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0. ABSTRACT

This paper studies the random walk in a general timé series setting
that allows for weakly dependent and heterogeneously distributed innova-
tions of the type recently considered in {39] and [40]. It is shown that
simple least squares regression consistently estimates the unit root in
spite of the presence of autocorrelated errors. The limiting distribution
of the standardized estimator and the associated regression t-statistic
are found using functional central limit theory. New tests of the random
walk hypothesis are developed which permit a wide class of dependent and
heterogeneous innovation sequences. A new limiting distribution theory is
constructed based on the concept of continuous data recording. This theory,
together with an asymptotic expansion that is developed in the paper for
the unit root case, explain many of the interesting experimental results

recently reported in [17]} and [18].

ﬁ@'thanks go to Don Andrews and David Pollard for some helpful discussions,
and, as always, to Glena Ames for her skill and effort in typing the manu-

script of this paper. The research reported here was supported by the NSF
under grant No. SES 8218792,



1. INTRODUCTION

Autoregressive time series with a unit root have been the subject of
much recent attention in the econometric literature, In part, this is be-
cause the unit root hypothesis is of considerable interest in applications
not only with data from financial and commodity markets where it has a long
history but also with aggregate time series. The study by Hall [24] has
been particularly influential with regard to the latter, advancing theo-
retical support for the random walk hypothesis for consumption expenditure
and providing further empirical evidence. Moreover, the research program
on vector autoregressive (VAR) modeling of aggregate time series (see [14]
and the references therein) has actually responded to this work by incorporat-
ing the random walk hypothesis as a Bayesian prior in the VAR specificafion.
This‘approach has helped to attenuate the dimensionality problem of VAR
modeling and seems to lead to decided improvements in forecasting perform-
ance [27].

At the theoretical level there has also been much recent research.

This has concentrated on the distribution theory that is necessary to develop
tests of the random walk hypothesis under the null and the analysis of the
power of various tests under interesting alternatives. A series of recent
investigations by Dickey, Fuller and their associates in [11}, [12], {13],
[19], [20] and by Savin, Evans and Nankervis in [17], [18], [31], [32] have
been at the forefront of this research, Related work on regression residuals
has been done by Sargan and Bhargava [6, 37] and on ARIMA models by Solo
[38].

All of the research cited above has been confined to the case where

the sequence of innovations driving the model are independent with common
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variance. Frequently, it is assumed that the innovations are i.i.d.
(o, 02) or further that they are n.i.d., (0, 02) . Independence and homo-
skedasticity are rather strong assumptions to make in most empirical econo-
metric work; and there are good reasons from economic theory (as shown in
[24]) for believing them to be false in the context of aggregate time series
that may be characterized as a random walk., For both empirical and theo-
retical considerations, therefore, it is important to develop tests of the
randon walk hypothesis that do not depend on these conditions.

One aim of the present paper is to develop such tests. In doing so we
provide an asymptotic theory for the least squares regression estimator
of the unit root and its associated regression t-statistic which allows for
quite general weakly dependent and heterogeneously distributed innovations.
The conditions we impose are very weak and are similar to those used recently
by White [39] and White and Domowitz [40] in the general nonlinear regres-
sion context. However, the limiting distribﬁtion theory that we employ
here is quite different from that of [39] and [40]. It belongs to a general
class of functional limit theory on metric spaces, rather than the central
limit theory on Euclidean spaces that is more conventionally used in econo-
metrics (as in the excellent recent treatment [39]). Our approach unifies
and extends the presently known limiting distribution theory for the random
walk and seems to allow for most of the data we can expect to encounter in
time series regression with aggregate economic series. A particularly in-
teresting feature of the new test statistics that we propose in this paper
is that their limiting distributions‘'are identical to those ‘found in earlier
work under the assumption of i.i.d. errors. Thus, we discover that much
of the work done by the authors cited in the earlier paragravh (particularly

Fuller [19], Dickey and Fuller [12) and Evans and Savin [17]) under the
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assumption of i.i.d. errors remains relevant for a very much larger class
of models,

Another aim of the paper is to present a new limiting distri-
bution theory that is based on the concept of continuous data recording.
This theory, together with the asymptotic expansion that is developed in
Section 8 of the paper for the unit root case, help to explain many of the
interesting experimental results reported in the recent papers by Evans

and Savin [17, 18} in this journal.

2. INVARIANCE PRINCIPLES FOR DEPENDENT

HETEROGENEQUSLY DISTRIBUTED VARIABLES

Let {yt}:zl be a stochastic process generated in discrete time accord-

iﬂg to:
(1) yt = ayt_l + ut; t_= 13 2’ ree
{(2) a=1.

Under (2) we have the representation Ye = St * Yy in terms of the partial
sum St = Eiuj of the innovation sequence {uj} in (1) and the initial
condition Yo - We may define S0 = 0 . The three alternatives commonly

proposed for y, are (see [41]):
{3a) Yo = © » a constant, with probability one;
(3b) Yo has a certain specified distribution?

(3¢) Yo = Y7 » where T = the sample size.



(3¢) is a circularity condition due to Hotelling that is used as a mathe-
matical device to simplify distribution theory (see [ 1] or [ 2]), while
(3b) is én initial condition that is frequently used to achieve stationarity
We will employ (3a} which permits the greatest flexibility in the specifi-
cation of (1), allowing in particular for non stationary series where
le| > 1 3 but our main results also apply under (3b).

Our concern in this section will be with the limiting distribution of

standardized sums such as:

- 1 -1 . T - < 3 j =
(4) XT(t) - -‘/_ﬁs[Tt] = ‘/_f(;sj'l H (J 1)/T _t < J/T (J 1’ ""T)
X (1) = —=S
T VTa T

where { ] denotes the integer part of its argument and o 1is a certain
constant defined later (see Theorem 3.1). Observe that the sample paths
XT(t) € D= D[0,1] , the space of all real valued functions on [0,1] that
are Tight continuous at each point of [0,1] and have finite left limits.
That is, jump discontinuities (or discontinuities of the first kind) are
allowable in D . It will be sufficient for our purpose if we endow D
with the uniform metric defined by ‘!f-g” = suptlf(t) -g(t)| for any

f, g €D,

XT(t) is a random element in the function space D[0,1] . Under cer-
tain conditions, XT(t) can be shown to converge weakly to a limit process
which is popularly known either as Brownian motion or the Wiener process,
This result is often referred to as a functional central limit theorem (CLT
(i.e. a CLT on a function space) or as an invariance principle, following
the early work of Donsker [15] and Erdos and Kac [16]. The limit process

which we denote by W(t) , has sample paths which lie in C[0,1] , the



space of all real valued continuous functions on [0,1] . Moreover, W(t)
is a Gaussian process (for fixed t W(t) is N(0,t} ) and has independent
increments (W(s) is independent of W(t) - W(s) for all 0 <s < t <1).
We will denote the weak convergence of the process XT(t) to W(t) by the
notation XT(t) = W(t) . Note that many finite dimensional CLT's follow
directly from this result (e.g. the case in which t = 1 yields the
Lindeberg-Lévy theorem when the u;  are i.i.d. (o, 5%) ). The reader is
referred to Billingsley [7] for a detailed introduction to the subject and
to Pollard [34] for an excellent recent treatment.

