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1. Introduction

In recent years, optimal growth theorists have increasingly come to
question the level of realism and applicability of the classical one —
sector growth model, largely based on the assumption of convexity, both in
preferences and in technology. Perhaps, the most elaborate outcome of the
new focus has been, so far, the non-classical model of optimal growth,
This model rests on the assumptions of convex preferences and initially
increasing returns to scale technology. Thus, the production function is
convex for small input levels and concave for large omnes,

This new development, initiated in a continuous~time model by Skiba

[1978], was subsequently studied by Majumdar and Mitra [1982, 1983] and
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Dechert and Nishimura [1983] in discrete-time. For a more detailed
motivation behind this model, the reader is referred to these studies.

Mathomatically speaking, the optimization problem in this model
consists of maximizing a concave functional subject to a mon-comvex set,
As a general theory for such problems is not available at this time, one
has to resort to mon-standard arguments in trying to take advantage of the
particular structure of the problem at hand.

In their stizmlating paper, Dechert and Nshimura essentially
characterize optimality by the Euler equation, the transversality
condition (recall that these are necessary and sufficient in the classical
case), and, in addition, by a monotonicity property of optimal paths, that
they derive. Subsequently, Amir [1984] and Amir-Mirman-Perkins [1984]
give the equivalent property that the marginal propensity of consumption
is always bounded above by unity, as a second-order comdition for
optimality, An example is also given there, albeit in a two-period
context only, showing, among other things, that there may be interior
local, but not global, maximizers satisfying this second-order condition.

In the present paper, a dynamic programming approach is altered in a
way that allows for the analysis of the properties of local maxima, as
well as local minima, It turns out that these properties constitute a
necessary intermediate step to derive necessary and sufficient conditions
for global optimelity. First, we show that the monotomicity property of
optimal paths (or, equivalently, the uniform boundedness of the marginal
propensity of consumption by unity) is a necessary condition for local (as
well as for global) optimality, and is also sufficient for local
optimality, but not for global optimality, Finally we show that the well-

known properties of the value function — continuity and monotomicity -—



are sufficient (slong with the above conditions) to guarantee global
optimality., In other words, if at any stock level, a local non—-global
maximizer is selected, a discontinuity in the value function will be
observed,

We suggest that the previous literature on this problem has not
distinguished betwecen local and global maxima, and consequently has not
attempted to derive conditions that uniquely characterize global
optimality. This is the major aim of this paper, and we hope to have
provided some insight towards a systematic approach to non-convex dynamic
optimization,

The paper is organized as follows. Section 2 provides the definitions
of all the new concepts within the proposed framework, and the properties
of local extrems (maxima and minima)., In Section 3, analogous properties
are derived for global maxima, culminating in the Main Theorem, which
gives necessary and sufficient conditions for globally optimal paths,
Section 4 consists of a simple example of a one-period horizon problem
which illustrates the possibility of existence of interior local
non—-global maxima, possibility which actually o¢curs whenever optimal
paths are not unique, as argued in the discussion following the statement
of the Main Theorem. In Section 5, we suggest that while the dynamics of
locally optimal paths and the dynamics of globally optimal paths might
differ, their asymptotic properties (convergence and stability) are

qualitatively the same,



2. The Model and lLocal Optimality Conditions

The one-sector non-classical optimal growth model can be described as
follows: Consider a central planner whose objective is to maximize the
present value of the utility of consumption over an infinite horizon,
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where 0 (5 {1 is a fixed discount factor, e is consumption at time

t, and u(-) is the one—period utility function, satisfying:

u€c'(0, +=) ,
a'(:) >0

u is strictly concave.

If z, denotes output available at period t , the production pro-

cess is described by

b 4 'f(xt_c) » X, = 8 , t'oplnooo

t+1 t 0

where the production function f{ satisfies (see Figure 2,1)

f € 'O, +=)
£'() >0,
There exists xy > 0 such that f is convex on [0, xI] and

concave on [xI. +=} , and f has two fized points.

Assume further that u’(0) = +o , f{(0) =0 and £'(0) £#0 , so
that no corner solutions will prevail (see Amir-Mirman-Perkins [1984]).

Let
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Figure 2,1



[ -]
V(s) = max § 8ulo,) (2.1)
{e .} t=0
t
subject to x .. = f(xt - ct) s Xg =8 (2.2)
and to Oictht » t-o, 1, T (2.3)

We shall refer to a maximizer as an interior solution if constraint
(2.3) holds with strict inequalities, and as a corner or boundary solution
otherwise,

It is important to note that for any sequence of consumptions [ct} .
x, £ maz{xo. x} , where x, is the initial stock and x is the largest
fixed point of f . The one-period utilities of consumption are thus uni-
formly bounded. Hence, the infinite-horizon consumption policy, to be
denoted g(+) .1 and the corresponding value function V(:} form
only solution pair to the functional equation (see Bertsekas [1976], p.

