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EDGEWORTH EQUILIBRIA

BY

C. D. ALIPRANTIS!, D. J. BROWN2, AND 0. BURKINSHAW!

The paper studies pure exchange economies with infinite dimensional commodity
spaces in the setting of Riesz dual systems. Several new concepts of equilibrium
are introduced. An allocation (x,,...,Xp) is said to be a) an Edgeworth equilibriuwm
whenever it belongs to the core of every n-fold replication of the economy; and b)
an e-Walrasian equilibriwn whenever for each € > 0 there exists some price p#0
with prw=1 (where w=ZIw is the total endowment) and with x »j=x; implying
p'Xx > p.wj ~e. The major results of the paper are the following.

THEOREM 1. Edgeworth equilibria exist.

THEOREM 2. An allocation is an Edgeworth equilibrium if and only if it is an
¢-Walrasian equilibrium. '

THEOREM 3. If preferences are proper, then every Edgeworth equilibrium is a
quasiequilibrium,

1. INTRODUCTION

There are three different methods for proving the existence of a Walrasian

equilibrium in a finite exchange economy over a finite dimensional commodity space.

The first is the, now standard, fixed point argument in commodity and price
space as, say, in Arrow and Debreu [4]. The second is the method of Negishi [9]
based on price supporting Pareto optimal allocations. The third is due to Debreu
and Scarf [7] where one price supports an allocation that is in the core of every
replica of the given economy. Each of these arguments has been extended to
demonstrate the existence of Walrasian equilibria in finite exchange economies with

infinite dimensional commodity spaces.
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Bewley [5] extended the Arrow-Debreu argument to Ls by taking the limit of
equilibria on subeconomies with finite dimensional commeodity spaces, where he applied
the Arrow-Debreu existence theorem to each subeconomy. Recently, Mas-Colell [8]
demonstrated the existence of Walrasian equilibria in a large class of Banach lattices
by using Negishi's argument and imposing a new condition on preferences which he
calls properness. The appeal of the Negishi argument is that it is carried out
in the space of utilities, and therefore is " independent " of the dimensionality
of the commodity space, subject to some compactness assumptions. Peleg and Yaari [10)
have extended the Debreu~Scarf argument [7] to R., the space of real-valued
sequences. Again, the " trick" is to recognize that the proof of Debreu-Scarf
demonstrates the existence of a core allocation in a finite market game with
nontransferable utility, i.e., is "independent”" of the dimension of the commodity

space,

The Peleg-Yaari model [10] is stimulating in a number of respects. First,
the equilibrium notion is not the conventional one, in that equilibrium prices
never give finite valuation to every commedity bundle in the commodity space.
Consequently, equilibrium price vectors are not in the dual of the commodity space.
This is the first paper, with a finite number of agents, which is outside the
analytical framework first proposed by Debreu [6], where the commodity space and
price space are dual vector spaces. Second, although the positive cone has empty
interior with respect to the product topology (the topology used by Peleg-Yaari),
the assumptions on preferences are the same as those in the finite dimensional
commodity space case. In particular, there is no condition like propermess, which
is quite surprising given Mas-Colell's work [8]. Moreover, there are no proper
preferences on Re which satisfy the other conditions of monotonicity,

continuity and convexity imposed by Peleg and Yaari.

This paper generalizes the results of Peleg and Yaari in the light of the
above observatioms. To extend their results, we introduce several new concepts
of equilibrium. An allocation is said to be an Edgeworth equilibrium whenever
it belongs to the core of every n~fold replica of the economy. An allocation
(xl,...,xm) is an e-Walrasian equilibrium whenever for each € > 0 there exists
some price p#0 with p.w=1 (where w=Iw; is the total endowment) and with
X #y%; implying p-x » p-wj-€. An allocation is called an extended Walrasian

equilidbrium if it is a Walrasian equilibrium with respect to an extended price



system, i.e., with respect to a price system whose values are extended real numbers.

The major results of the paper are the existence of Edgeworth equilibria,
the equivalence of our three new equilibrium notions, and the demonstration that

under properness every Edgeworth equilibrium is a quasiequilibrium.

Cur model, which uses a Riesz dual system to describe the commodity-price
duality, specializes to most of the models of exchange in the literature on the

existence of Walrasian equilibria.

This paper i1s divided into five sections. 1In the fifth section we illustrate
our results by considering a number of special models of exchange which have been
used to analyze options markets, intertemporal exchange, markets with differentiated
commodities, ete. In addition, we present a counterexample to show that one of
our topological assumptions (the weak compactness of the order interval [0,w])
cannot be dropped. That is, in our model, the weak compactness of the corder

interval [0,w] is an essential condition for the existence of Edgeworth equilibria.

2, MATHEMATICAL PRELIMINARIES

To make this paper relatively self-contained, we review in this section some
of the basic properties of Riesz spaces (vector lattices) which will be used
throughout the paper. We shall follow the notation and terminology of [2] and {3].

A partially ordered vector space E is said to be a Riess spacé {or a vector
lattice), whenever for any two elements x and y of E the supremum (least
upper bound) and the infimum (greatest lower bound) of the set {x,y} exist;

notation

xVy=sup {x,y} and xAy=inf{x,y}.



Most of the classical spaces are Riesz spaces. For example, the spaces Ep, Lp(u),
and C(Q) are all Riész spaces. Throughout the discussion in this section E

will denote a Riesz space.

Every element x€E which satisfies x » 0 is referred to as a positive
element. The cone of all positive elements of E will be denoted by ET, i.e.,
E*={x€E: x » 0}. For an element X€E, its positive part, negative part, and

absolute value are defined by
xt=%xv0, x = (-x)VO0, and ]x[ =xV (=x).

If the Riesz space E 1is a function space over a set T, then for every functiom
f€E we have

£¥(t) =max{f(t),0}, £~(t)=max{-£(t),0}, and Ifl(t)*max{f(t),-—f(t)}

for all t&€T. A vector subspace F of E is said to be a Riesz subspace
whenever T 1s a Riesz space in its own right with the operations of E, i.e.,
whenever X,y€&€F imply that both xVy and xAy belong to F. The Riesz
space E 1is said to be Dedekind complete whenever every non-empty subset of E
that is order bounded from above in E has a supremum (least upper bound). As .
usual, a set A is said to be order bounded from above whenever there exists

some x€E satisfying a € x for all a€A.

A subset A of E 4s said to be a s0lid set whemever |x| € |y] and y€aA
imply x€A. A solid vector subspace of E is known as an ideal. For an element
w > 0 there exists a smallest (with respect to inclusion) ideal of E that
contains w. This ideal is called the ideal generated by w and is precisely

the set
A,={x€E: T A >0 with |x| € Aw}.

Any ideal of the form A, 1is known as a principal ideal. As we shall see, the

principal ideals will play a crucial role in our approach.

The ideal generated by w > 0 1is closely related to the band generated by w.
Recall that the symbolism xy+x means that the net {xy} is increasing (i.e.,
a 28 implies x4 2 xB) and that x 1s the least upper bound of {x4}. The band
B, generated by w is the ideal

B,={x€E: [x|Anut|x]|}.



Clearly, A & B, holds. The disjoint complement of B, is the ideal defined by
Bd={x€E: |x]Aw=0].

In case E 1is Dedekind complete, we have E=3B,® Bg. For more about ideals and

bands see [3, Section 3].
Let x,y€E satisfy =x € y. Then the set
[x,y]={2z€E: x € z < ¥}

is referred to as an order interval of E. Subsets of order intervals of E are
called order bounded sets. A linear functional f£:E — R is said to be order
bounded whenever it carries order bounded subsets of E onto bounded subsets of
R, The set of all order bounded linear functionals of E 1is referred to as the

order dual of E and is denoted by E-, i.e.,
Ev={f:E — R | f is linear and order bounded}.

Clearly, E® i1is a vector space. Remarkably, it is also a Dedekind complete Riesz

space. Its lattice operations are given by

£V g(x) = sup{f(y) +g(z): y,z€ Et and y+z=x}, and
FAg(x) =1inf{f(y) +g(z): y,2€ET and y+z=x}

for all x€E" and all f,g€E".

A linear functional f€E™ is said to be order continuocus (or a normal
integral) whenever x4,+0 in E implies f(x,) — 0 in R. Similarly, a
linear functional f£€ E~ is said to be o-order continuous (or an integral)
whenever x,+0 dimplies f(x,) — 0. The order continuous dual Ef of E is
defined by |

E;={£€E™: £ is order continuousl.
Similarly, the o-order continuous dual EY of E 1is defined by
Ex={f€E": f is c-order continuous}.

Both Ej and E7 are bands of the order dual E~. Here are some examples of

these duals.,
1. (clo,1)5=(clo,1)z = {0}.

2. (LP[O,l]);= (Lp[O,l])E’Lq[O,l]; l<p,gg=,

el
-+

L1
]
[



A seminotm q on E is said to be a lattice seminorm whenever |x| < |y]
in E implies q(x) € q(y). A locally convex-solid Riesz space (E,t) is a Riesz
space E equipped with a locally convex"topology T that is generated by a family
of lattice seminorms. In this case <t is called a locally comvex-solid topology,
and it has a basis at zero consisting of open, convex and solid sets. 1t is
important to notice that the lattice operations {(sup, inf, and absolute value) are
continuous with respect to any locally convex-solid topology. Special examples
of locally convex-solid Riesz spaces are the Banach lattices. A Banach lattice
is a Riesz space equipped with a lattice norm under which it is a Banach space.