The conditions under which XT(t) = W(t) are very general indeed and
extend to a wide class of nonstationary, weakly dependent and heterogen-
eously distributed innovation sequences {ut} . Billingsley [7, Ch. 4(21}]
proves a number of such results for strictly stationary series satisfying
weak dependence conditions. His results have recently been extended by
many'authors in the probability literature (see Hall and Heyde [23, Ch. 5]
for a good discussion of this literature and some }elated results for
martingales and near martingales). Amongst the most general results that
have been established are those of McLeish [29, 30]. His results are, in
fact, the ones that we will use in our own development because they apply
most easily to the weakly dependent and heterogeneously distributed data
that we wish to allow for in the context of a time series such as (1.

To begin we must be precise about the sequence {ut}m of allowable

1

innovations in (1). 1In what follows we will assume that {ut}? is a se-
quence of random variables defined on a probabilify space (R, B, P) and

satisfying the zero mean condition:

(5) E(u) =0, forall t.



We want to allow for both temporal dependence and heterogeneity in the pro-
cess {ut}T . As discussed by White [39] and White and Domowitz [401], a
convenient and general way of doing this is through the use of mixing con-
ditions on the process. These conditions allow for serial correlation and
heteroskedasticity but control the extent of the temporal dependence so tha:
although there may be substantial dependence amongst recent events, events
which are separated by long intervals of time are almost independent. Form-

ally, we introduce the following two measures of dependence between the

g-algebras F and G :

@©(F,G) = sup |P(G|E) - P(G) |
{FEF,GEG,P(F)>0}

a(F,6) = sup |P(FG) - P(FP(G)] .
FEF, GEG

b . b
Now let F_ denote the o-field gemerated by {u,, u cees i} and Ry

a+l?

be the o-field generated by {ua +u + +

as] * e = Sb - Sa—l} for alil

Yy
a<b . We define:

P n 5
(6) @, = sup sup ©(F, R )
n  j>n+m
- n 5}
(7) a, = SUp  sup a(Fl, Rn+m) .

n jn+m

The measures (6) and (7) were introduced by Mcleish [29]., Both quan-
tities measure the extent of dependence between events which are separated

by at least m time periods. We will aSsume that

(8) @ v+ 0, a, ¥ 0 as m+ =,

These conditions are somewhat weaker than the related conditions (e.g. see



[39]) which define @-mixing and a-mixing processes, respectively; and they
(i.e. (8)) are, in fact, implied by the latter [29]. Following [29] we will
also be more specific about the rates at which @ and a approach zero
as m 4+ » , Adopting a somewhat stronger definition than that of Mcleish

} 1is of size-p if

(29, p. 167] we will say that 0 (or an

0 (or o ) = Oom P ) forsome e>0 as m+4w,

The following invariance principle is due to McLeish [29, pp. 168-169]:

LEMMA 2.1. If {ut}T ig8 a random sequence satisfying (5) and
(@) E(I7'S) +o°>0 as The
() {ui} is wniformly integrable (e.g. see [10, p. 98])
(c) SEP(E|ut|B) <w for some 2 < B <w

2 2

(d) T'IE(S S + 0" as min(k,T) ¢+ = ,

ke~ 5k |
{e) either @, 18 of size -B/(2B-2) or B8 > 2 and o i8 of size
-B/(B-2)

then XT(t) = W(t) as T > =,

In the“above (b), (c) and (d) are moment conditions which control the
degree of heterogeneity in the process and prevent the variances (and pos-
sibly higher moments) from fluctuating too wildly; (a) (and also (d}) control
the normalization of the functional at a rate which ensures a non degener-
ate distribption on C[0,1] ; and (e} controls the mixing decay rate in
relation to the probability of outliers as determined by the moment con-
ditions. Thus, as there is a higher probability of outliers (B -+ 2) the
mixing decay rate of @ increases so that the efgect of the 6utliers dies
off more quickly.

For stationary processes we have a similar result which holds under

somewhat simpler conditions:



LEMMA 2,2. If {ut}T 18 a weakly stationary random sequence satisfying
(5) and

(a) ElullB <o for some 2 <B < ;

(b) either Z:=lw1_l/8 <o or B>2 and T 31-2/8 < w3

n n=l"n ’
then

2

s -1.2
¢ = hmT-mE(T S

Y|

2

and if o > 0

XT(t) = W(t) as T ¢+ o ,

These results cover a very wide class of processes that are commonly
used in econometric modeling. Lemma 2, for instance, includes stationary
(-]

linear processes of the form u,_ = I. a.e, .
P t J=-e L]

where mea% < « and the
sequence {si} is i.i.d. (O, 02) under mild additional conditions on
the sequence of constants a; {which ensure that the mixing numbers 9,

or o satisfy (c)}. In particular the Lemma applies to many stationary
finite order ARMA processes, which have exponential mixing decay rates under
very general conditions. Lemma 1 extends this class further by allowing
for processes with a moderate degree of heterogeneity as well as temporal
dependence.

The following result which is given a very thorough treatment in [7 ]

will be used extensively in the following sections.

LEMMA 2.3. If h Zs any contiruous funetional on C[0,1] (continuous
that is,except for at most a set of points Dy for which P(W € D) =0 )

then Xp(t) =W implies that h(Xp(t)) = h(W) .



3. CONSISTENT ESTIMATION OF A UNIT ROOT

Let
) T 2
%= IyYeYe 1/51Ye

denote the ordinary least squares (OLS) estimator of o in (1). We write

n ooy femlT -2_T.2

and consider the limiting behavior of the standardized statistic (8).

THEOREM 3.1, If {ut}T satisfies the conditione of either Lemma 2.1 or

2.2 and if sup, E|ut|B+n <o forsome 2<B<w andany n >0, then

1
@ 1%y =-02J W(t)2dt
t-1 0
-1.T L .2 2 2,2
) T 2y Ory -yey) = (67/2) W) -0y /%)
where
2 .. W
o, = 11mT4mT EIE(ut) s
and
2 . e 1o2y L
% = lim; E(T7°SD) ;

W2 W2 -o2/e?)
1 — -
J W(t)%dt
0

(€) T(a-1) =

Moreover, (a), (b) and (c) contivue to hold whethief the initial conditions

are given by (3a) or (3b).

