﬁ-suVV(l) z N(0, s OV) R

“p T _ 22
(A16) T" 2L (x, -x,_) = so N(1) = N(O, s%0)

Combining (Al0)-(Al6) we deduce, after a little simplification, that:

- =AY/Bt = -
T(r5 1) =» AS/B AS/B
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where

b od
-
il

2 2 2 s . 2
av[(s/Z){V(l) +Qv0/0v} +Ej=1(S"J)ij/Uv}
2
+03€2{(S/2){W(1)2 +Q.0707 +Z§=l(s—j)ﬂwj/c§]

- _so‘fcv(l)w(l) - 50‘2, [V(1) - W (D) ][J'EI}V(t) dt*CféN(t) dt] + soi{jév(t) dt - Cféw(t) dt}?

"

2 , 1 1 2 |
(SGV/Z){{V(I) - ZW(1)} - {IOV(t) dt - zf H(t) dt}] + (sci/Z}{f&v(t)dt } f:féh’(t)dt}z |

2 2. .5 s 2, .2 2 .5 g 2
mV{mvo/UV +zj=1{s vaj/cv} +Z {yzwo/ow +Zj=1(s-3)ﬂwj/ow}]

Bl

2 j 2
2| rl 2 1 2] -1 2 1
cv[J'OV(t) dt - ([qV(t)dt) - {}ow(t) dt - (fgW(t)dt) }]
and
2 . 2
A = Aé/(}v » B = B'/UV N
This proves part (g} of the theorem. Part (h} follows immediately,

4, Proof of Theorem 3.1

We shall make use of the following result, which is proved in Phillips

and Durlauf {1985, Lemma 3.1):

LEMMA A.2. If {zt}i 8 generated by (6) and if the innovation sequence

{ét}? satisfies Assumption 2.1 then as T + »

-3, T %ol

2 .

(A17) T 2Lz, =k fOZ(t)dt ;

A18 7% 2 2! »zl‘é J'l".(t)Z(t 'dtzl/2 ;
(A18) Pl 0* ) ’

- i
w9 AN Dz oD - /Z{Iézct}zm at - [Lzeeyaeflacy 'dt}z%

where Z(t) <is a vector Wiener process on c?
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To prove part (a) of Theorem 3.1 we simply note that
g = T'ZET(x - (x -3@'}—1{T—22T(x -X) (v -—)}
- 1"t t 1"t “t

and by appealing to (Al19) and the continuous mapping theorem we deduce that

as T 4 e ¢
~ hfel 1 1 1y -1
(A20) B = [z 24 (Y2200 1de - fLzeo aeflzee racke ]
{413 0 ZCRY 22}

L 1
'[E é{féz(t)z(t) rdt - [pL(t)atfpz(e) 'dt}}: /2}21

-1
22821

= A
as required. To prove (b) we have
=7 - %3

so that using (Al7)} and (AﬁO) we obtain:

-lA
T /Za-»bl-bfAl

> 22321 ;5 as T 4 =

as required. Now

2 _ a2 T, = = a2 T =2
R™ = BT 72 (x, - %) (x, - X '8/T 2 (v, -7

-1
' - =)
321A22a21/al1 ; as T + s

proving {c). Next
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T'lF - TtE;I R .
1-R
-1
al_A..a
"%ﬂ 2122?% ; as T+ =
a - al.A

11 21722821

proving (d}. To prove (e)

By = (Azz 2104
-1.2

T s = a); - 2308,

and
-1 |2 T — _ -1 Ve
tg = B,/ YT(s//T)T {T El(xt-x)(xt'-x)‘} y
i ]ii

so that

1
_1& /2 __1 /2
T T, (32221 /{(311 abifgaipy) AR5 }
as required for (e). Finally,

TDW

2
-1.T ~ -2 T _ A
T zz{yt-yt_l's'(xt-xt_l)} /T zl{yt‘Y’B'(xt'—ﬂ}

U‘>
M
1
W
-
LS
L)

1'5'(T“lzggtg:c)ﬁ/ﬁf(T'zz1(z -Z)(z -z))b

Now, by the strong law of McLeish
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-1.T, .,
T Zzgtat a.s. ZE

. -1.T
= 11mT+m T IZIE(gtﬁé)
and

1 1
%] (2, -D(z, - D' =1 é{jézmmt) tdt - [32(8) dtf3z(t) 'dt}): A

as T + « by (Al19}. Moreover, b = n as T 4+« in view of (a) above.

Thus,

TDW = n'zgn/ﬂ'An = n'ZEn/{a }

11 ~ 221822921

as required for (f).
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