The Riesz spaces f.p. Lp(u), and Cy(R) are all examples of Banach lattices.

Let (E,t) be a Hausdorff locally convex-solid Riesz space., The topological
dual of (E,T) will be denoted by E’, i.e.,

E'={f:E — R | f is linear and t-continuous}.

It is an important result that E' is an ideal of E. If E 1is a Banach lattice,
then E' and E™ coincide, i.e., E'=E* holds. The absolute weak topology
le| (E,E") is the locally convex-solid topology on E generated by the family of

lattice seminorms {pg: £€E'}, where
eg(x) = [£](]x]), x€E.

The topology [c](E,E') is the coarsest locally convex-solid topelegy on E
consistent with the dual system {E,E'), i.e., (E,|c](E,E"))'=E' holds. The
locally convex-solid topology on E of uniform convergence on the solid, convex,

and o(E',E)~compact subsets of E' 1is the finest locally convex-solid topology

on E consistent with (E,E'). This topology is called the absolute Mackey topology
of E and is denoted by I'r]'(E,E'). Thus, we have

o(E,E') < |o|(E,E") <= |7|(E,E") = t(E,E").

In connection with the last relations, it should be noted that:

a) A locally convex topology T; on E is consistent with the dual system (E,E")
if and only if G(E,E')QTICT(E,E'); and

b) A locally convex-solid topology T, on E is consistent with (E,E') if and
only if |c[(E,E'):12C || (E,E') holds.

If E is a Banach lattice and E' is its norm dual, then |T|(E,E')=‘r(E,E')
holds, i.e., the Mackey topolegy is locally convex-sclid. TFor details, see



(3, Section 11]. Also, it should be noted that if E is Dedekind complete and
EY separates the points of E, then t(E,EQ)= ]1‘(E,EE) holds; see [2, Exercise 4,
p. 163].

A linear topology T on E 1is said to be order comtinuous whenever xy+90
in E implies xa—£+ 0. If 1t is a locally convex-solid topology, then T 1is
order continuous if and only if it is generated by a family of order continuous
lattice seminorms. (A lattice seminorm q on E 4is said to be order continucus
if x,+0 in E dmplies q(x,) +0.)

We now turn our attention to the important concept of a Riesz dual system
which will be the basic framework of our economic model. A Riesz dual system
{E,E') 1is a dual system such that:

1. E 1is a Riesz space;
2. E' is an ideal of the order dual E™ separating the points of E; and
3. The duality of the system is the natural one, i.e.,

(x,x") =x" (x)

holds for all x€E and all x'€E',
Here are some examples of Riesz dual systems.

a) (R%,R");

b) (Ep,f.q), 1< p,q<® 1/p+1l/q=1;

e) (Lp(w,Lq(w), 1 <p,qg <™, 1/p+1/q=1;
d) (cyrlyd;

e) (fy.cpds

£) {Cp(n), cal@));

g) {ca(®),ca’(Q));

h) (Re,Ry)-

Note that if (E,t) is a Hausdorff locally convex-solid Riesz space and E'’
is the topological dual of (E,t), then (E,E') is a Riesz dual system. On the
other hand, if ({E,E') is a Riesz dual system, then the topological dual of
(E,|U|(E,E')) is precisely E'; see [3, Thm 11.6, p. 166]. Thus, the Riesz dual

systems are associated with locally convex-solid Riesz spaces.

Now let {E,E') be a Riesz dual system. Then the topology o(E,E') omn E
will be referred to as the weak topology. The strong topology 8(E',E) on E'
is always a (Hausdorff) locally convex-solid topology, and so the topological dual



E" of (E',B(E',E)) 4is an ideal of (E')". Identifying each x€E with the
order bounded linear functional on E'
x(x")=x"({x), x"€E’',

we see that E 1is a Riesz subspace of E" (and hence of (E')™). If E 4is an
ideal of E", then {E',E) is also a Riesz dual system. Thus, we say that a Riesz
dual system {E,E') is symmetric, whenever E is an ideal of E". In the preceding
list of Riesz dual systems, all but (f) are examples of symmetric Riesz
dual systems.

The following theorem characterizes the symmetric Riesz dual systems, and it will

be used in our discussion. For a proof see [3, Thecrems 11.10 and 11.13].

THEOREM 2.1. For a Riesz dual system (E,E’) the following statements are equivalent,
1. {E,E') +s a symmetric Riesz dual system, t.e., E is an ideal of (E')~.
2. The order intervals of E are weakly compact.
3. E s Dedekind complete and there exists an order continuous locally convex-solid
topology on E consistent with (E,E').
1f {E,E') is a symmetric Riesz dual system, then E’' & E; holds. In

particular, in this case, (E,Eﬁ) is also a symmetric Riesz dual system.

Finally, we mention one more important property that will be used later. If
E is a Dedekind complete Riesz space and w€ E*, then the ideal A, under the

lattice norm
fxlo=inf{a > 0: |x| < Aw}, x€ A,

is an AM-space with unit w. That is, A, is lattice isometric to some C(X)
Banach lattice (X Hausdorff and compact) with w corresponding to the constant

function one on X. For details see [3, Section 12].

3. WALRASIAN EQUILIBRIA AND QUASIEQUILIBRIA

We start by reviewing a few facts about preferences and utility functions.
Let E be a Riesz gpace, and let » be a preference relation (i.e., a complete

and transitive relation) on E*., Then » 1is said to be:



1. weakly convex, whenever the set {x€E*: xp»y} is convex for each y€ Et;

2. conver, whenever x>y and 0 <o <1 imply ax+ (l-a)y > y;

3. monotone, whenever x >y 2 0 implies x » y;

4. strongly monotone, whenever x >y 2 0 implies x > y; and

5. continuous for some topology- T, whenever the sets {x€E%: x » y} and
{x€Et: y » x} are both t-closed for each y€Et,

The following two basic properties will be used later.
a. A weakly convexr preference » is comvex if and only if z; » y for i=1,...,n

n
and z; >y for some 1 imply EI ax; > Y for each convex combination with

positive weights.

b. If a preference relation » is weakly convex, strongly monotome, and continuous
for some linear topology on E, then » is a convex preference.
To see (b), let x>y and let 0 <a <1l. Then x > 0, and since

%iﬁ: ex=%x holds for every linear topology on E, it follows that there exists

0<e<1l with ex> y. By the weak convexity, we have a(ex)+(l-a)y > y. On
the other hand, from ax+ (1-a)y > alex)+ (l-a)y and the strong monotonicity
of », we infer that ax+ (1-a)y > a(ex)+ (1-a)y. Thus, ax+ (1-a)y > y.

A function w:E* — R 1is said to be a utility function for a preference »
whenever x » y holds if and only if u(x) > u(y). A utility function u is
said to be:

i) quasi-concave, whenever for each x,y€ Et and each 0 < a <1 we have
u(ax+ (1-a)y) » min{u(x),u(y)};

ii) monotone, whenever x > y » 0 implies u(x) > u(y); and
1ii) strongly monotone, whenever x >y 2 0 dimplies wu(x) > u(y).

Note that a utility function is quasi-concave if and only if the preference it

represents is weakly convex.

In our approach we shall consider a pure exchange economy whose commodity-price

duality is described by a Riesz dual system {E,E'). We shall assume the following.

l. The commodity space is E.
2. The prices are the elements of E'. (As usual, if p€E', then the value {x,p;

will alsc be denoted by p-x, i.e., {x,p) =p-x.)



3. There are m consumers indexed by 1 such that:

a) Each consumer 1 has an initial endowment wy > 0 and has as his
consumption set E*. o

b) The total endowment is denoted by w, i.e., w = L w;.

¢) The preferences of each consumer i can be repré;tnted by a strongly
monotone quasi~concave utility function ui:E+ -—+ Rt (and hence the
preferences are weakly convex, convex, and strongly monotone) 3.

d) There is a locally convex-solid topeology T on E  consistent with {E,E")}

such that each utility function wuj 1is t-continuous,

Therefore, for this paper: A pure exchange economy & (or simply an economy)
consists of a Riesz dual system {E,E'}) (representing the commodity-price duality),
and m consumers. Each consumer i has EV as his consumption set, an initial
endowment w; > 0 and his preferences are represented by a strongly monotone,

quasi~concave and t-continuous utility function |wuy.

Recall that an m-tuple (xl,...,xm) is said to be an alloecation whenever

m m
x{ €E* for each i and zxi=xmi=m.
1= 1=1

DEFINITION 3.1. An allocation (z,,...,%,) 18 eaid to be:

a) A Walrasian (or a competitive) equilibrium whenever there exists a price p# 0
such that for each i the element =x; is a maximal element in the budget set
Bitp)={z€E*t: p-z < prwyd, te., z;€8,(p) and =z; »; = hold for all x€B;(p).

b) A quasiequilibrium whenever there exists some price p#(0 such that x »; x;
in Et implies p-x > p-w;.

Any price vector p#0 that satisfies (a) or (b) above is known as a price
vector supporting the allocation (xl,...,xm). Note that every Walrasian equilibrium

is a quasiequilibrium.