Note that when the innovation sequence {u_} is i.i.d, (o, 02) we

t
have UZ = ci and
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2
9 T(a-1) = (1/2)?’\’(1) - 1)

J W(t)2at
0

This result was first given by White [41] although his result {p. 1196 of
[411) is incorrect as stated since his standardization of a is g(M(a-1)
with g(T) = T/VZ (see (3.2) of [41]). Unfortunately, the same error occurs
repeatedly in the recent paper by Rao [35] (see, in particular, pp. 187-188
of [35]).

Theorem 3.1 extends (9) to the very general case of weakly dependent
and heterogeneously distributed data. Interestingly, our result shows
that the limiting distribution of T(a-1) has the same general form for
a very wide class of innovation processes {ut}T .

The differences between (c) of Theorem 3.1 and (9) may be illustrated
with a simple example. Suppose that the generating process for {ut} is

the moving average

(10) u, =

with ¢

2. -1.T.2 _ 2, 2

o, = pllmT+w T zlut = (1+8 )UE s
2 . -1 2 22

oo = 11mT T E(ST) = {1+8) o

and we have

2
g
1.7 2. .2
T Iy, qu, =-7§{(1+e) Wn© - +92)]

which can also be verified by direct calculation. In this case
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2W12 92/1 2
(11} T(&-1) a-(l/ YIW(1)™ - (1 +87)/(1+8)7]

1 ?
J W(t)“dt
0

generalizing (9) and, of course, reducing to it when 8 = 0 .,

Theorem 3.1 provides an interesting example of a functional of a partial
sum that does not necessarily converge weakly to the same functional of
Brownian motion. To show this it is most convenient to replace XT(t) as
defined in (4) by its close relative, the random element

L1 Tt - [Tt] L _ .
Mottt A, Y[Teler 0 G-D/T 2t < /T (G=1, ...,

Y (1)

1
Yp(1) = =51

which lies in C[0,1] . 1In fact, YT(t) = W{t) under the same conditions
as those prescribed earlier for XT(t) in Lemmas 2.1-2.2. However, the
sample path of YT(t) is continuous and of bounded variation on [0,1] so

that we may define and evaluate by partial integration the following Riemann

Stieltjes integral:

1 S PO 2
{12) Y (£)dY(t) = 5{Y (1) ==Y (1)° .
0 T 21T 2°T
0
The corresponding integral for the limit process W(t) must be defined as
a stochastic integral,1 for which the rule of partial integration used in
(12) does not apply. Instead, we have the well known result (e.g., see

{26, p. 158]):

E.g., see [36]. For a good recent introduction to the subject in the
econometrics literature, see [5].
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1 2
(13) jOWdW = {(1/2)(W(1)" - 1)

whereas from (12) and Lemma 2.3

(14) jldeYT» (/2% .
The problem arises because all elements of C[0,1] except for a set of
Wiener measure zero are of unbounded variation [ 7, ». 63]. In particular,
the sample paths of W(t) are almost surely of unbounded variation and
thus the integral IéWdW does not exist in the same sense as the integral
féYTdYT . It follows that the latter integral does not define a continuous
mapping on C[0,1] and we cannot appeal to the continuous mapping theorem
to deduce that Y dY. = [WdW when Y = W(t) . In fact as (13) and (14)
demonstrate the result is not correct.

We may, however, proceed as in the proof of Theorem 3.1 in the Appendix,

Since dY (t) = JThjdt/o we find by integration that:

Ij/'r . uj?
Y.dY. = —— 5. .u. +
(3-1)/T T 6t -1 2Tc2

and summing over j =1, ..., T we deduce that:

1

-1_T 2 T 2 2 2 2
(15) TT5)S, juy = o J Y dY. - Zluj/ZT = (c°/2)W(1) o/2

0

as given bf (b) in Theorem 3.1. Note algo, in view of (13), that the sum

(15) converges to ozféde if and only if Ui = 02 .
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THEOREM 3.2. If {ut}T satisfies the conditions of Theorem 3.1 then

g —+1 as T 4 e,

P

Theorem 3,2 shows that, unlike the stable AR(1) with J|a| <1 (in
place of our (2) above) OLS retains the property of consistency even in the
presence of substantial serial correlation. This extremely simple yet gen-
eral result seems never to have appeared before in the literature. The
robustness of the conclusion of the theorem is most extraordinary, allowing
for a wide variety of error processes which certainly permit serious mis-

specifications in the usual random walk formulation of (1) with white noise

errors.
4, THE REGRESSION t-STATISTIC
Define

R T 2 -1/2
(16) t = (G‘ﬂ)/s(zlyt_l)
where

2 . =1.7T ~ 2

(17) s =T al(yt -ayt-l) .

t 1is the conventional regression t-statistic that is often used for test-
ing hypotheses about o . The distribution of this statistic under the
nuil hypothesis a =1 and under certain alternatives o # 1 has recently
been studied extensively in a series of articles by Dickey and Fuller [12Z,
13} and Savin and Nankervis [31]. This work concentrates altogether on the
special case in which the innovation sequence {ut} is i,i.d. (0, 02) .

In related work Solo [38] has recently studied the asymptotic distribution
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of the closely related Lagrange multiplier (LM) statistic in a general ARIMy
setting; once again, his results are established under the assumption that
i.i.d. innovations drivé the model.

Our approach here is close to that of Solo's but we allow for a much
more general class of error processes. The following result characterizes

the limiting distribution of the t-statistic (16):

THEOREM 4.1. If {ut}; satisfies the conditions of Theorem 3.1 thexn

(1/2){w(1)2 - oi/oz}

1 1/2
2
(ou/c){JOW(t) dt}

(18) t =

under the null hypothesie that o =1 in (1).

As shown in the Appendix the limiting distribution (18} is the same

whether we employ the variance estimate 52 as in (17) or

1
5'2 = T—lz'{(yt_yt_l)2 as in the LM approach. Writing IM =t 2 for the

latter case, we deduce from Theorem 4.1 and the continuous mapping theorem

that

(1/4)[w(1)2 - 03/0212

- )
(ou/c)zj W(t) 2de

0

IM =

This specializes to Solo's result in [38] when cﬁ = o® .
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5. ESTIMATION OF (Ui, 02)

The limiting distributions given in Theorems 3.1 and 4.1 depend omn
unknown parameters cﬁ and 02 . These distributions are therefore not
directly useable for statistical testing. However, both these parameters
may be consistently estimated and the estimates may be used to construct
modified statistics whose limiting distributions are independent of
(oi, 02) . The new statistics (given by (21) and (22) below) provide a
very general test of the random walk hypothesis (1).

As shown in the proof of Theorem 3.1 T 1zTu2 - oi a,.s, as T 4 =,

17t
This provides us with the simple estimator

(19) Sﬁ =T 0y _yt-l) = T
which is consistent for Ui under the null hypothesis (2).

Consistent estimation of 02 llmT E(T ST) is more difficult. The
problem is essentially equivalent to the consistent estimation of an asymp-
totic covariance matrix in the presence of weakly dependent and heterogen-
eously distributed observations.l The latter problem has recently been
solved by White and Domowitz [40]. An excellent treatment is available
in Chapter VI of [39].