229):

Vix) = oggzxu(c;x) (2.4a)

where M{c;x} = u(c) + 6VI£(x-c)] . (2.40)
Let the optimal evolution of capital stocks be described by
H(x) = f(x - g{z)) , x>0, (2.5)

We are ultimately seeking to characterize the properties of the func-
tions V, g and H with g(:) being the global parametric maximizer

of M{c;x) . However, it turns ouat that a necessary intermediate step

1 g is actually a set-valued function, as will be seen,



is to study the properties of all the extrems of M(c;x) : the local
maxima as well as the local minima, That M(c;x) does not necessarily
have a unique extrewumm follows from the fact that V and f are not
concave functions (see the example in next section and the discussion
following the Main Theorem), Let us now formally define the various

notions of extrema:

Definitions:
i) For a fized x > 0, h(x) is a local maximizer (minimizer) of

M(c;x) if therc exists e > 0 such that M(h(z), x) ) M(c,x)
(£} for all ¢ satisfying 0 (¢ {(x and lec - h(x)| ¢ e .

ii) For a fized x > 0, g(x) is a global maximizer of M(c:x)
if M(g(x), x) 2 M(c,x) for all ¢ satisfying 0 ( c { x .

iii) For a fixed x > 0 , denote by X(x) and N(x) the sets of
local maximizers and local minimizers, respectively. The set of
extrema of M(c;x) 1is them givem by E(x) = X(x) U N(x) .,

iv) Let Vh(x) and Hh(x) be the local value function and growth

function, respectively, corresponding to h(x) = B(x) , 1i.e.

Vh(x) = ulk(x)] + 8VEf(x - h(x))] (2.6)
and Hh(x) = f(x - h(x)) . (2.7)
It follows from these definitions and Proposition 2, p. 229 of

Bertsekas [1976] that the solution to the functional equation (2,4), V ,

is the upper envelope of the local valne functions, i.e.,

V(x) = sup Vh(x) , 220 (2.8)
h€E(x)

and g is the optimal policy (not necessarily single-valued) associated



with V ,

If one faces the optimization problem (2.1)-(2.3) with specific func-
tional forms for u and f , one will be able to apply the usual direct
approach of solving for all h(x) , at each x , then finding all the
corresponding Vh(x) , comparing them to extract V(x) from (2,8), and
finally identifying the corresponding g(x) . Given, however, that our
aim is to uniquely charscterize the pair (V,g) in a way that dis-
tinguishes it from any other pair, for any choice of functions u and f
satisfying the given assumptions, we need a different approach. The
criteria developed here are bhased on a study of the properties of the
elements of X(x) and N{x) . Thus, as a byproduct of the analysis, we
derive a property which allows us to separate local minima from local
minima,

A final piece of notation is needed before proceeding to the statement
of results: With I generically referring to compact convex subsets of
R (the non-negative reals), h € E(I) means h{x) € E(x) , V€ 1.

A similar meaning is attached to X(I) and N(I) .

Lemma 2,1: The value function V is continuous and strictly increasing.

Proof: The two properties follow respectively from the theorem of the max—-

imum (Berge [1959]) and the principle of optimality (Bertsekas [19761). [

Hence, holding ¢ constant in (2,4b) and allowing x to vary results
in continuous deformations of M ., (In other words, the graph of M(c)
moves continuously in x .) Thus, taking I to be the domain of defini-

tion of an extremmm h € E(I) , two important observations follow:



1) I is a compact convex subset of [0, mux[xo. x}] with inf I and
sup I corresponding respectively to the stock level at which h
emerges as an extremum of M(c;x) and to the stock level at which
h is no longer an extremum of M(c;x) .

2) If h€ E(I), then h(x) 4is continuous for x € I .

Lemma 2,2: A necessary condition for h to be in X(I) (N(I)) is that

MSI (>1) , Vz,y€1,

—y x$dy.