THEOREM 3.2. If a price p#0 supports a quasiequilibrium allocation (Zj....,%y),
then
1. p>» 0; and

2, przj=p-w; for each <.

3 A, Mas-Colell [8] shows that on each order interval every monotone continuous
preference can be represented by a utility function. Representation of preferences
by utility functions on the order intervals is all we need to prove our results.

~10-



m m

PROOF. Observe that. x; »y Xx; implies p-X; > p-wj. Since Elxi=1}:lwi, we
m = =

m
have 2 p-Xy= L p-wy, and 80 pexy=p.w; must hold for each i.
1=1 1=1

To see that p is a positive linear functional, let y > O. Then by the
monotonicity of >1 we have x1+ v~ X1 and so p-x1+p-y=p-(x1+y) 2 pruwi.
Now from p-x;=p-wy, it follows that p-y 2 O.m

Recall that a price 0 < p€E' is said to be strictly positive whenever x> 0
(i.e., x 20 and x#0) implies p-x > 0. A strictly positive price p will be
denoted (as usual) by p » 0.

Under our assumptions, the Walrasian equilibria are characterized as follows.

THEOREM 3.3. For an alloecation (x,...,%y,) the following two statements are
equivalent.
1. The allocation is a Walrasian equilibriwn.
2. There exists some p€E' with p-u=I1 and such that x »; x; in Et for some %
implies p+x 2 pruwg.
Moreover, if some price p satisfies (2), then
al p ¥ 0;
b) prxy=p-w; for all %; and

e) p 1is a supporting price for (xi,...,Tp).

PROOF. (1) ==> (2) Let p#0 be a supporting price for (x;,...,%xp). BY
Theorem 3.2 we know that p 2 0 and that x 2y X, implies p'x 2 p-wj.

If p-w=0, then x1+meBI(p), and x;+w > X contradicts the maximality
property of x, in 31(1:). Now note that p/p-w satisfies the properties of (2).

(2) == (1) Assume that p satisfies (2). By Theorem 3.2 we know that p > 0 and
that p.xj=p-w; holds for all 1. The rest of the proof goes by steps.
a) If prw; > 0 holds, then x; 1s a maximal element in the budget set .“Bi(p).

Let pew; > 0, and assume by way of contradiction that there exists an element
z Eﬂi(p) with 2z >y xy. Clearly, p-z € p-wj holds. Since the set {yeet: y >; xi}
is t-open relative to E*, z >; x4, and 1:-2:.}11: ez =z, there exists some 0<e<1

with ez >y Ky Therefore, p*(ez) 2 prwy. On the other hand, we have

p-wy > e(p-2) =p.(cz) 2 P-wq,

-l]l-



which is impossible. Hence, x; is a maximal element in ﬂi(p).

B) p» 0 holds, i.e., x> 0 dimplies p-x > 0. o

Let x > 0, and assume by way of contradiction that p.x=0. From [, prwy=prw=1l,
there exists gsome 1 with prwy > 0. By (a), x; 1s a maximal element in= .'Bi(p).
On the other hand, by the strong monotonicity of #; Wwe have xj+=x >; xj, and

in view of
pr(Xy+x)=peXy+p.X=p:Xy =p-wy,

we see that xi+x€ﬂi(p), which is a contradiction. Hence, p.x > 0 holds, proving

that p is a strietly positive functional.

Now to complete the proof note that by (B) we have p-.wy > 0 for all i, and
so by (a) each Xy is a maximal element in the budget set ﬂi(p). That is,

(xl,. ++»Xp) 1is a Walrasian equilibrium supported by the price vector p.m

It should be noted that 1if (xl,...,xm) is a Walrasian equilibrium supported
by a price vector p, then x >; Xy in EY implies p.x> pruwy.

4. EDGEWORTH EQUILIBRIA
The set of all allocations will be denoted by 4, i.e.,

m
.4={(x1,...,xm)€Em: xiG EY for each i and 2 xi=¢u} .
1=1
Clearly, the set 4 4s a non-empty convex set. When [O,w] 1s weakly compact, &

is likewise weakly compact.

THEOREM 4.1. If the order interval [0,u] is weakly compact, then the set 4 of all
alloecations is a non-empty weakly compact conver subset of ET.%

PROOF. Let {(xf,...,x)} be a net of &. Since 0<x¥ <w holds for all 1 and a
and the order interval [0,w] 4is weakly compact, it follows that for each i

every subnet of {xg} has a weakly convergent subnet. Thus, by passing to an
appropriate subnet, we see that {(x‘f,...,xg)} has a weakly convergent subnet to

m
some (xl,...,xm) in E®., Clearly, x{ 2 0 holds for all i, and from Elxgm.u

%1t should be noted that the converse is also true for m > 2, That is,for m 2 2 the
set # 1is weakly compact if and only if [O,w] is weakly compact.

-12-



m

for all o, we see that z xy=w, i.e., (xl,...,xm)EJ. Thus, every net of 4
1=1

has a weakly convergent subnet in 4, and so 4 1is a weakly compact subset of EZ.m

Recall that a coalition $ can improve upon an allocation (xl,.. s %py)

whenever there exists an allocation (yl,...,ym) with L ¥i= PN Wy,
i€s i€s

Yy Py %y for each 1€S5 and y; >, x4 for some 1icg8§.

Note that with strongly monotone continucus preferences a coalition S5 <¢an improve
upon an allocation (xl,...,xm) if and only if there is another allocation (zl,...,zm)

satisfying

z zy= z Wy and zg3 >4 X4 for each ic€S.

i€s = 1€S *

An allocation (xl,...,xm) that cannot be improved by any coalition is knowm as a
core allocation. The set of all core allocations for an economy & will be
denoted by Core(). It is well known that every Walrasian allocation is a core

allocation.

The next result asserts that core zllocations always exist.

THEOREM 4.2. If the order interval [0,u] s weakly compact, then the core is a
non-empty weakly compact subset of the set of all allocations.

PROOF, The argument will be dome in two steps, and follows the proof of the finite

dimensional case due to Debreu and Scarf [7].
STEP 1. The core is non-empty.

Start by defining the subsets V(S) of R™ as follows. If 5 is a

coalition of agents, then

v(s) ={(x .y%p) ERT: d an allocation (yl,...,ym) with L ¥y = L w; and

pre
! €5~ 1€5
x; € ui(yi) for all 1€S}.
The subsets V(S) of TR" have the following properties.
1) Each V(S) is a non-empty proper closed subset of ®".

Fix a non-empty set S of agents. Then clearly, V(58) 4is non-empty. On
the other hand, if (xl,...,xm)EV(S), then x4 € ug(w) holds for all i€ 85, and
so V(8) 1is a proper subset of R".
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To see that V(S) is closed, assume that a net {(x?,...,xg)} of V(S)
satisfies (x?,...,xgl) e (xl,...,xm) in Rm. For each o pick an allocation

(3§, .,y8) with xg < u;(y]) for all i€S and L y$= L w;. Since
i€s i€s
0< yg_‘ € w holds for all i and all «, and [0,w] is weakly compact, we can

assume {(by passing to appropriate subnets) that yg LN ¥y holds for all 1.

Clearly, (yl,...,ym) is an allocation and L, ¥i= L y holds. Now fix i€S
i€s i€s

and let ¢ > 0, Pick some B with
xi-s<xci" for all « 2 B.

Since ¥; 1is in the weak closure of the set co{yg: a > B}, it follows that ¥y
is also in the T-closure of co{yg: ¢ > B}. Thus, by the t-continuity of uj

k
there exists a convex combination L ijyg’ with oy 2B such that

J=l

L o
3. te
ui(jZB:l. Ajyi )< “1(Yi) +e.
If ¥ is an index among '{cl,...,uk} with
ui(yI) = 11111'1{u:i.(y§J J: 3=1,...,k},

then ¥y 2 8 holds, and by the quasi-concavity of uy we see that

xj-€ < xI < ui(yl) < 1.11(.‘%:;.1 ?\jy:’) <uylyd+e.
Thus, x; < ui(yi)+22 holds for all ¢ > 0, from which it follows that x; € us(yy)
for all 1€ S. Therefore, (xl,...,xm)GV(S), and so V{(S) is alsc closed.
2) Each V(S) dis comprehensive, i.,e., x€V(S) and y € x imply y€V(S).
3) If x€V(S) and y€R™ satisfy x;=y; for all 1€S, then yEV(S).

4) For each coalition 8, the set V(S)N RT. - 1s non-empty and bounded relative

to RE.

Clearly, V(S)NRY is non-empty, and if (xy,...,xp) € V(S), then X3y € uj(w)
holds for all i€ S, proving that V(S)(\ Ry is bounded relative to ]RE .

5) The exchange game derived from the economy is balanced.

The proof of (5) is Scarf's original proof [11] which we include it here for
completeness. Consider a balanced family B of allocations with weights

‘{ws: s€B}. That is, L wg=1 holds for all i, where, as usual, 3i={S€.@: i€s}.
SEB,

~14~



Now let (x;,...,x )€ ( V(5). We have to show that (X500 0,xg) €V({1,...,m}).
SEB
s

Let S€B. Since (xl, «ve3Xp) €V(5), there exists an allocation (x?, ‘eusXp)

with X2 x:si_= L wy and x4 € ui(xg) for all i€ S. Now put
i€8 i€s
S

yi= L wgxy, i=1,...,m,

SEB,

Since each ¥ is a convex combination, it follows from the quasi-concavity of u

that ui(yi) > x4 holds for all i. Moreover, we have

m m
Ty.=L I wexs = L we(Z xD) = & wo(L )
1=1" 1 y=1 SEB, S SEB S i€s * SEB S i€s *
£ w (L T
e mi(sEB;ws) P S

which proves that (xy,...,xy) € v{{l,...,m}), as desired.