We follow the approach of [39] but allow for the more general depen-

dence conditions due to McLeish [29] that are discussed in Section 2. We

also correct an error of Theorem 3.5 of [40] and Theorem 6.20 of [39].2

Thls is most easily seen by noting that S //_=¢'V(0 02) by the invariance

Principle Lemma 2.1.

This error was detected independently by Whitney Newey and myself.



16

Start by defining

1/2

2 -
9 = var(T ST)
-1 T
-1.T.. 2 -1
= T L. E@?) + 27§ } E(wu. )
1 t 12] t=t+l tt-1
and the approximant
2 T
2 _ -1 T. 2 -1
op, = T L;E(u) + 2T 1 I E(wu ).
t=1 t=t+l

We call % the lag truncation number., The following result is given by

White [39, Lemma 6.17, p. 149]:

LEMMA 5.1, If the sequence {ut}T satisfies:

(8) E(u) =0 all t ;

2+2n

(b) sup, E|u] <w , for some n >0 ;

(¢) either @ is of size -2, or a_ 15 of size -(2+42n)/n ;

n

and if & 4+~ as T+« then

ag T 4 =,

This Tesult suggests that under suitable conditions on the rate at
which % +« as T 4+ » we may proceed to estimate 02 from finite samples

of_.data by sequentially estimating oi The problem is explored in [39]

g
and [40]. We define

2 -1_2 T
(20) STq = T "L ¢t 2T Er=lxt=t+1utut-r .
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n
The following result establishes that this is a consistent estimator of o7 .

THEOREM 5.2. If the sequence {u },

1 satiefies the conditions of either

Lemma 2.1 or 2.2 and if

4x+d) for some 8 >0 and r > 1 5

(@) sup, Elu,|
(b) either @, 18 of size -2 or @ 18 of stze =-2(r+8)/(r+6-1)
with v > 1 as in (a) ;
1/4
(¢) 24« as T+« such that £ = o(T ")
2 2

then sTi -Eﬁ-o as T + =,

According to this resuit, if we allow the number of estimated autocor-
relations to increase as T + « but control the rate of increase so that
L= 0(T1/4) then Sél yields a consistent estimator of 02 . White and

Domowitz provide some guidelines for the selection of & in [40}. Inevit-
~ably the choice of g will be an empirical matter. In our own case, a

preliminary investigation of the sample autocorrelations of U= Y- Ve
will help in selecting an appropriate choice of ¢ . Since the sample auto-
correlations of first differenced economic time series usually decay quickly

it is likely that in moderate sample sizes quite a small value of 2 will

be chosen.

6. NEW TESTS OF THE RANDOM WALK HYPOTHESIS

The consistent estimates si and s% g may be used to develop new
?

tests of the random walk hypothesis that apply under very general conditions.

Define the statistics

(57, - s5)/2

-2.T 2

(21) Z = T(a-1) -
o T “:
1Yt-1
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and
2 2
G-1 (sqq ~5u)/2
(22) 7 = -
t T172 172
S (2032 ) so (T7220y2 )
Te #1771 Ty, 17t-1

Za is a transformation of the standardized estimator T(&-l) and Z, is
a transformation of the regression t-statistic.

The limiting distributions of ZDL and Zt are given by:

THEOREM 6.1. If the conditions of Theorem 5.2 are satisfied then

@) z = MWE-1/2
@ f(l)h‘(t)zdt
and

W) - 1)/?2
1
{I(I)W(t)zdt}

under the null hypothesis that o =1 in (1).

®) z, =

Theorem 6.1 demonstrates that the limiting distributions of the two
statistics Za and Zt are invariant within a very wide class of weakly
dependent and possibly heterogeneously distributed innovations {ut} .
Moreover, the limiting distribution of Za is identical to that of

T(&-l) when 02 = 02 (see (9) above). The latter distribution has recently

u

been computed by Evans and Savin [17, 18] using numerical methods, Tabu-
lations and graphical plots of both the limiting pdf are presented in
[17}; {17] also contains a detailed tabulation of the limiting cdf which

is suitable for testing purposes. Since Evans and Savin work with the

normalization g(T)(e-1) in which g(T)® T/YZ the modified statistic

(23) Z) = (1//27)2(1

may be used to ensure compatibility with the tables in [17].
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The limiting distribution of Zt given in Theorem 6.1 is identical
to that of the regression t-statistic when 02 = ci (see Theorem 4.1).
This is, in fact, the limiting distribution of the t-statistic when the
innovation sequence {u.} is i.i.d. (0, 02) . The latter distribution
has been calculated using Monte Carlo methods by Dickey [11] and tabula-
tions of percentage points of the distribution are reported in Fuller [19,
table 8.5.2, p. 373].

Theorem 6.1 shows that much of the work of these authors on the dis-
tribution of the OLS estimator a and the regression t-statistic under
i,i.d. innovations remains relevant for a very much larger class of models.
In fact, their results appear to be relevant in almost any time series with
a unit root provided one makes the simple modifications contained in (21)

and (22) to the usual statistics.

7. REGRESSIONS WITH A CONTINUUM OF OBSERVATIONS

In certain econometric applications a near-continuous record of data
is available for empirical work. Prominent examples occur in various fi=
nancial, commodity and stock markets as well as in certain recent energy
usage experiments. Undoubtedly, trends in this direction will accelerate
in the next decade with ongoing computerizations of banking and credit
facilities and electronic monitoring of sales activity. For these reasons
it is of some intrinsic interest to study the limiting behavior of econo-

metric estimators and test statistics as the time interval between sampled

P

observations (which we call the sampling interval and denote by h ) goes
to zero. Problems of this type have already received a good deal of atten-

tion in the econometric literature (see [ 4] for a collection of articles
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in the field and [ 5] for an excellent recent review)., However, none of
the existing research in this field has considered unstable systems or re-
gressions with unit roots. It turns out, as we show below, that there is
a very interesting relationship between the behavior of the statistics we
have been considering when the sample size T 4 « and when the sampling
interval h + 0 . This relationship, together with the results of the
following section, help to explain some of the recent Monte Carlo results
reported by Evans and Savin [17, 18], in particular, their most interest-
ing result that when o = 1 the finite sample distribution of o is very
well approximated by its asymptotic distribution even for quite small
samples (T > 20} .