Proof: For h -~ X(I) , x-1I and @ > 0 small enough, we have (if «

is such that [h(x+a) - h(x) ~ al ¢ ¢, where & is as in Definition

(2,1,4)
Vp(x) = uih(x)] + &VIH, (x)] (2.92)
Vp(x) = ulh(z+a) - a] + SVIH (x+a)] . (2,9b)
Similarly:
Vh(x+a) = u[h{z+a)] + &V[Hh(x-c-a)l (2.10a)
Vh(x+u.) 2 ulhi(x) + a) + 6V[ﬂh(x)] . (2.10b)

Adding up (2.9) and (2.10) yields

ul{h{x)] + ulh(x+a)] ) ulh(x+a) - a] + uwlh(x) + ] (2,11a)

or equivalently,

ul{h(x+a}] - ul[h(x+a) ~ al > uwlh(x) + a] - ulh(x)] . (2.11b)
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By the strict concavity of u and the fact that the two arguments in the

LHS of (2.11b) and those in the RHS both differ by a , it follows that

n(x+a) - a ¢ (x) or MEEL=RIX (4 (2.12a)
Since (2.12a) holds for all x € I and all a sufficiently small, we
conclude that (by integration):

Mo -h(9) (3, vy, yer

. (2.12b)
x-y

Now, for h € N(I) , the above argument may be repeated by replacing
* > " by * £’ and vice—versa, to get that local minima satisfy:

le.vx.yel.u

— (2.13)
x-y

A number of important corollaries follow,

Corollary 2,3: Any extremizer h ¢ E(I) is a continuous function of

bounded variatiom on I ,

Proof: Continuity of h on I is in Observation 2) following Lemma 2.1,
To prove that h 1is of bounded variation on I , observe first that
Lemma 2.2 is equivalent to: Hh(x) = f{x - h(x)) , x € I, is a continuous
increasing (decreasing) function if h € X(I) (N(I)) . Hence

hi{x) = x - f-l[E(x)] is increasing (the difference of two increasing

functions) if h € N(I) (X(I)}) . So h is of bounded variation on I
(Royden [19681). [

Consequently, h(x+) and h(x ) , the left and right limits of h
at x , exist for all x € I and h*’(x) exists a,e. in I (Royden

[1968]).
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Corollary 2.4: The local value function Vh » gorresponding to the

extremizer h ~ E(I) , jis continucugly differentiasble on I and
Vi(x) = u'[h(x)]) , €I,

Proof: Subtracting (2,9a) from (2.10b) and (2.9b) from (2.10a) yields,

respectively (for i1 € X{(I)) :

Vh(x+c) - Vh(x) 2 u[h({x) —al] - ul[h{x)]

and

Vh(x+a) - Vh(x) £ ulh{z+a)] - u[h(;+a) - al .
Hence

b(x)+al - u[h(x sfl_z“*""vlﬁ‘)

.S. Eﬂllﬂ&u_télﬁfl_“'gtgl (2.14)
Taking the limit as a« 4 0 and invoking Corollary 2.3:
+
Vi(x } = u'[h(x)] .,
A similar manipulation starting at x-a¢ would yield
Vi(z') = uw'[h(x)]
and hence, by Corollary 2.3, V' is continuous at x and

V'(x) = u'{h{(x}] , Vx€I, (2.15)

Finally, the sbove proof may be repeated for h € N(I) by replacing every

’>' by '<’ and vice-versa. [
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3. Characterization of Global Optimality

This section contains the Main Theorem which gives necessary and
sufficient conditions for a comsumption policy g to be the global
maximizer for the optimization problem given by (2.1)-(2.3). This policy
is naturally also a local maximizer and thus has the properties enjoyed by
all h in X(I) for all I so that we may write
g € X(io, max{xo. x}1) . However, the global optimum described by the
pair (g,V) satisfies sn additional condition which no other elemeat of
X(I) enjoys.

We start by extending the properties described in the corollaries of

the previous section to g .

Lemmg 3,1: A necessary condition for g to be the global maximizer for
the optimization problem 2,1-2.3 is that 31!1;5;3111 £1 for all dis-
tinet x, y in [0, max{xo. x}1 .

Proof: Simply replace Vh by V and h by g im the proof of Lemma

2.2, 0O

Remark: Since V is the upper enveiope of the Vh's and g is the cor-

responding maximizer, Vh (x) = Vh (x) = V(x) for some x implies that
1 2

g{x) = (hl(x). hz(x)} . Furthermore, the possibility
g(x) = [b, (x), hz(x)] is not ruled out, since it preserves the upper-
hemi~continuity of g (Berge [1959]) and the condition given in Lemma

3.1,

Let s denote any single—valued selection from the set—valued
function g . Note that as a consequence of Lemma 3.1 and the above

remark, g always admits unique upper and lower-semi-continuous (u.s.c.
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and l.s.c.) selections, but may fail to have any non semi-continuous as

well as any continuous selections.

Corollary 3,2: Any selection s from the optmial consumption policy, is
is of bounded variation on [0, max{xo. x}1 .

s(x) = s(y)
Proof: Clearly, s satisfies & x—y' £1 ., See the proof of
Corollary 2.3. 0O
Corol]lary 3,3: The left and right derivatives of the value function V

exist_for all x im [O, max{xo, x}) and satisfy

V'(x ) = u'lg{x )] ¢ V'(x+) = n'[s(x+)] .