Next, by Scarf's classical result [12], the exchange game defined from the

economy has a non-empty core, and consequently our economy has a non-empty core,
STEP Il. The set of all core allocations is a weakly compact set.

Denote by C the (non-empty) set of all core allecations. Clearly, ¢ is a
subset of the weakly compact set .4, and hence the weak closure of C is also
weakly compact. To see that C 1is weakly closed, let (xl,...,xm) be an allocation
lying in the weak closure of C, and assume by way of contradiction that there
exist an allocation (yl,...,ym) and a coalition S of consumers with

yi >4 Xy for all i€S and with Eyi= L uw

i€s ¥ 1€s -

For each 1€ S, the set of allocations
Uy =1(2y,.00,2p) €d: z; »; vy}
is convex and weakly closed in E®. Thus, the set U= .U Ui is weakly c¢losed in
Em, and so its complement UC is weakly open. From (;elf...,xm)EUc, we see that
venNCc#P. Pick (2y,...,2p) €UCNC. Thus, we have
yi >4 24 for all i€5 and L vi= -2 wy s

which is a2 contradiction. Hence (xl,...,xm)é C, and so C is weakly closed. The

proof of the thecrem is now complete.m
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It is well known that if E 1s finite dimensional and w » 0, then an
allocation 18 a Walrasian equilibrium if and only if it belongs to the core of
every n-fold replica of the economy. One purpose of this paper is to present an
infinite dimensional analogue of this result. We start with the following basic

definition.

DEFINITION 4,3. 4n allocation is said to be an Edgeworth equilibrium whenever it
is in the core of every n-fold replica of the economy.

Observe that in case E 15 finite dimensional, then every Edgeworth

equilibrium is a quasiequilibrium.

The reader should observe that the concept of an Edgeworth equilibrium
is "price free." That is, the concept of an Edgeworth equilibrium is an intrinsic

property of the commodity space. As a consequence, note that if a Riesz subspace
F contains the order interval [O,w], then by considering the ut{lity functions
restricted to F, it is not difficult to see that an allocation is an Edgeworth
equilibrium with respect to E if and only if it is an Edgeworth equilibrium

with respect to F,
Do Edgeworth equilibria exist in the infinite dimensional case?
The next theorem presents an affirmative answer to this question.
THEOREM &4.4. If the order interval [0,w] <& weakly compact, then the set of all

Edgeworth equilibria is non-empty and weakly compact.

PROOF. This proof is due to Debreu and Scarf [7]. Let Zn be the economy which
is the n~fold replica of our original economy &. As usual, an allocation
(xl,...,xm) of & will be considered as an allocation on 5n by assigning

the bundle x.

i to each consumer of type i. For each n, let

Cn#{(xl,...,xm) €d: (xz,...,xm)ECore(zn)}.
The sets C, have the following properties.
1. Each C,; 4is non-empty.

Note first that in 3n the consumers' characteristics satisfy all assumptions
of Theorem 4.2, and hence Core(arp #B. Let (xll,...,xln,xZI,...,x2n,...,xm1,...,xmn)

be a core allocation for 5n. Then we claim that
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xijﬁi'xik for j,k=1,...,mn and 1i=1,...,m,
i.e., no consumer prefers his bundle to that of another consumer of the same type.

To see this, note first that (by rearranging the consumers of each type), we

can suppose that 3% 7y X4y holds for all i and j. Put

1 1
yil=;",§1xij, i"“'l,-..,m-
o _
Then L Yi1= @ and by the weak convexity we have Yiy 3 %41 for each i. Now
1=1
assume by way of contradiction that there exists some k (1 € k € m) and some
r (lL€<r<n) with Xpr Tk ¥+ The latter, in view of the convexity of 7y,
implies Yy, >k Xy;- Now 1f each consumer (i,1) gets the bundle Yi,» then
the coalition {(i,1): 1=1,...,m} blocks the original core allocation, which is

impossible. This contradiction establishes the validity of our claim.

Next, note that by the quasi-concavity of the utility functions we have
Yi1 ?y %4 4 for j=1,...,n. An easy argument now shows that (yu'yzl""’yml)e Co»

and thus C, is non-empty.
2. Each C; 1is weakly closed.

Let the net {(x‘;,...,x;)} of C_  satisfy (x{f,...,x;) LI (X)50005%,) in
E". By Theorem 4.2 we know that Core(&n) is a weakly compact subset of Emn’
and so if we consider each (x?,...,x:) in Core(zn), it follows easily that
(xl,...,xm) must be also in Core(&n). That is, (%j,...,%p) €Cp, and so- Cy 1is

a weakly closed set.
3, For each n we have (& C.

Since 4 1s a weakly compact set and the sequence {Cn} has the finite

-
intersection property, it follows that M C, #;25. To complete the proof, note
=1l

- -]
that the set of Edgeworth equilibrium allocations is precisely N C,.m
a=1

The next lemma regarding locally convex-solid Riesz spaces will be needed later.

LEMMA 4.5, Let (E,1) be a locally convex-solid Riesz space, and let two nets
g} and {yo} satisfy 0 € x4 € yo+x for all o and some z€E*. If yo — 0
and [0,z) 18 weakly compact, then the net {zy} has a weakly convergent subnet.

PROOF. Since vy, =0 implies y'&—.rq- 0, replac.{ng {yaq} by {yi}, we can

assume that yy > 0 holds for all a. By the Riesz decomposition property we can
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write xy=wy+v, with 0wy <y, and 0 € vy € x for all a. Then wa—LO,

and since [0,x] 1s weakly compact, we see that {ve} has a weakly convergent

subnet. Therefore, {x,} has a weakly convergent subnet.m

Let (xy,...4%3) be an allocation. Following Peleg and Yaari [10], we define
Fy={x€E%: x »; x;}, and

Gy = Fi-wié {x€E: x+w; »; x4},
Clearly, F; and G{ are convex and weakly closed sets. We denote by G the convex

hull of |JGj, i 8.,
1=1

m
G= co(U Gi) = {Z Aiy; ¢ Ag 20, Z Aij=1 and yiEGi}.
i=1

A basic property of the convex set G 1is described in the next result. This
property was proved first by Peleg and Yaari for the Re. case; see Lemmas 4.1-4._3 in [10].

THEOREM 4.6. If (a:l_, v s%y) 18 an Edgeworth equilibrium and [0,w] <1s weakly
compact, then for each e > 0 we have O0€ecw+G =cw+ G (where the bar denotes

weak closure).

PROOF. Let & > 0 be fixed, and assume bir way of contradiction that O€ ew+G.
Since G 1is convex, we see that zero belongs to the t-closure of cew+G.

n
Thus, there exists a met {y,} of G with Ew+y, 2, 0. Write Yo * L Agyg
1=

 with ygE Gy» 3\';_-‘ 20 (i=1,...,m) and Z‘. )\i=1 By passing to appropriate
i=1
subnets, we can assume without loss of generality that 1035_ = A{ 20 holds in R

for each i. Clearly, 2 A;=1 holds. Put §={j: Aj > 0}, and note that S#J.
1=1
Also, we can suppose that there exists some X > Q0 satisfying A% > A for jES

and all a,.

Let V?.Yi'*"“i' Then clearly vge Fi, and so vci" » 0. We claim that for
each j €85 the net {vg} has a weakly convergent subnet in E. To see this,
fix j€S and note that

Z Aiw

1=1

0 € 25v§ ZA -Zx(ylwi)*zlly*' i

1:1
L
= yu-!-‘élkimi LY¥gte € ygteutw .

Hence,
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1 1 1 1
0 g = = = =S
L4 vy £ Am(ym-i—em) + A“m < la(ya+ew) + T
J h| j
holds in E, and so by Lemma 4.5 the net {v?} has a weakly convergent subnet.
Therefore, by passing to appropriate subnets, we can assume that vg N vj holds
in E for each 3€8., Since each Fj is weakly closed, we infer that vjE Py
(i.e., vy >j xj) for each j€ 8. From
2 o, a o L w
Yo = L ?\i(vi-wi) > L ljvj - L Ajugy —* z ijj - Aj"-’j
1=l jES i=1 j€s €S

(and the fact that E* is weakly closed) we infer that
-ew = w~-limy, 2 L asv, - L Ajwg .
jes 77 jes
Therefore,

L Aqlvg+ew) < z Aqu (%)

jes 43 jes 73

Now if n 1is a positive integer denote by ny the smallest integer greater
or equal than nAj (i.e., 0 < nj-nAj € 1). Since }%3 nAj/nj= 1 and

vyt+ew >j Xy for each j€ 5, we can choose (by the continuity) n large enough

so that

oA ,
zy = o (Vj"‘ﬂﬂ)"j X35 jes. (i)

Taking into account (%), we get

L nsz: = 5 nAs(ys+ew) € L ndiw: € L nswy .
jest jeSJJ jest jESJj

The preceding inequality, coupled with (%*), shows that (x;,...,%Xp) can be blocked
by an allocation in some replication of the economy, which is impossible. Hence

0€ew+C must hold, as desired.m

In order to characterize an Edgeworth equilibrium we need to introduce a

weaker notion of Walrasian equilibrium,
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DEFINITION 4.7. An allocation (xy,...,%,) <& said to be an g-Waglrgsign egquilibri
whenever for each € > 0 there exiects some price p#0 (depending upon e) such
that:

1. p.w=1; and

2. If x€E* satisfies =« »; x; for some i, then p.z 2 p.w;-ce.

Observe that if a price p satisfies p.x > p:wj - € whenever x »; x;, then
P20 holds. Indeed, if y 2 0, then x1+6'ly ) Xy holds for all 6 > 0, and
so p-x1+6"1p-y 2 prwy~e for all & > 0. Thus, p.y > 6[p:(w; ~x;) -] holds
for all 6 > 0, from which it follows that p.y 2 0. In particular, note that the

prices p in Definition 4.7 are positive prices.