We begin by considering the stochastic differential equation
(24) y(t) = ey(t) + g(t)

where y denotes dy/dt , 8 <0 and y(t) and f(t) are random func-
tions of continuous time over O <t <N, When r(t) in (24) is a pure
noise process in continuous time (which we may rigorously treat as a gen-

eralized stochastic processl) (24) is more usually written in the form:
(25} dy(t) = ey(t)dt + z(dt)

where t(dt) 1is a og-additive random measure defined on all subsets of

-2 < t <o with finite Lebesgue measure with the properties

(26) E((dr)) = 0, E(z(dn)?) = odr-

for some 02 >0 (e.g., see [36}], pp. 1157-1163). In this case, the sto-

. . 2
chastic integral f;c(dr) has zero mean, variance ¢t and uncorrelated

1‘E..g. , see [42].
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increments; if its distribution is Gaussian then cﬁlfgc(dr) is a Wiener
process., Given the initial condition y(0) , (25) has solution [5,

p. 1163]:

teett-r)
0

(27 y(t) = j g(dr) + " Ty(0) .

If we consider (in a purely formal way) the problem of estimating the
parameter © in (24) from the continuous record {y(t); O <t < N} least

squares suggests the criterion

N . 2
min9 J {y -8y)“°dt
0

leading to the estimator

N | TN
yydt Jydy
R e
2 2
J y dt J y dt
0 0

(28) was originally suggested by Bartlett in [ 3]. Its properties were
subsequently studied in [22] and more recently in [9]. When y(t)
is generated by (25) then fgydy in the numerator of {28) is understood
to be a stochastic integral.

The discrete time model corresponding to (24) or (25) is (e.g., see

{571, pp. 1154, 1163):

29 y(th) = e®My(th-h) + u(th) ; t=1, 2, ...

>

where
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(30) u(th)

fl

th
J 8 (th=T) -y gy

th-h

th
I ee(th-r)
th-h

g (dr)

with the latter stochastic integral in (30) applying when the model is (25),

Note that (30) takes the form
(31) Vg T Weap T Y

éh

of (1) with o = e s Yy = y(th) , = u(th) ; and this reduces to

Ut
the random walk with o = 1 when @ = 0 .,
We shall concentrate on the case where there is a fixed span [0,N]
over which observations are taken at discrete intervals determined by h ,
We set N =Th and we shall consider below the asymptotic
distribution of a as h + 0 . Since N is fixed we have T = N/h + =
as h + 0 . It will be convenient (although not essential) in what follows
to assume that T 1is integer, for instance, corresponding to the sequence
h=1, 1/2, 1/3, ... . We shall also fix attention on the model {(25) as

the generating mechanism for y(t) .1

Let Si = E;=1u(jh) with S0 = 0 as usual., Define the random ele-

ment of D[0,1] :

|
Q
w

(32) Y (t) = .13 (h-R)/N <t <ih/N (i=1,...,NMh)

|
Q
[92]

Y1) = N/h

A more general treatment will be pursued in later work. It is not needed
for our present purpose.
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and the process

ih
S I T i T
ih-h

Then

LEMMA 7.1, If {Ei} satisfies the conditions of Lemma 2.2 then

Yh(t) ='N1/2W(t) as h 4+ 0,

Note that from (26) E(gi) = 0 and E(gf) = 02 . Moreover, if the
process {Ei} is Gaussian (as is frequently assumed), then the mixing con-

ditions of Lemma 2.2 hold automatically since the process is i.i.d,

THEOREM 7.2, If y(t) <is generated by (25) with © = 0 and if {Ei}
satisfies the conditions of Lemma 2.2 then as h + 0

(a) hz{y(th—h)z-¢N%§{féW(t)2dt-+2(y0/c/ﬁ)féW(t)dt +ye/oiNY
(®)  Eiy(th-h){y(th) - y(th-h)} = (No/2) {W(1)? -1 +2(y /o MN(DY ,

2
© nle "(Nl‘} : (122){1«1(1) -1} +1(y0/c¢ﬁ)wt) :
IOW(t) dt + 2(y0/cvﬁjIOW(t)dt + yg/oN

where W(t) is the Wiener process on  C[0,1] .

Theorem 7.2 shows that for small h the distribution of & may be
approximated by a suitable functional of Brownian motion. This functional
involves the initial condition Yo » which may be either constant (see

(3a)) or random (3b). For large N this distribution may be approximated

by

(l\(l/Z) Wl -1
N/ féW(t)zdt
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corresponding to a special case of our earlier result in Theorem 3.1 (in
which ci = 02 ) and to the conventional large T asymptotics. However,
in other cases, the initial value yo and more particularly the ratio
yo/o have an important effect on the limiting distribution of hhl(&—l) .
When yo/o is large the effect is 1likely to be substantial. Indeed, as

¢ = y,/0 becomes very large the limiting distribution of nE-n given

in (¢) is approximately N-s/zc_IW(l) or N(O, 1/c2N3) .

THEOREM 7.3. If y(t) <s generated by (25) with 6 = 0 and Zf {gi}
is Gaussian then & has the same distribution in finite samples (i.e.,

finite N ) as the functional

(30) 1 (1/2){W(13°% -1} + (y(0) /a/RW(L)
N fat + 2(y(0)/0¥R) [H(E)dt + y(0)%/o°N

of the Wiener procese W(t) .

Theorems 7.2 and 7.3 help to explain several of the phenomena discovered
in the experimental investigation of Evans and Savin [17]. These authors
found: (i) that the finite sample distribution of & was very well approx-
imated by its asymptotic distribution (as T 4+ « in the conventional large
sample asymptotics with h fixed) even for quite small samples when the
initial value Yo = 0 ; (ii) that changes in c¢ = YO/U precipitate sub-
stantial changes in the distribution of & ; specifically the distribution
noticeably concentrates as ¢ increases.

The fact that the asymptotic distribﬁtion of & is é very good approx-
imation in finite samples when Yo = 0 is well explained by Theorems 7.2

and 7.3. First, we observe that this asymptotic distribution applies not
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only as T 4+ » 1in the conventional sense with h fixed (see our Theorem
3.1) but also as h + 0 with a fixed data span N (our Theorem 7.2(c)
with Yo = 0 ). Thus, the limiting distribution theory operates in two
different directions Qith identical results when Yo = 0 . Moreover, as
shown in Theorem 7.3 this limiting distribution is actually the finite
sample distribution of the continuous record estimator 6§ when the process
is Gaussian (as in the experimental investigation [17]).