Proof: This proof may be found (in an equivalent form) in Dechert and
Nishimara, or in our setting in Amir [1984] or Amir-Mirman—Perkins [1984]

but is given here for completeness, Let s and s denote the u.s.c.

1

and 1.s.¢. selections from g , respectively. Repeating the argument in

the proof of Lemma 2.2 with Vh replaced by V and h by s we

1 2
arrive at the analog of equation (2.14):
wls, (x)+a] - uls,(2)] c Vixte) = V() uls, (x+a}] - uls (x+a)-al

Taking the limit as a« ¢ 0 and invoking Corollaries 3,2 and 3,1, it
follows that V'(x') = u'[sl(x)] .

Similarly, starting at the stock level x-a and selecting s, We
get

Vi(x ) = u'ls (x))] .

Clearly, sl(x) = g(x+) and su(x) = g(x ) . Moreover, by Lemma 3,1,

g(x’) € g(x) , so that w'lg(z")] > u'lg(x1 . O



14

In view of Corollary 2.4, V may be regarded as the pointwise
supremum of & collection of differentiable functions. The set of points
at which V is not differentiable coincides with the set of points at
whick g is not single~valued. It is a countable set, by Corollary 3.2
{a function of bounded variation, being the difference between two
monotone increasing functions, has at most countably many points of
discontinuity, all of the first kind). Nevertheless, when restricted to

the range of H, V is differentiable.

Lemma 3,4: The yalue function V is continuously differentjable at H(x)

for all x jin [0, max[xo. 1 and V'[H(x)] = u’{g[H(x)]} .

Proof: Suppose there exists X such that V is not differentiable at
H(xo) . By Corollary 3.3, V‘[H(xo)-l and V'[H(:°)+] exist, There—

fore (see Figure 3.1)

Miglx )", x.] aMlig(z )7, x.1
0 o, ., 0 0

dc dec °

Note that only one of the above inequalities need be strict, It follows

that
u'[g(xo)] - 5V'[H(xo)+]f'(x —g(xol} > u'[s(xo)l - 6V'[H(xo)_]f'(x -g(xo))

or V'[H(xo)+] £ V’[H(xo)_] . a contradiction to Corollary 3.3.
Since g is continuous at H(x) and V'[H(x)] = u’{g[H{(x)]} , V'

is continuous at H(x) . 0O

Another way to state Lemma 3.4 is: H and g are g¢ontinuous at any

point x such that there exists y with x = H(y) . The equivalence of
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c=X

g(xo)

M{c; xo)

c=0

Figure 3,1
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these two statements is clear from Corollary 3.3 and the remarks following
its proof, All the points of discontinuity of g and H are thus such
that they cannot equal H{y) for any y - [0, max[xo. 3.

We now turn to the statement of the Main Theorem, the proof of which

is in the Appendix.

Main Theorem: A set-yalued function g is the global maximizer for the

optimization problem givem by (2.1)-(2.3) if and only if:

(2) wu'lg(x)) = du’{glH(x)1}£'(x - g(x)), Vx € (0, max(x, .31 .

(®) 1lim Btu'[s(xt)]xt =0.
t—e

(c) !151;5;5111 <1, Vx,yeé€ [0, mx(x, 31 . x#y.

(d) the value function V corresponding to g is continuous and in-

creasing on [0, nax{xo. 1 .

In what follows, we discuss the meaning and implications of each of
these four conditions, (a) is simply the Euler equation, obtained by
aM{ec:x) 0

setting 3c ~ 0. Thus, we could have defined an extremum h(:) of

M(c;x) s a solution to
w'{hi{x)] = Bu'[sfﬂh(x)]}f’(x - hix)) , x € [0, nax{xo. z}] . (3.1)

The domain I of h would then be the set of all x for which the above
equation holds., By Lemms 2,1 and the observations following its proof,
I is a compact convex set,

Condition (b) is the usnal transversality condition associated with
infinite—horizon problems (see Mirman [1980], Dechert and Nishimura

[1983]), VWhile in the classical optimal growth case (i.e. with f
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concave), conditions (a) and (b) are necessary and sufficient to charac-
terize the unique globally optimal consumption program, in the present
context, they merely identify the set of all extrema at any given stock
level =x .