Clearly, every Walrasian equilibrium is an e-Walrasian equilibrium. On the
other hand, as we shall see next, every Edgeworth equilibrium is an e-Walrasian

equilibrium,

THEOREM 4.8. If [0,w] is weakly compact, then every Edgeworth equilibriuwm ie an
e-Walrasian equilibriwm,

PROOF. Let (x;,...,X;) be an Edgeworth equilibrium and let '€ > 0. Then, by
Theorem 4.6, 0€ew+G. Since cu+C is a weakly closed convex set, it follows
from the classical separation theorem (see, for example, [3, Thm 9.12, p. 136])

that there exists some PpEE' satisfying
p-(y+ew) > 0 for all yEG. (%)

Clearly, p 2 0 and we claim that p.w > 0. Indeed, from xi—miE Gy, we see that

m
0= }:-g-‘l- (xi-wi)EG, and so p-m=%p-(0+em) > 0.
i=1 '

Replacing p by p/p-w, we can assume that (%) holds for a price p > 0 with
pew=1l, Finally, we show that (xl,...,xm) is an e-Walrasian equilibrium. To
this end, let y¢€ et satisfy vy #; X3 for some 1. Then y-uw; € G; € G, and so
from () we get p-(y-mi-{- gw)} > 0. This implies

Py 2 prwj-e,

and the proof of the theorem is finished.m
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Now let us take a closer lock at the ideal generated by w. Recall that
Ay={x€E: T A> 0 with |x| < Aw}.
On A, a lattice norm is defined by the formula
[ = inf{x > 0: x| € Aw}, x€Ay.

|-ﬂ¢.-norm is a locally convex-solid

Thus, A, with the topology generated by the
Riesz space. 1In case A, 1is a Dedekind complete Riesz spaces, (Am,!l-ﬂw) is in

fact a Banach lattice®. On the other hand, for each x¢€ A, we have
%] < Jxllw-w. ()

This implies that the ||-||,,°-closed unit ball of A, coincides with the order
interval [-w,w]. Therefore, if A is the norm dual of (Am,"'"m), then
Aj=A; holds. In particular, the restrictions of the functionals of E' to Ay

belong to A/l.

If q is a lattice seminorm on E, then from (#k) it follows that q(x) <€ q(@)[x]e

holds for all x€A,. In other words, every lattice seminorm of E is

[,,-contimlous on A,. In particular, each utility function is " [w- continuous

on A,. Therefore, the utility functions define an economy on the Riesz dual

system (Am,A‘L} with the original endowments.

Summarizing the above discussion: The Riesz dual system (AWAUS) with the

same preferences and endouments defines a new economy.

The importance of the economy with respect to the Riesz dual system {(A4y,A[)

will become apparent in the next theorems.

THEOREM 4.9. If (xl,.. .s%y) 18 an e-Walrasian equilibrium for an econcmy, then
there exists a strictly positive functional p om A, such that:
1. prw=1; and
2, 0<y€ly and y »; x; tmply p-y 2 powg.

In other words, every e-Walrasian equilibrium is a Walrasian equilibriwm with
respect to the economy whose preferences and endowments are the same and with a
comnodity-price duality defined by the Riesz dual system (Aw,A(7 .

S If either E is Dedekind complete or {0,w] is weakly compact, them A, 1is a

a Dedekind complete Riesz space.
€ In general, the ideal A, is a Banach lattice under the [| w~Tnorm if and only if

A, is a uniformly complete Riesz space; see [3, Exercise 12, p. 198].
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PROQF., Let (xl,...,xm) be an e~Walrasian equilibrium. For each n pick some
0 € py€E' with py-w=1 and such that

y#y x4 in EY dimplies Pn'Y 2 pn-mi-% . (%)

The condition pp-w=1 tells us that each p, restricted to (Am,"-",,) has
norm one. Let p be U(A;,,Aw)-accumulation polnt of {pn} (where each p, 1is now

considered restricted to Ay). Then p-w=1, and from (*) we see that
0<y€a, and y»;x; imply p-y 2 pruj.

By Theorem 3.3, it follows that (x;,...,xy) is a Walrasian equilibrium for the
economy whose preferences and endowments are the original ones and whose Riesz

dual system is (A ,A}). n

The next result describes two basic properties of any price that supports a

quasiequilibrium on 4.

THEOREM 4.10. Let (2,,...,%p) De a quasiequilibrium allocation on 4, supported
by a price 0 S p€A/. Then:

1. p 18 t-continuous on [0,w]; and

2. If [0,w] s weakly compact, then p <is order continuous on A, t.€., Vg+ (0

in 4, implies plvg)+0 in R.

PROOF. (1) Assume that a net {y,} satisfies 0 €y, € x4 and yq4 X+ 0. Fix
€ > 0. From xjy-y,+ew L xj+ew >y x;_, we see that there exists some o such

0
that xj-y,+ew >; x; holds for all a » a,. Therefore,

1
p(xy) - p(yy) +eplw) 2 pluy) = plxy)

holds for all a 3 ay, and so 0 € p(yy) € ep(w) for all a 2 oy, i.e., limp(yy) =0,
m

Next, suppose that 0 g yg s 0= z xy satisfies y, = 0. By the Riesz
1=1

decomposition property we can write yu=y&+ sen +yg1 with 0 € yci, € x4. From

0 < yé £ V4, we see that yg‘,. —+ 0 for each i. Thus,

m
limp(yy) = lim 121p(y§) =0,

Now let {y,} & [0,w] satisfy vy, = y. Then (yu-w)7t —s 0 and
(yo-¥)~ —+ 0 hold, and so

P(Ya) ~P(¥) =pa-v) =p[(yg-7T1 - pl(ye-y)"1 — 0.

—22~



(2) Let vy +0 hold in A,. Without loss of gene;ality we can assume that

0 € vy € w holds for all «. Since [0,w] is weakly compact, the net {vg}
has a weakly convergent subnet, and from wvg+ 0, it follows that wvq ~, 0. The
latter implies v, N 0; see [2, Thm 9.8, p. 63]. Finally, by part (1)} we see
that p(vy) +0 holds in R.=

For our next discussion we shall use some of the properties of the weak

closure A-—w of A,. Recall that the band generated by ® is the ideal given by
B,= {x€ E: |x|Anw+ [x|}.

Clearly, A, < By,. Since every band is t-closed {2, Thm 5.6, p. 35], it follows
that -fm & B,. Of course, Tm is also the t-closure of A, which implies that
Ay 1is also an ideal. The ideal A, is the set

Ay={x€E: [x|Anw = |x!1.

If 1t 4is order continuous, then clearly 'Kw=Bm. On the other hand, in general -A_w
does not coincide with By. For instance, in (Lo o 1if w= (l,-zll-,-%,...), then
Ay S cp#Lo=B, and the sup norm is order continuous on "Ay. Two basic properties

dealing with the weak compactness of the order interval [0,w] are the following.

a. If [0,w] <& weakly compact, then =t <8 order continuous on Ay
b. If E 1is Dedekind complete and 1 1is order continuous on A, then [0,w]l <is
weakly ecompact.

To see (a), assume that [O,w] is weakly compact. Let xz+0 in Iw, and
let V and W be two solid t-neighborhoods of zero satisfying W+W& V. We can
assume that there exists some 0 £ xETw with 0 € xg € x for all a. Pick
some O € y€A, with x-y€W, and note that [0,¥] is weakly compact, Since
XqAy+0 holds in [0,y], it follows that =xyAy N 0, and se xyAy = 0, see
[2, Thm 9.8, p. 63]. Pick some @y with x,Ay&W for all a > o;. If a2 g,

then we have
0€ xq= (g - +x,0y € G=-NF+xqAyEW+U = V,

and so xg&€V for all o 2 g Therefore, x4 —+ 0 so that T 1is order

continuous on Ag.

To see (b), let E be Dedekind complete and let. T be order continuous on

Kw- Let (Tu,)' denote (Zm,'r)' and consider Tm equipped with the topology 7.

=23=~



The Dedekind completeness of E implies that Iw (as an ideal of E) is Dedekind
complete, and so by Theorem 2.1 the Riesz dual system {Ay,(Ay)') 1s symmetric.