Theorem 7.2 also demonstrates that ¢ = yo/o = y(0)/o is an impor-
tant parameter in the limiting distribution of h'l(&-l) as h + 0 . This
is to be contrasted with the usual T 4 = asymptotic theory which obscures
the dependence of the distribution of a on yO/c . The second phenomena
noted by Evans and Savin, that the distribution of T(a-1) concentrates
as c = yO/o increases, is a natural consequence of the fact that

(34) —§+ 0 as ¢ + o,

8. AN ASYMPTOTIC EXPANSION OF

THE DISTRIBUTION OF T(a-1)

A general refinement of the functional central limit theorem of Lemma
2.1 does not yet appear to be available in the probability literature.
However, it is relatively easy to develop asymptotic expansions in special
cases such as the limit Theorem 3.1. In order to proceed one needs to
endow the random sequence {ui} with stronger properties.
We will consider here the special case in whii? the u, are i.i.
2

N{(0, ¢") . In this case it is easy to see that, for fixed t € [0,1] ,

XT(t) is N(0, [Tt]/T} . In fact, we may write for 0 <t <1
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/2

Xp(t) = W(t) ([Tt]/Tt) 1

1/2

n

W(t){1l - (Tt - [Tt])/Tt}

W(t){l - %IL'T—tLEl} + op('r‘z)

(35)

while XT(O) = W(0) = 0 . (35) provides a simple asymptotic expansion for
the finite dimensional (in fact, one dimensional) distribution of XT(t)
with t fixed. Note that since W(t)/t oy 0 as t+0 (e.g., see
{26, p. 57] the expansion (35) remains well defined in the neighborhood
of t =0 . Higher order finite dimensional distributions of Xp(t) may
be treated in a similar way. The error on the approximation XT(t) ~ W(t)
is seen to be of O(T'l) in (35). This suggests that certain functionals
of XT(t) may be expected to differ from the same functionals of W(t)

by quantities of the same order, In particular

1

1 2 2 -1
(36) J XT(t) dt = J W(t)“dt + O_(T )
0 P

0

and this expansion may be verified directly by developing an expansion for

1

0XT(t)zdt . Since the algebra is lengthy

the characteristic function of [
we shall not report it here.
Qur main concern is to develop an expansion for the distribution of

T(a¢-1) . We therefore consider next the numerator of this statistic, viz.

37 145y, O -y = G - enTii oy,

(A

from A3 in the Appendix. We shall confine our attention to the case where

the initial value y_ =0 , Since X (1)2 = W{l)2 + 0 (T‘l} {37) becomes
0 T P
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(62/2) (W(1)2 - 1) - (% T)E?(ui -6%) 4 oP(T“l)

= (/M) -1) - (0%//IDE + op(T‘l)

where & is N(0,1) and is independent of W(t) . The distribution of

¢ follows directly from the Lindeberg-Lévy theorem. Note that £ is de-
pendent on a quadratic function of the u, whereas W(t) depends on partial
sums which are linear in the ug . Hence, £ and W(t) are uncorrelated
and, being normal, are therefore independent.

We deduce the following result,

THEOREM 8.1. If Yy, 1i8 generated from the random walk (1) with o =1

t
and initial value yo = 0 and if the vy ave n.i.d. (0, 0%) then

2
(38) T(5-1) = MDEQ)° -1 - A//2DE

-1
+ (T )
féW(t)zdt

where W(t) 18 the Wiener process on C[0,1] and & Zig& N(0,1) and inde-

pendent of W(t) .

(38) provides the first term in the asymptotic expansion of the dis-
tribution of T(a-1) about its limiting distribution. We observe that
the term of 1/¥T in this expansioﬁ contributes no adjustment to the mean
of the limiting distribution. This is to be contrasted with the expansion
of the distribution of vT(a-a) when Ia] < 1 that was obtained in earlier
work [33]. In the latter case the mean adjustment of the O(1//T) term
in the expansion was substantial for « 1less than but close to unity,

The expansion (38) suggests that the location of the limiting distri-
bution should be an accurate approximation in moderate samples. This is

confirmed in the results of the sampling experiment of [17]. It will be
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of interest to discover the extent to which (38) improves upon the asymp-
totic distribution of & at various finite sample sizes. The numerical
computations that are necessary to explore this question will be performed

at a later date.

9. (CONCLUSION

The model (1) and (2) that we have considered above is much more gen-
eral than it may appear., It applies, for example, to virtually any ARMA
model with a unit root and even ARMAX systems with a unit root and with
stable exogenous processes that admit a Wold decomposition, In the former

case, we may write

(39) a(L) (1-L)y, = b(Lye,

for given finite order lag polynomials a{L) and b(L) in the lag oper-

ator L . Then, upon inversion, (39) becomes

(40) su, u = a) Tb(le,

Yo 5 Yea1 t* Yt

and u, will satisfy.the weak dependence and heteroskedasticity assumptions
of Lemma 2.2 under very general conditions on the innovations and lag poly-

nomials of (39). In the latter case, we may write
(41) a(l) (1-L)y, = b(L)x, + c(l)e,
with

d(L)xt = f(L}vt

and then upon inversion we have
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Yo = Vet U, U = a(L)"lc(L)et+a(L)_lb(L)d(L)'1f(L)vt

which is once again of the form (1) with u, satisfying the required as-

t

v, and the lag polynomials,

sumptions under general conditions on e, ¢

Qur results show that in quite complicated time series models such
as (39) and (41) it is not necessary to estimate the model or even to iden-
tify the model in order to consistently estimate or test for a unit root
in the time series. One needs only to construct the first order serial
correlation coefficient and associated test statistic (21) and use the
appropriate limiting distributions (given by Theorems 3.1 and 6.1); this
approach applies under conditions that are of even wider applicability
than (39) and (41}, In a certain sense, this idea is already implicit in
the Box~Jenkins modeling approach. However, none of the traditional theory
in this research (e.g., see [ 8] or [21]) allows for estimation or test-
ing procedures that have anything approaching the range of applicability
of our own approach.

More analysis of the statistical properties, including power, of the
procedures devised here is needed. The present paper is only an explora-
tory study and more research on these and other aspects of time series

with unit roots is planned for future work.



MATHEMATICAL APPENDIX

Proof of Lemma 2.1. This Lemma is Theorem 3.8 of McLeish [29] and is proved

on pp. 176-177 of [29].

Proof of Lemma 2.2. This Lemma is Corollary 3.9 of Mcleish [29] and is

proved on p. 169 of [29].

Proof of Lemma 2.3. See Theorem 5.1, pp. 30-31 of [7].

Proof of Theorem 3.1

To prove (a) and (b) we write each statistic as a functional of XT(t)

on D[0,1] . Thus, in the case of (a), we have

2.T,.2
=TS WSt YY)
i/T i/T
2 le 2. o2 -1/2 TI 2
= gL (1/Ta™)S dt + 2y.oT T (1/YTo)S dt +v,/T
U onym [Tt] 0 S, [(Tt] 0
_ 2 [ear + 2 T"l/zlx dt + y2/T
=g . T(t) t Yo© . T(t) T+ Yy
2 2
(Al) = o J W(t)“dt .
0

by Lemmas 2.1-2.3., Note that (Al) holds whether Yo is a constant (see
(3a)) or is random (see (3b}).

in the above derivation
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2 . -1.2
(A2) ¢ = limy E(T "S)

(see condition {a) of Lemma 2.1). When the process {ut}? is weakly sta-
tionary as in Lemma 2.2 the convergence of the sequence {E(T-IS$)} to
52 is assured by the mixing decay condition (b) of Lemma 2.2 (see [29],
p. 169}.