Condition (¢) is readily seen to be equivalent to the monotonicity
property of optimsl paths in Dechert and Nishimnra [1983]. Put
differently, it says that H is an increasing functiom. It follows from
Lemms 2,2 (where the inequalities are actually strict; see Appendix)
that (c) is satisfied by any local maximizer, while local minimizers

satisfy the opposite (strict) inequality, In fact, it is shown in the

h(x) = h(y)

Appendix that L x—yh ¢1(>1) for all distinet x, y din I is
uinta), x)

equivalent to 2 <0 (>0) for all x in I , the equivalence

dec
being up to the fact that the second partial of M w.r.t. ¢ is only

known to exist a.e. x {see Appendix).

It appears then that the previous literature in the non—classical case
characterizes 'locally optimal paths,’ snd offers no method or approach on
how to extricate the ’‘globally optimal paths’ in an unequivocal manner.
The existence of interior local (but non~global) maximizers is
established, in the one-period horizon comntext, by an example contained in
Amir [1984] and Amir-Mirman-Perkins [1984), A different example achieving
the same aim is given in the next section,

We now give an argument based on our results to show existence of
interior local minimizers (which are not global): Suppose x, is a stock
level at which there are two possible optimal paths (e.g. an extinction
path and a path of accumulation to the stable steady—state equilibrium),
The corresponding M{c; xo) is depicted in Figure 3.2a, with

s(xo) - {hl(xo). hz(xo)} . Now consider M(c; x, + g) with £ > 0
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c=Xx

hz(x°+s)

M(c; 0+s)

|||||||||||||||||||||

Mic; 0)

Vixg) [

= hl(xo+s)

hz(xo) ¢=x

hl(xo)

c=0

Figure 3.2b

Figure 3.2a
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small enough, By Lemma 2,1, the graph is continuously deformed, and by
Lezma 3.1, s(xo + g} = h1(x0 + ¢) (and not hz(xo + eg) ), so that
M(c; x, + g) 1s as shown in Figure 3.2b, Clearly, both hltxo + g)

and hz(xo + ¢e) satisfy the Euler equation (3.1). Furthermore, Lemma 2.2
implies that both h1 snd h2 have all their slopes bounded above by
unity. So the question now is: How does one choose between h1 and h2

at x .  + e 7?7 It turns out that condition (d) provides the answer to this

(¢}
question, as is established in the Appendix.

4. An le

To illustrate the points made at the end of the previous section, at
least in a one-period horizon context, a specific example is given here,
using only.the convex portion of the production function, The sezrch for
possible examples with longer horizons, involving the same points of
interest, is extremely complex.

For a one-period horizon problem, one needs to solve the following

fonctional equation:

Vl(x) = max {u(c) + Sulf{x-c)]) . (4.1)

0£cix
Observe that if the wmaximand in (4.1) has interior local nor-global maxi-
mizers and minimizers, the same is likely to hold for lomger horizons
since u gets replaced by Vl. Vé. «ee Wwhich are not necessarily concave
functions,
For the present example, consider ui{c) = Ilnc, ¢ >0 and

2
f(x) = er » 2 20 . Equation (4,1) becomes

Vl(x) = max {In ¢ + Z(x-c)z} . {(4.2)
0<cix



20

(a) (b)
M{c;x) M(c;x)
x{1 1{x{y
V(y) [-=osmmmmmmmmmmm o e e
V(x) p----mmmmmmmmmemmmomooooonean
c=0 c=0 c=0 - +J c=Xx
h (x) h (x) B (x)
c
{c) (d)
Mlc:y) M(c;x)
)y
Vix) o ;
S o emmom e !
' l
: !
: i
i ! | |
¢=0 - + c=x c=0 - + c=x
h {y) h (y) hc(y) h (x) h (x) hc(x)

Figure 4.1
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The three possible configurations of Ml(c;x) » the maximand in (4,2),
are depicted in Figure 4.1,
The first-order condition for an interior extremum in (4.2) is:

Lo dz-o) or

4c2 —4zc +1=0 . (4.3)

The two solutions to this equation (the interior extremizers of M, ) are

1

h+(x) = %(x +Jx© - 1) and h (x) = %(x -¥x“-1), for x> 1.

The marginal propensities to consume are given by:

h;_(x)-%é.-i- 2 ) and h_f_(x)ﬂ%Q-_;""‘), x21,

x -1 -1

If 2 <1, no interior extrema exist and Ml(c;x) is maximized by
hc(x) = x , Notice that if we want to illustrate the same points without
making use of local corner maximizers, by an example with closed-form
solutions, we will have to solve a third degree polynomial instead of
(4,3). (This is because having two interior local maximizers would imply
the existence of a local minimizer, singce M is continuous in ¢ ,)

If 21, it can easily be verified that 0 ¢ h_(x) ¢ h+(x) {X,
i.e. both h_ and h, ~—are interior and feasible., Furthermore,

h'(x) <0 <1 ¢ h;(x) » indicating, in view of Lemma 2.2, that h_ is a
local meximizer while h+ is a local minimizer,

Now, let us compare h_  and hc for x>1, To hc corresponds

the lecal valne function Vh given by Vh (x) =1lnx, To h_ corres—
¢ c

ponds the local value function Vh given by

Vh-(x) = ln[%(x -Jx -1)] + %[x + J:E:I]z . At x =1, we have
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i 1

Vh (1) =0 > Vh (1) = 2 + Ina . It can be shown that thers exists a

unique ¥y > 1 with the property that

vy (y) = vy (y) and vy (x) 2 Vh_(x) if x§vy.