In particular, (by Theorem 2.1 again) [0,w] is u@uw,(fm)')-compact. Since (Im)'

consists precisely of the restrictions of the functionals of E' to 4y, it

follows that [O,w] 1is o(E,E')-compact.

To continue ocur disgussion we need to introduce the concept of an extended

Walrasian equilibrium.

DEFINITION 4.11. 4n alloeation (:cl,...,xm) 18 said to be an extended Walrasian

equilibrium whenever there exists a funetion m: (Z;,)"'-—» {0,2] (called an extended

price supporting the alloecation) such that:

1.
2,
3.

w{w)=1;
T 18 additive, i.e., wlz+y) =n(z) +n(y) holds for all x,y€(ZA )*; and
y »; 27 in (AJ)T implies w(y) > wiuwg).

Let (xl,...,xm) be an allocation supported by an extended price m. Then we

have the following properties.

1. = 1ig monotone, t.e., 0 Sy <z implies m(y) < n(x).

Indeed, 1f 0 < y € x holds, then from x=(x-y)+y and the additivity
of w, we see that
w(x)=1(x-y) + 7(y) 2 n(y).

. T is finite on A}, i.e., n(zx) < = holds for all z€At.

If xEA'w", then pick some positive integer n with 0 <€ x € nw, and note
that by (1) and the additivity of 7 we have

m(x) € t(nw) =nr(w+ cct+w)=a + - +ro) =nn(uw) =n < =« ,

. 7 defines a positive linear funetional on A,

This follows from a classical result of L. V. Kantorovi‘c’; see [3,Thm1.7,p.7].
The formula defining 7 on A, is gilven by
w(x) = w(xt) -w({x), x€A,.

The extended Walrasian equilibria and the Walrasian equilibria on the ideal A,

are related as follows.
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THEOREM 4.12. An allocation (xl,...,xm) i a Walrasian equilibrium on A, <if and
only if it is an extended Walrasian equilibriwm. '

Moreover, in this case, if 0 € p€A/, supports the allocation, then the
formula

x(z) =sup{plaoAnw): n=1,2,...}, z€(A )7,
defines an extended price supporting the allocation.

PROOF. Assume that (xl,...,xm) is a Walrasian equilibrium on A, supported by
0 € p€ A} (where, of course, prw=1). Consider the formula defining #(x) and
note that m(x)=p{(x) holds for all x€ A'{L', and so w(w) =p-w=1.

To see that w is additive, let x,y€ (A,)Y. From (x+y)Anw € xAnu+yAna,

we see that

p((x+y) Anu) € p(xAnw) +p(yAnw) € 7(x)+7n(y),
and so.

m{x+y) € n(x)+7n(y).

On the other hand, the inequality xAnwu+yAmw € (x+y)A (n+m)w implies
p(xAnw) +p(yAmw) € p[(x+y)A (n+m)w] € v(x+y), from which it follows that

r(x) +n1(y) € n({x+y).
Hence #{x+y)=n(x)+n(y) holds.

Now let y 74 X5 in (Im)"', and let e > 0. Then y+ew >; x5 holds.
Since yAnw+ew LN y+ ew, there exists some k with yAkw+ew »; x;3. It

follows that
m(y)+e > piyAkuw)+¢ = p(yAku+ew) > pluwg) = wluw)d
holds. Since € > 0 is arbitrary, we see that n(y) 2 n(wj).

Conversely, assume that the formula for =(x) is an extended price
supporting the allocation (xl,...,xm). Then 7 defines (by the formula
m(x) = w(x*) - n(x~)) a finite positive linear functional on Ay with w{w) =1 and

such that
x>y x4 in A} implies w(x) > w(u;).

Since preferences are Il-ﬂ,-continuous on A,, it follows from Theorem 3.3 that
(xl,...,xm) is a Walrasian equilibrium on A, supported by w (considered

restricted to Ay).m
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Our next major result shows that the notions of Edgeworth equilibrium,

e-Walrasian equilibrium and extended Walrasian equilibrium coincide,

THEOREM 4.13. If [0,w] <& weakly compact, then for an allocation (@500 sTy)

the following statements are equivalent.

1. The allocation is an Edgeworth equilibrium.

2. The allocation is an e-Walrasian equilibriwm.

3. The allocation is a Walrasian equilibrium for an economy with the same
preferences and endouments and with the commodity-price duality defined by
the Riesz dual system (A,A0L).

4. The allocation is an extended Walrasian equilibrium.

PROOF. (1) ==> (2) This 1s Theorem 4.8.
(2) == (3) This follows from Theorem 4.9.
(3) =% (4) This follows immediately from Theorem 4.12.

(4) = (1) Let n:(K;)+ — [0,=] be an extended price that supports the allocation
(xl,...,xm). From w(w)=1 and the monotonicity of w, we see that n 1is finite

on A$, and hence it extends uniquely to a positive linear functionmal on Ay

see [3, Thm 1.7, p. 7].

Noew by Theorem 3.3 the allocation (xl,...,xm) is a Walrasian equilibrium
for an economy whose Riesz dual system is (Ay,Al;) and has the same preferences
and endowments. It follows that (xl,...,xm) is in the core of every n-fold
replica of the economy with Riesz dual system (Aw,A&). Since the allocations
in E coincide with those in A,, the latter shows that (X3,...,%y) ds-in the
core of every n-fold replica of the economy with Riesz dual system (E,E'). That
is, (xy,...,xy) is an Edgeworth equilibrium.m

If the Riesz dual system {E,E') is symmetric, then all order intervals
of E are weakly compact, and so, in this case, our results hold true for any
initial endowment w. On the other hand, for an arbitrary Riesz dual system {E,E'),
for some w€E! the order intervals [0,w] are weakly compact and for some
they are not weakly compact. For example, in the Riesz dual system {£.,21 (L., the
norm dual of £.) if m=-(a1,u2,...) satisfies 1lima,=0, then [0O,w] is weakly
compact (in fact norm compact), while if w=(1,1,1,...), then [0,w] is not
weakly compact. As an example of the other extreme, the Riesz dual system
(Lw,Lky over [0,1] (L& the norm dual of Ls) does not have any weakly compact
order intervals. (Reason: Let 0 < w€ Lw. Pick a measurable set A of positive

measure and some ¢ > 0 with o 2 EXa» and then select a sequence {Ap} of
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measurable subsets of A of positive measure with Ani-g . If wp= sxAE {0,u],

-9
then v, +0 and IIvn||.,,=e for each n. In view of [2, Thm9.8, p. 63], we see
that {vp} does not have any weakly convergent subsequence, and hence [0,w] 1is

not weakly compact.)

If [0,w] 1s not weakly compact, then there is no guarantee that Edgeworth
equilibria exist. However, in this case we have the following companion of
Theorem 4.13.

THEOREM &4.14. For an allocation (xy,...,%p) the following statements are
equivalent.
1. The allocation is an Edgeworth equilibrium.

The allocation is an Edgeworth equilibrium with respect to (AuAg ).
allocation i8 an e-Walrasian equilibrium with respect to {A4,,45)-
The allocation is a Walrasian equilibrium with respect to (Ay,A4,).

N
S
®

The allocation is an extended Walrasian equilibrium.

PROOF. The implications (1) == (2} and (3) =% (4) == (5) => (1) thave

already be provemn.
(2) ==> (3) Let € > 0 be fixed. Put Fy={x€ A$: X >4 xi},' Gy=Fy-wi, and

m
let G be the convex hull of U G;. Pick some n with nw > x; and note
1=l

that by the strong monotonicity we have nw »1 X;. Since nw i1is an interior
point of Aé,' and Fl is open relative to A'(L', we see that F; has
l[°ﬂm-interior points. From ew+F;-uwé& ew+ G, we infer that ew+G has

|| * H., - interier points.

Since (xl,...,xm) is an Edgeworth equilibrium, it follows from [7] that
0¢ cw+G, and so by the separation theorem (see, for example, [3, Thm 9.9, p. 1351)
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there exists & non-zero price p€Aj satisfying p-(sw+g) » 0 for all g<€G.
Clearly, p » 0. On the other hand, p-w=0 implies p=0, which is a
contradiction. Thus p-w > 0, and so replacing p by p/p.w we can assume that
prw=1. Now if x »; x; holds in A}, then x-~w;€G, and so pr(ew+x-w;) » 0,
from which it follows that

P'X 2 pug-¢€.

Therefore, (xl,...,xm) is an e-Walrasian equilibrium with respect to the Riesz

dual system {Ay,Ay).m

In order to prove the existence of quasiequilibria on E, we need to impose
an additional continuity condition on preferences, This condition, known as

properness, was introduced by A. Mas-Colell in [8].

DEFINITION 4.15. Let <(ZE,E') be a Riesz dugl system, let » be a preference

relation, and let t be a locally convex-solid topology on E consistent with

(E,E"),

1. The preference relation » is said to be t-proper at z€E" uwhenever there
exigst a t-neighborhocod V of zero and some v > 0 such that

z-av+zrx in EF with o> 0 imply zgaV.

2. The preference relation » 18 said to be t-proper whenever » is T-proper
at every point z€EF and V and v > 0 can be chosen independently of =,
i.e., whenever there exist a t-neighborhood V of zero and some v > 0 such that

z-cv+zrax in ET with a>0 imply z €al,

If (E,E') 1is the Riesz dual system for am economy, then by saying that
the preferences are propet we shall mean that they are t-proper for the consistent
locally convex-solid topolegy T on E for which all utility functions are

t-continuous.