In the case of (a) we have:

() T5lye 1Oy =¥eop) = Ty YD (S; 1 +¥g) (/YD)

1T -

=T EpS5qY; * Yoo

_ 1T o2 o2 2 -
i/T

= /5] X ()% - @D lu vy
(i-1)/T

/2202 - @nlrul -y

(A3)

Under the conditions of the theorem (in particular, the requirement that

sup, E|ut[Y <o for some vy > 2 ) we deduce that:

-1.T 2 2 .. -1.T., 2
(Ad) T zlui It llmTﬁmT ElE(ui)
and
(AS) u a.s. 0

by the strong law of McLeish [28, Theorem 2.10 with condition (2.12)].
Now X;(1) = W(1) by either Lemma 2.1 or 2.2. It therefore follows

from (A3)-(A5) and the continuous mapping theorem (Lemma 2.3) that:
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(A6) ity o = @R - YD) = DWW - al/6’)

proving (b) of the theorem.

In view of (Al) and (A6), result (c¢) of the theorem is also a direct

consequence of the continuous mapping theorem.

Proof of Theorem 3.2

Write

~ -1
a =1+T Ey

wvhere
1 T
R i
L S N B R
17t-1
Since ET has a limiting diétriﬁution (given by (c¢) of Theorem 3.1) it fol-

lows directly that & —5* 1 as T+ e

Proof of Theorenm 4.1

Write

-1 - -1.T 2 -1.T -1.T:2
T E(Yt"uyt_l) = T Iiug - 2(6-1T IiVeoY * (6-1) T I¥e1

Clearly, under the conditions of the theorem,
2
s° —4* o, as T 4+ = .,

Thus, it is of no consequence in the limiting distribution whether we use
s? or s‘2 = T_lz(yt-yt_l)2 (as in the LM approach) in the construction
of the t statistic (13), The result given in (15) now follows directly

from the earlier results of Theorem 3.1.
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proocf of Lemma 5.1. The proof follows the same line as the proof of Lemma

6.17, pp. 149-152 of [39]. We need only note that this proof applies also
to the weaker dependence measures om and op since Mcleish's Lemma 3.5
in [29] may be used in place of Lemma 6.15 of [39] to establish the decay

}J} . Note also that under

our modified definition of size {see Section 2) we also have i wl/z < o

n=0"n
=  n/(2+2n)
and I o
n=0"n

rates of the autocorrelation sequence {E(utut_‘r

< e , which are required in the proof of [39].

Proof of Theorem 5.2

The proof follows the same lines as the proof of Theorem 6.20, pp. 155-
159 of [39], although we have no need to treat estimated residuals here.

Note first that the moment condition (a) of the Theorem implies the
moment conditions of Lemmag 2.1 and 2.2. 1In addition, the mixing decay
conditions (b) are stronger than those of Lemmas 2.1 and 2.2 and therefore
imply the latter. Thus, if @ is of size -2 then it is certainly of size
-8/(28-2) for any B > 2, thereby satisfying the condition of Lemma 2.1.
Similarly, if oy is of size -2(r+68)/(r+8-1) for r >1 and some & > 0
then a is of size -(2n+2)/n = -2 - 2/n for n = r+6-1 > 0 ; it fol-
lows that Gy is necessarily of size -B/(B-2) = -1 - 2/y for
y=8-2=n i.e. for B = 24n = r+é+1 . (Note that the moment condition
of Lemma 2.1 is still implied by (a).) It is also simple to verify that
the mixing decay conditions (in summation form) of Lemma 2.2 are also
necessarily satisfied by assumption (b) of the Theorem. Finally, we note
.that the assumptions of the Theorem ensure that the conditions of Lemma 5.1

hold and, therefore, 02 - 02

T T, % -0 as T 4+ » ,

Now

= T‘lzT{ui -E(ui}} + 2T'122 zT {

s=1%t=s+1 -E(uu

Ut s tVt-s)
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and

-1.T, 2 2
T El{ut—E(ut)} ETS*T 0, T+ =
" as in the proof of Theorem 3.1.

Writing Zts =uwu - E(utut_s} , 1t remains to show that

=18 T .

T Es=12t=s+1zts —§+ 0 as T 4 = , But this part of the proof follows
as in the proof given by White [39, pp. 155-157]., It is necessary, how-
ever, to correct the error that occurs on page 156 of [39] in the use of
Lemma 6.19 of [39]. When one allows for the fact that s may increase
with T the conclusion of Lemma 6,19 should be amended to (the details
are omitted but may be obtained from the author on request):

T 2

Eﬁzt=s+1zts) < s(T-s)A < sTA

for a suitable constant A . It follows that (see p. 156 of [39] for de-

tails):
SN
P[lT- Z > e]
s=1 t=s+l ©° T
< £k sTart/e?r?
= an3(a+1)/2e%T
. . 1/4 2 2
which tends to zero if & = o(T’' ') . We deduce that ST ~5+ o° as re-

qﬁired.



proof of Theorem 6.1

By Theorems 3.1 and 5.2 we have as T + = :

) (1/2) W) - o2/6%)
T(a-1) =

féW(t)zdt

-2.T 2

21 2
T Ly, ;=0 IOW(t) dt ,

52 —— 02 and 52 —_— 02
T, p u p u

Ab

(a) now follows directly by the continuous mapping theorem. In the same

way we may deduce that:

(w(l)2 -oi/oz)/z (02 -oi)/z
Z = -

t i/2
{féW(t)zdt}

1/2
Uz{féW(t)zdt}

and (b) follows as required.

Proof of Lemma 7.1.

o' ry u(ih)., (ih-h)/N < t < ib/N

1]

Y, (t)

_ W 1/2 -1_i-1
=h g El Ej

n

Nllz(lf/fb)zi-lﬁj

1/2
N Exp(6)

for (i-1)/T <t <i/T where T = N/h . XT(t) = W(t)

the result follows.

by Lemma 2.2 and
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Proof of Theorem 7.2

T BN S B B S 2
(a) hI;y(th-h)" = Nz, _, T “(z] “u(jh) +y,)

T -12 2
Nzi=1T o (Yh(t) +y0/0)

3

2 21 2 /2 1 2
N“o joxT(t) dt + 2N cyOIOxT(t)dt + Nyg

e-NzozféW(t)zdt . ZNS/zcyoféW(t)dt . NyE .

as required. In the above the random element
Xp(t) = ITNE/VTo , (3-1)/T <t < /T

lies in D[0,1] and the lr;j satisfy the assumptions of Lemma 2.2, so that

X.T(t) = W(t) .
(b) £1y (th-h) {y (th) - y(th-h)}
-5 '(zi’lu(jhn +y)u(ih)
i=1*70 0

T, i1 1/2.T

Ll

NUZE{(E(l)-lEj/fl"—U) (Ei/ YTo) + yONl/ZUZIF’i/ VTo

i/T
- T'lzfgi/a2}+ yONllchT(l)

MNo®/2) (2] [Xp(0) %]

2 2 T 2 1/2
(No“/2)X (1) - (N/2D)zE] + yoN/ “oX (1)

= (No2/2)W(1)% - (/2)o? + y N 2au(1)

0
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as required. (c} follows directly from the expression
a-1 = zly(th-h){y(th) - y(th-h)}/Zly(th-h)

and the arguments above involving the continuous mapping theorem and Lemma

7.1.