[ - c

Hence, the global maximizer of Ml(c;x)

continuons correspondence

x »
glx) =

is given by the upper—~hemi-

if x <y
%(x -Vx*-1) , if x2vy.

The value function is given by the continuous functiom

1n x

» x L%

V(x) = 2
* ln[%(x -Jx *1)] + %(x +¥x"-1) , x2vy.

Consumption in the second period is

correspondence;

if

H(x) = 2

%(x + /x%-1)

] » if

In all the above expression, y is

log x = ln[%(x -Jx -1)] + %(x

given by the upper—hemi-continuous

the solution of the equation

2
+J/x%-1) ,

Seec Figure 4,2 for graphs, and compare with Figure 4,1,
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5. A totic Properties of Globall timal Paths and Conclusion

The asymptotic properties of optimal paths are given in Dechert and
Nishimura [1983], using the Euler equation and the monotonicity property
of optimal paths (or, equivalently, the strict boundedness of the marginal
propensities of consumption by unity, i.e, Lemma 3,1 plus Lemma A,1 hcre).
It turns out that these properties depend essentially on two factors:

i) Whether H starts above or below the 45 degree line (i.e, whether
5£'(0) >1 or &f£'(0) <1 , respectively), ii} The number of steady-
state equilibria (i.e. fixed—points x of H)., x must satisfy

T = £(x-g(x)) and &f'(x-g(x)) =1, whence x = f[f'-1(118)] + There
are either 0, 1, or 2 fixed points of H , the location of which only
depends on f .

If 8£'(0) 1, H must be a continuous function (this is a conse-
quence of Lemma 3.4 and the remars following its proof), and have one
globally stable fixed point at f[f'-l(llb)] .

If 5£'(0) {1 and there exists x > 0 with H(x) > x, H will
have one stable fixed point X and either an unstable fixed point (in
which case H is also continuous) or ome (or more) jump discontinunities
(all to the left of x ), In the latter case {the most interesting one),
assume that at some stock level one of the two mistakes, described in the
two paragraphs before last of the Appendix, was committed in selecting the
global maximizer g . Then, the resulting growth function “h would
have the same asymptotic properties as the true H , but a discontinuity
at a different point (see Figure 5.1 for some such examples). OUbserve
that in this case, the resulting optimal paths would not coincide with the
true optimal paths, and that, in particular, Clark’s [1971] minimum safe

standard of conservation would be incorrectly located.
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Figure 5.1

(Note: The dotted lines actually coincide with the nearby solid lime.)
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APPENDIX

Proof of the Main Theorem

We prove each of the four conditions separately, and include
additional comments pertaining to the meaning of each condition, As some
of the arguments are rather long and intricate, we break them into

intermediate lemmae.

Proof of (a): This is the Euler equation or first—order necessary condi-
tion for the maximization in {2.4). By Lemma 3.4, this condition is, for

all x in [O, nnx{xo, x}}
u'lg(x)] = 6V [H(x))£'(x-g(x)) = Su'{(g[H(x)]1}f’{x—3g(x)) . a

Proof of (b): This is the transversality condition for the infinite

horizon problem. See Dechert ad Nishimura [1983] or Mirman [1980],

Proof of {c): This is a second-order necessary condition, which is suffi-
cient for local optimality, but not for global optimality, as will become
c¢lear from the following arguments. We first prove that it is a necessary

condition. To this end, we need:

Lemma A,1: H is an injective functiom (i,e, H(x) = H(y) implies

x=y),

Proof: If H(x) = H(y) , then x - g{x) = y — g{y) , s¢ that the RHS of
the Euler equation takes the same value at x and at y ., Hence,

u'[g(x)] = u’{g(y)] or g(x) = g(y) , so that x =y , 0

In view of Lemms 3,1, to prove necessity of (¢}, it only remzins to

show that g{(x) - g(y) # x-y for all distinct x and y . But this
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is precisely equivaleant to H(x) # H(y) for all distinct x and vy,
i,e, Lemma A,1, Note that a gsimilar argument would show that the
inequalities in Lemma 2.2 (for local extremizers) are also strict,

We now show that (c) is sufficient for local optimality, Let S be
the set of points at which s’ ( s being any selection from g )
exists, and S its complement in [0, max{xo. ;}] « By Corollary3.2,
S is of measure zero (Royden [1968]).