The main result of A. Mas-Colell in [8] asserts that if the preferences are
proper, then quasiequilibria exist. We shall prove a much stronger result;

namely, that every Edgeworth equilibrium is a quasiequilibrium.
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THEOREM 4.16. If preferences are proper, then every Edgeworth equilibrium is a
quasiequilibrium.
In particular, if the order interval [0,w] <is weakly compact, then the

economy has quasiequilibria.

PROOF. Let (xl,...,xm) be an Edgeworth equilibrium, and let G be the (non-empty)
convex set associated with (xl’“'!"‘m) as defined before Theorem 4.6. The

proof below is an adaptation of A. Mas-Colell's proof of Proposition 7.1 in [8].

By properness, for each i there exists a convex, solid, open t-neighborhood
V4 of zero and some vy > 0 such that x-avij+z »; x in Et with a >0
m
imply z€aVy. Put V= IV and v=vy+ -4y,
1=

Next, consider the set
's{aw: a > 0 and w&€E satisfies w+vc¢ %—-'V},
and note that I is a non«—emﬁaty, convex, open cone of E. We claim that I‘ﬂG=§Z§ .

To see this, assume by way of contradiction that TNG#Z ., Let BETNG.

Write

G-Eli\ (z, -—wi), Ay 20, Z Ai=l, z; >0 and z; »; x4; and

B=aw for some o > 0 and some w€E with w+v€—%-v.

Since for each 1 there exists a sequence {ri} of strictly positive rationals

with rii» Ay, we can choose rational numbers niy/n (njy and n positive integers)
a

with
(L = 1 1
[— =L ¢ i- wy) - = =V =V,
5 ;211 wy) w]+(w+v)€2V+2V v
Hence,
i m
E nizi~‘21 njwy + anv €anV . (%)
Next, put
- onv and z=2nz =20,
vz Eﬂnimi 1=1 i%1
m
From z-y=z+anv- L ny 0y € z+anv, it follows that
=1

(y-2)"=(z-y)t < z+anv = ‘El(nizi+anvi).

Thus, by the Riesz decomposition property there exist w;€ Et (i=1,...,m) with
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m
0 € wy € ngz;+onv; and Elwi =(y-2z)". Now let

g 4, W L -
¥y zi+ﬁzvi a3 1,‘1-(11:,_21-{»-n:::rm'i wi) >0,
and note that y; >y 2y holds. 1Indeed, if this is not true, then we must have
W w
zi=yi—%vi+ﬁ>i Yi» which (in view of the properness) implies Ef" E?TE-V .

or wy€anV. On the other hand, from
' m
0< wy & (y~2z)~ € |y-z| = l I ni(zi-mi)-i-unvl
i=1

and (%), we see that wy € anV, which contradicts wy€anV. Thus, yy >3 24
holds for each 4.

From ¥i >y Z4 ;i Xy and
m

m m m
L ny, = L nsz, + ane v, - Zw-=z+unv—-(y-—z)'
1=1 171 = 1% =1 1 4=

m
£ z+anv+y-z = y+anv = PN njw

i
i=1 1

we see that there exists an allocation on some replication of the economy which
blocks (xl,...,xm) on the same replication. However, the latter is a

contradiction, and hence TNG=@.

Finally, since T 1is open, it follows from the separation theorems (ses,
for example, [3, Thm9.10, p. 136]) that there exists some p#0 with p-g 2 p-w
for all g&€G and all w€T. Since w&€Tl implies aw&€Tl for all a > 0, we
see that p-g > 0 holds for all g€G. Thus, if x »; %y, then x-w;€G, and
so p-{x-wy)=p'x-p-wy 20 implies p-x > prwy. This shows that (X1 5000,%p)
is a quasiequilibrium, and the proof of the theorem is finished.m

A. Mas-Colell [8] observed that if the positive cone has interior points, then every
strongly monotone continuous preference is proper. In particular, his observation
holds true for the R" spaces. With this in mind, our next major result can
be viewed as an infinite dimensional analogue of the classical theorem of Debreu
and Scarf [7]. (Recall that an element w€E* 1s said to be strictly positive,
in symbols w3 0, whenever p&€E' and p > 0 imply p.-vw> 0.)
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THEOREM 4.17. If preferences are proper and w ¥» 0, then an allocation ig an
Edgeworth equilibrium if and only if it is a Walrasian equilibrium.

In particular, in this case, if [0,w] is also weakly compact, then the
economy has Walrasian equilibria.

PROOF. Let (xl,...,xm) be an Edgeworth equilibrium. By Theorem 4.16 there
exists some price q#0 such that x 74 x; in EY implies q-X 2 q-wj.
Clearly,q 2 0 holds. Since w » 0, it is easy to see that q.w > 0. Therefore,
the price p=q/q-w satisfies statement (2) of Theorem 3.3, and consequently

the allocation (xl,...,xm) is a Walrasian equilibrium.m

If w is not a strictly positive element, then the preceding result takes

the following form.

THEOREM 4.18. If preferences are proper on A4, them an allocation ig an Edgeworth
equilibrium if and only if it is a Walrasian equilibriwm with respect to an
economy whose Riesz dual system ie (A (Ay)') .

In particular, in this case, if [0,w] <& also weakly compact, then the

economy has Walrasian equilibria on 4.

5. EXAMPLES

In this section, we illustrate our results by considering several examples
of exchange economies that have appeared in the literature of general equilibrium

theory.

Example 5.1. This is a modified version of an example due to A. Mas-Colell [8].
Start by observing that in case the economy has only a single consumer, then the
set of all allocations has a single element (the initial endowment of the

consumer).

Suppose that there are only two goods (hence the commodity space E= R2) and

that we have cne consumer with initial endowment w= (1,0) and utility function

ulx,y) =vx + 7y .
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Clearly, u is a strongly monotone, continuous, and strongly quasi-concave function

on RZ. The following diagram illustrates the situation.

=Y

The Edgeworth equilibrium here is the initial endowment w= (1,0). Since
the preference is proper, w must be (by Theorem 4.16) also a quasiequilibrium.
Observe that this is indeed the case and that the price vector p=(0,1)
supports w. On the other hand, it is easy to see that there is no Walrasian

equilibrium. (Note that (1,0) 4s the only possible Walrasian equilibrium.)

By Theorem 4.13 the initial endowment (1,0) is a Walrasian equilibrium
on the ideal generated by w= (1,0). Here
A,=By={(x,0): x€ R},

and so A= {(pl,O): P € R}. It follows that the price p= (1,0) supports
the Walrasian equilibrium (1,0) on A,. Note that in A, the budget set for
p=(1,0) is [0,1], while in R? it is the positive x-axis.m

Since Bewley's seminal paper [5] on the existence of Walrasian equilibrium
on L., economists have considered the existence question in several other

infinite dimensional spaces serving as models for differentiated commodities,
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option markets, etc. Most of these models will be described in the next examples,
where we shall simply list the relevant commodity-price dualities and relate

them to our analysis.

Example 5.2, We consider the symmetric Riesz dual system (Lm(u),Ll(u)) over a
g-finite measure space, and assume that the utility functions are strongly
monotone, quasi-concave and r(Lm,LI)-continuous. and that the total endowment w
is uniformly bounded away from zero. In this case the Mackey topology is a

locally convex-solid topology.

In this model, the assumption on w implies that Ay = Lo. Thus, by
Theorems 4.4 and 4.13 there exists a Walrasian equilibrium for the economy whese
Riesz dual system is (Ay,AL? = {LwyLe). Let 0 < p€Le be a price supporting
this equilibrium. By Theorem 4.10 the price p is order continuous on L.
Since the order continuous dual of L. is Ly (i.e., (Lm)E==L1), we infer that
pE€L,; see [3, Thm 14.12, p, 226]. 1In other words, our original economy has a

Walrasian equilibrium.ws

Example 5.3. Consider the Riesz dual system (LI,Lm) over a o-finite measure
space, and note that since the norm topology on L; 1is order continuous the
Riesz dual system is symmetric. Assume that « » O and that the preferences

are strongly monotone, quasi-concave, proper and norm continuous.

Thus,-zb==Bw==L1 holds, and so by Theorem 4.17 the economy has a Walrasian

equilibrium.m

Example 5.4. Consider the symmetric Riesz dual system (Lz(u),Lz(u)), wp» 0 and
preferences to be strongly monotone, quasi-concave and norm continuous. Here
7§J=Bm==Lz, and therefore if preferences are proper, then by Theorem 4,17 this

economy has a Walrasian equilibrium.

A similar result holds true for the symmetric Riesz dual system
(Lp(w),Lq(w)?; 1< p,g<=,1/p+l/q=1.m

Example 5.5. Consider the Riesz dual system {ca(n),ca'(Q)) , where ca'(R) is
the norm dual of ca(Q) equipped with the variational norm (@ Hausdorff and
compact). The variational norm is order continuous and hence {ca(f),ca’ ()} is

a symmetric Riesz dual system. In general, ca(fl) does not have strictly positive
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elements, and therefore we may only assume w > 0 (and hence _fu,a‘ ca(R)).