If x€ S, then condition {(¢) implies that g’{(x} (1 . We first
prove that this inequality is actually strict. Suppose that for some
X, €S, 5'(:0) = 1 , Differentiating the Euler equation (for z in $)

yields

u’'[g(X)]g’(x) = 6{V"[H(x)]f'z(x-g(x))+V'[H(x)]f"(x-g(x))}(l—g'(x)) (1)

At the LBS of (1) is equal to n"[g(xo)] and the RHS vanishes,

x
o ’
unless V"[H(xo)] = - V'[H(xo)] is finite by Lemma 3.4). Since
V"[H(xo)} = n"(s[ﬂ(xo)]lg'IH(xo)] , this implies that s'[H(xo)] = +o ,
a contradiction to Lemma 3.1, We conclude that g'(x) (1, V¥z€ S .

To establish sufficiency for iocal optimality, observe that for

x €8, g'(x) <1 is the same as u'’[g(x)] + !:llgfi%%iiill <o,

which, in view of equation (1), is equivalent to {for x € S )
u'’[g(x)] + G{V"[H(x)]f'z(x*s(x)) + V/[H(x)]f’'(x-g(x))} <O .

But this is precisely (for x €& 8 , i.,e. for almost all x ):

azklggx!.xl
2 (0.
dc

azm x),x

If x€S + 8'(x) does not exist and thus 2
de

does not
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exist either (note that, by equation (1}, the two exist at the same

x's ). For x € s , consider the four Dini derivates of 3z at =x .,
These are the lim sup and lim inf of the directional incrementary ratios
of 3, and thus always exist in the extended reals (see Titchmarsh
{1938])., Since the incrementary ratios (slopes) of g are bounded above
by one, so are the Dini derivates of g (Titchmarsh [1938]). Repeat the
above argument for local sufficiency for =z € s by replacing derivatives
by each of the four Dini derivates to conclude first that the four Dini

derivates of g at x € S are strictly less than one, then those of

dc w.r.t., ¢ are strictly negative. Henoce, M has a local

maximom at x and not an inflectiom point, U

Proof of (d): That (d) is a necessary condition is the content of Lemma
2,1, Here, we establish that (4) is also sufficient for global

optimality, through a series of intermediate lemmae,

The idea behind the overall proof is that, if at some stock level x ,
a local non-global maximizer has been selected as g(x) , then a downward
jump discontimmity would appear in the resulting value function at x or
at some point to the right of =x .

We first establish some properties of g near the originm,

Lemma A,2: Any selection s from the optimal consumption policy g is

gontinpous and increasing in a neighborhood of the origin,

Proof: From O  s{x) { x, it follows that s(0) =0 and s is
continuous at 0 {( s , being of bounded variation, can omnly have
discontinuities of the first kind, i.e, finite jumps, but such a jump

would violate interiority at 0), We now show that s is continuous in a
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neighborhood of 0. To this end, it suffices to show that O is not a limit
point of a sequence of points of jump discontinumity of s . But, by Lemma
3.1, all such jumps must be downward (i.e, such that s(x ) > s(x+) ),
a violation of interiority,

Since s is continuous near 0, and is interior, it is clearly

increasing near 0, [J

Lemma A,3: There exists s neighborhood N of the origin such that
E(N) = [g] .

Proof: Assume on the contrary that any neighborhood M of 0 is such that
E(M) contains another element h (in addition to g ), If h is a
local minimizer, then by Lemma 2.2 and the remark following the proof of
(c), we must have h(x) - h(y) > x~y , for all distinct x and y in

M ., Therofore h is not an interior minimizer for M(c;x) . Now, if

k is a local maximizer, then by the continuity of M , there eoxists a
local minimizer whose value is between those ¢f h and g8 . But the
above argument implies that this third extremizer is not interior, a

contradiction, [J

Romark: A continuum of global maximizers sufficiently near O is ruled out

by Lemma A,2. A continuum of local maximizers at a point x near 0, of

0
the form [hl(xo). hz(xo)] » is ruled out by the argument in the proof of
Lemma A3 in the following manner: Take ¢ > 0 sufficiently small, To
each h(xo) in [hl(xo). hz(xo)] corresponds an instantaneous rate of
change of local value of Vi(xo) = u'{h(xo)] . Hence, at x, + e, only
hl(xo) will still be a2 local maximizer, Now, between hl(xo) and

g(x,) , there mmst exist a local minimizer. Then, apply the argument in
0

the proof of Lemma A,3 to conclude that this minimizer cannot be interior.
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We have also just shown that continuums of extremizers (local or even
global) can only occur at countably many points,
The next result holds, similarly, that for sufficiently large values

of the stock level, M only has one extremum,

Lemma A,4: There exists X >0 gsuch that x » x implies E(x) = {g(x)}.

Proof: x here is the point beyond which V is a concave function, as in
the classical case (for a proof, see Mirman [1980]), Hence, for x> x,

M(c;x) is concave in ¢ , whence the conclusion, 1]

To recapitulate, Lemmas A,3 2nd A.4 assure us that, sufficiently near
0 and far enough from 0, there is no possibility of selecting a local non-—
global maximizer as g ., It may thus be said that for such values of x
the Euler condition is sufficient for optimality, The remaining part of
the proof of (d) takes care of the intermediate values of the stock level
x , as follows,

Keeping in mind that the curve M(c;x) moves continuously im x ,
and that any extremum has & continuous and increasing local value (at the

rate u’[h(x}] ), let 5, and x, be as follows:

x, = inf{x : Card E(x) > 1} , x 1

1 = inf{x : Card g(x) > 1} .

3

Clearly, x, £ x4 .2 Let x, be such that x, <(x, (x, . If at x

1 2 3 3

lﬂere Card stands for the cardinality of a set, If such T, and X

do not exist, E(x) is a singleton, g a single-valued function, and
there is nothing to prove,

zlt may be that T, =z4, in which case there is a continuum of global
maximizers at xl = 13 » each of which may be selected. Since we are

interested in the possibility of wrong selections, the case Xy < I, is of
interest,
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Figure A,1
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(see Figure A,1), h(xz) # g(xz) = ﬁ(xz) is selected as the global

maximizer, the value function V would be discontinuous at z, (i.e,

V(x;) > V(x;) ), regardless of whether h(xz) > g(xz) or h(x )2< g(xz) .

Hence, we would know that h(xz) is not the global maximizer at 2, .
Now, at Xy » 3(13) = {h(xa). a(xs)} , and, by Lemma 3.1,

g(x3 +2) = h(x3 +e) > i(xs + g) , for all small ¢ > 0 . Suppose that,

at xa and x, + &, h o is kept as the global maximizer, The resulting

3
value will remain continuous at X3 and g + g, with
Vh(x3 + &) > Vﬁ(x3 + a) and the gap Vh(x) = Vﬁ(x) {i,e, the error in
value) will be an increasing function of =x , in view of Corollary 2.4,
Hence h(x) cannot approach h(x) and coincide with it (if it could, and

did, say at a point x then we would not know that we had the wrong

4 °
meximizer between x, and X, }. Moreover jumping from ﬁ(x) to h{x)
would yield a downward jump in the (wrong) value. Finally, since, by
Lemma A.4, we know that we will eventually pick the right maximizer, an
upward jump will result in the (wrong) value, at some point, to get back
te gix) .

We have thus proved that only if the right selection of the global

meximizer is made at every stock level will the resulting value function

be continuous and increasing, 0



33

REFERENCES

Amir, R. [1984], Non-concave Programming and Dynamic Games in Resource
Allocation, Ph.D dissertation, Report T154, Coordinated Science Lab,
University of Illinois,

Amir, R., L, J. Mirman, and W. R, Perkins [1984], One-sector Nom-classical
Optimal Growth, mimeograph, University of Illinois,

Berge, C. [1959], Espaces Topologiques, Dunod, Paris,

Bertsekas, D. [1976), Dynamic Programming and Stochastic Control, Academic
Press.

Clark, C. W. [1971], Economically Optimal Peolicies for the Utilization of
Biologically Renewable Resources, Mathematical Biosciences, 12,

Dechert, D, and K, Nishimura [1983], A Complete Characterization of
Optimal Growth Paths in an Aggregated Model with a Non-Convex

Production Function, Journs! of Economic Theory.

Majumdar, M. and T, Mitra [1982], Intertemporal Allocations with a Non-
Convex Technology: The Aggregate Framework, Journal of Economic
Theory,

Majumdar, M, and T. Mitra [1983], Dynamic Optimization with a Non—Convex

Technology: The Case of a Linear Objective Function, Review of
Economic Studies.

Mirman, L. J, [1980], A Survey of Optimal Economic Growth, in Stochastie
Programming, ed. by Dempster, Academic Press, London.

Royden, H, L. [1968], Rea]l Analysis, MacMillan Company, New York,

Skiba, A, K, {1978]), Optimal Growth with a Convex—Concave Production
Function, Econometrica, Vol., 46, No. 3.

Titchmarsh, E, C, [1938], The Theory of Functions, Oxford University
Press, London,