By Theorem 4.4 Edgeworth equilibria always exist. Moreover, if preferences
are propeg‘,o?he:?gn Edgeworth equilibrium is a Walrasian equilibrium with
respect to {Ay,(A,)') supported by some O < p€ (Ay)' (Theorem 4.18) and a
quasiequilibrium with respect to some 0 < g€ ca'(R) (Theorem 4.16).m

Example 5.6. Let MRwe be the Dedekind complete Riesz space of all real valued
sequences equipped with the product topology 1. Then 1T 1s an order continuous
locally convex-solid topology, and so { Re, Ry} is a symmetric Riesz dual
system. We assume that preferences are strongly monotone, quasi-concave and
T~continuous. The total endowment w is assumed to be strictly positive (and

hence A,= Ra).

Since R admits no strictly positive linear functional, it follows from
Theorem 4.17 that there are no strongly monotone, quasi-concave, T-continuous utility
functions on Rs which are proper. That is, on this commodity space we can
only hope for Walrasian equilibria on A, which by Theorems 4.4 and 4.13 exist.
Theorem 4.12 guarantees the existence of extended Walrasian equilibria on Im= Rx.
These extended Walrasian equilibria coincide with the equilibrium notion of
Peleg and Yaari [10].m

The last example shows that if [0,w] is not weakly compact, then there is
no guarantee that Edgeworth equilibria exist. As a matter of fact, as we shall
see next, if [0,w] 3is not weakly compact, then the economy may even have an

empty core.

Example 5.7. For our discussion below Lp (1< p<=) will dencte LPIO,l].
Qur economy will have two consumers. Its Riesz dual system will be either
{cl[0,1],ca{0,1]}) or {lp,Lq) (1 < p,q € =;1/p+1/q=1). The consumers' initial
Pr+q
endowments are wj=w, =1 (= the constant function one), and their utility

functions are given by the formulas

u; (x) a_f;i,&(t) dt +~%—‘r;/x(t) dt,

u, (x) = =[3/Z0Ey dt + [L/EE de .
2 240 1
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Clearly, the utility functions are strongly monotone and strongly concave. The

order interval [O,w] is U(Lp,Lq)—compact but it is net o(Cc[0,1]),cal[0,1])~compact.

The main property we would like to isolate here is the following: The economy

with Riesz dual system {C(0,11,cal0,1]) has an empty core.
The proof of this claim will follow from the discussion below.

1. The utility fumctions are continuous for both the |- Ill-norm and the Mackey topology

(Lo ly). In particular, they are continuous for the sup norm and the Lyp-norms.

Let a net {x,1SLlE satisfy =x -T—(I‘i’h)—* x. Since [-1,1] is a convex,
o a

circled and G(Ll,L.a)*compact subset of I1,, it follows that
V=1{-1,1]%={X€ La: U‘olx(t)y(c)dc] <1 for all yé€[-1,1]}
1
= {x€ Lt J‘O [x(t)|dt < 1}
is a T(Lm,Ll)-neighborhood of zero. From this, we see that
1
||xa—xﬂl=_r0 lxq(t) - x(t)|dt —0.

Now assume that “xa-—xﬂl——i- 0 holds in LY. If f=x[0 L] + -%-x(;i 11 then
» ]

we have

Juy (x4) - uy () gj'é’l/xj(c) -/x(t)|dt + %J;:|fxa(t) -Vx(t)]de

= ‘[‘Olf(t) |/ xg(t) - /=) |dt

< ‘folf(t)/rx;(t) - x(t) [dt

Y3 hlxa(o) -2t [a)* — 0,

where the last inequality holds by virtue of HElder's inequality. Therefore,

ul(xa) — u,;(x), and similarly uz(xa) ~ uy(x).

2. Let (z,,x,) be an allocation with respect to L, satisfying ©, > 0 and x5 > 0.
Then there exist two congtants 0 <a <2 and 0 < b<2 with a#b such that

the allocation (x‘l‘,mg), given by
Ti=axip, ) * PX0ag, 1]
Zi-- {2 -a)xw,;i] + (2 - b)X(;i,I] 2

and

sattefies :z:‘{>1 z, and z3 >y Ty
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To see this, let (xl,xz) be an allocation with respect to 1; with x>0
and x, > 0. Put a==ZI b (t)dt b= %f x,(t)dt, and note that 0 < a<2 and

0<b<2 hold. Let x{ and x2 be defined as above. WNow using Hlder's

inequality, we see that
3 1 ¢k ¥ /a 1 143
I&/xlitidt < 75[J5x1(t)dt] =5 and I%/letSdt < -5

Thus,

u, (x,) =J‘;5,/'x'12t5 dt + -%—‘f;:/xl(t) dt € —-'/22;-+ -.‘Ql;. =u, (x}),

i.e., x] »; x;. Similarly,

-%-j;’,/‘z"—' x, (t) dt + _j"!:,/z -x, (t) dt

u2(x2)

1 1, p1 %
< 275(];’[2 —z\r.l(t:)ldt);5 + 72-(.]'%[2 -x()])

1
2

- 1/773 + 2/7T7%

bk

- La-Hti s

273 (1-

*
u,(x3),

*
and so Xj 7y X,

Next, we must verify that we can choose a and b with a#b. To this end,
assume that a=b. In this case we have x’;=a and x;=2-a. From x’{ 1 x>0
and x3 », x, > 0, we see that 0 < a < 2. By the symmetry of the situation, we
can alsoc assume that 0 < a €1. Then we claim that the allocation (y1:¥2)»

given by
3 1
Y1=~§-ax[0,;ﬂ + Tax(&,l] and
- 3 1
¥a= (Z-Ta)x[o,;ﬂ + (2‘T3)X(;1’1] ’

satisfies 1y, >, xf and y, >, x; (and hence y; >, x; and y, >; x;). Indeed,
note first that -

w3/ 3+ BT - BEE > 303 - w6,
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On the other hand, we have

uz(yz)——l/ V (./'A—T‘ +2/%-a),

and an easy calculation shows that uz(yz) > %—Ji -a = uz(x;). The proof of

part 2 is now complete.

3. Assume that (::l,xz) is an alloeation with 0 < x;€C[0,1] (1=1,2). Then there
exists an allocation (y,,y,) with y;€C[0,1] (1=1,2) satisfying y; >; *;
for i=1,2. In other words, the economy with Riesz dual system {Cl0,1],cal0,1}}

has no eore allocations.

To see this, let (xl,xz) be an allocation with 0 < x;€C[0,1] (1=1,2). By
part 2 there exist two constants 0 < a < 2 and 0€b <2 with a#b such that
the allacati.on (x’l‘,x;), given by

1= X041 ¥ PXog1) 2
x3=(2-a)xpg yy + (2-PIxgy 17

satisfies x* > X, and x'; 72 X,. Since x’; and xg are not continuous functions,
we see that x1¥x1 and x;#xz. Thus, by the strong concavity of the.utility
functions, we infer that the allocation (el,ez) given by 61=¥§(x1+x’f) and
0,=%(x,+x3) satisfies 8); > x; and 0, > X;.

Now since C[0,1] is [I-I]l-dense in L, there exists a sequence {z )= c[0,1]
satisfying 0 <z, €2 for all n and lim 1 0y - an1=0 (and, of course,
1im | 8,- (2~ zn)ﬂ1= 0). By virtue of the |||l j-continuity of the utility functions
(part 1), there exists sbme n so that the allocation (z,,2-2z,) satisfies

z, >; x; and 2-zy, >; X3, This completes the proof of part 3.

We saw before (in Example 5.2) that the economy with Riesz dual system (L.,.,Ll)
has Walrasian equilibria. Part 2 tells us that these Walrasian equilibria must be of
a very special type. Next, we exhibit a Walrasian equilibrium for the economy

with Riesz dual system (Lp,Lq).

4. The allocation (zy,%,), given by

8 2
=3X[0,4) * TXex,11 T

2 8
2= FX0,%1 T TX0%,11,



i8 a Walrasian equilibriwm for an economy whose Riesz dual system is (Lp,Lq);
1<p,gsw,1/p+1/q=1. Moreover, in this case, the Lebesgue integral is a
price that supports the allocation (&,,x,).
. /5 _ 1
To see this, note first that ul(x1)==u2(x2)= 5 Also, if f'-x[O,%li-irx(%,l]’

then we have ul(x)=ij(t)/x(t)dt. Therefore, if x ») x;, then by using

H¥lder's inequality, we see that

o= ) < uy 0 = [le(0) /K ae

< (flUE® 1207 ([x()ar)?
- /3 (hwman*,

and so (I;x(t)dt)% >1, i.e.,
j'olx(t)dt > l=_['01m1(t)dt .

Similarly, x #2 x, implies f;x(t)dt ;‘f;wz(t)dt. In other words, the Lebesgue
integral is a price that supports (x,,x,), and so (x;,x;) 1s a Walrasian

equilibrium.m

Finally, we mention a model of considerable importance for which our existence
theorems do not apply. This is an economy whose Riesz dual system is (Cb(ﬁ),ca(ﬂ)).
Example 5.7 shows that such an economy may not have an Edgeworth equilibrium. The
Riesz dual system (Cb(Q),ca(Q)) is not in general symmetric and in general no
order interval of Cp() is weakly compact. For this case, the only existence
theorem known to us is that of Aliprantis and Brown [1] where demand functions are

taken as primitive.
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