Proof of Theorem 7.3. From the solution (27) we have (under the null hypo-

thesis 6 = 0 )

t
y(t) = J g (dr) + y(0)
0

and thus

y(t)/o = W(t} + y(0)/o

since fgc(dr) is Gaussian by assumption W(t) 1is here a Wiener process
on C[O,N] . Transform t-> Nu=1t with u € [0,1] . Note that
W(t) = W(Nu) 1is N(0, Nu) so that we may write W(Nu) = Nl/ZW(u) where

W(u) is a Wiener process on C[0,1] . Now

N N N
J ydt = ozj Wee)2de + 20y(0)J W(t)dt + y(0)°N
0 0 0
2.2(} 372(% 2
=g N J W(u)}du + 20y{(0)N J W({u)du + y{0)°N
0 0

and



N 2 N N
j ydy = o J Wdw + Uy(O)J dw
0 0

1
GZNJ[ WaW + oy (0)NY 2 (1)
0

n

2N/ R -1} + oy@NY Zu (1)

and the required result follows,

A9



REFERENCES

[1] Anderson, R. L., '"Distribution of the serial correlation coefficient,"
Annals of Mathematical Statistice 13 (1942), 1-13.

{21 Anderson, T. W. The Statistical Analysis of Iime Series. John Wiley:
: New York, 1971,

[3] Bartlett, M. S. "On the theoretical specification and sampling prop-
erties of autocorrelated time series," Journal of the Royal Statis-
tical Society, 7 (1946), 27-41.

[4] Bergstrom, A. R. Statistical Inference in Continuous Time Ecomomic
Modele. North Holland: Amsterdam, 1976.

[5] Bergstrom, A. R. '"Continuous time stochastic models and issues of
aggregation over time," Ch. 20, pp. 1145-1212 in M. D, Intriligator
and Z. Griliches (eds.), Handbook of Econometrics, Vol. 2. North
Holland: Amsterdam, 1984,

[6] Bhargava, A. "On the theory of testing for unit roots in observed
time series," mimeographed, LSE, 1983.

[71 Billingsley, P. Convergence of Probability Measureg. John Wiley:
New York, 1968. ‘

{8] Box, G. E. P. and G. M, Jenkins. Time Series Analysis: Forecasting
and Control. Holden Day: San Francisco, 1976.

[9] Brown,B.M. and J.I, Hewitt, "Asymptotic likelihood theoyy for diffusion
processes,” Journal of Applied Probability,12 (1975), 228-238,

[10] Chung, X. L. A Course in Probability Theory. Academic Press: New
York, 1974,

{11] Dickey, D. A. "Estimation and hypothesis testing for nonstationary
time series," Ph.D, Thesis, Iowa State University, Ames, 1976,

{12] Dickey, D. A., and W, A, Fuller. "Distribution of the estimators
for autoregressive time series with a unit root," Journal of the
American Statistiecal Association, 74 (1979), 427-431,

-[13] Dickey, D. A,, and W. A. Fuller. 'Likelihood ratio statistics for

autoregressive time series with a unit root," Econometrica, 49 (1981),
1057-1072,

[14] Doan, T., R. B. Litterman and C. Sims. "Forecasting and conditional

projection using realistic prior distributions," Econometric Reviews,
3 (1984), 1-100.

R1



R2

[15] Donsker, M, D. "An invariance principle for certain probability limit
theorems," Memoirs of the American Mathematical Society, 6 (1951), 1-1p

[16] Erdds, P. and M, Kac. "On certain limit theorems in the theory of

probability," Bulletin of the American Mathematical Society, 52 (1946),
292-302,

[17] Evans, G. B. A, and N, E, Savin, "Testing for unit roots: 1," Econo-
metrica, 49 (1981), 753-779,

{18] Evans, G. B, A, and N. E, Savin. "Testing for unit roots: 2," Econo-
metrica, 52 (1984), 1241-1269.

[19] Fuller, Wayne A. Introduction to Statistical Time Series. John Wiley
& Sons: New York, 1976,

[20] Fuller, Wayne A, and D. P, Hasza. ''Predictors for the first order
autoregressive process," Journal of Econometrics, 13 (1980), 139-157,

[21] Granger, C. W, J. and P. Newbold, Forecasting Economic Time Series.
Academic Press: New York, 1977.

[22] Grenander, U. "Stochastic processes and statistical inference,"
Arkiv For Matematik, 1 (1950), 195-275.

[23] Hall, P. and C. C. Heyde. Martingale Limit Theory and its Applica~
tion., Academic Press: New York, 1980.

[24] dall, R. E. 'Stochastic implication of the life cycle-permanent
income hypothesis: Theory and evidence," Journal of Politiecal
Eeonomy, 86 (1978), 971-987,

{25] Hasza, D. P. and W, A, Fuller. "Estimation for autoregressive pro-
cesses with unit roots," Amnals of Statisties, 7 (1979), 1106-1120.

[26] Hida, T. Brownian Motion, Springer Verlag: New York, 1980.
[27] Litterman, R. B. "Forecasting with Bayesian vector autoregressions:
Four years of experience," mimeographed (Federal Reserve Bank of

Minneapolis), 1984,

[28] McLeish, D, L. "A maximal inequality and dependent strong laws,"
Amals of Probability, 3 (1975), 829-839.

[29] McLeish, D. L. "Invariance principles for dependent variables," Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 32 (1975), 165-178.

[30] McLeish, D. L. "On the invariance principle for nonstationary mix-
ingales," Annals of Probability, 5 (1977), 616-621.

[31] Nankervis, J. C. and N, E. Savin, "Testing the autoregressive param-
eter with the t statistic,” Journal of Econometrics (to appear).



{32] Nankervis, J. C. and N. E. Savin. '"The student's t approximation
in a stationary first order autoregressive model,' mimeographed,
Trinity College, 1984,

[33] Phillips, P, C. B. "Approximations to some finite sample distribu-
tions associated with a first-order stochastic difference equation,™
Econometrica, 45 (1977), 463-485.

[34] Pollard, D. Convergence of Stochastic Processes. Springer-Verlag:
New York, 1984,

[35] Rao, M. M. "Asymptotic distribution of an estimator of the boundary
parameter of an unstable process,'" Aunals of Statistics, 6 (1978),
185-190.

[36] Rozanov, Y. A. Stationary Random Processes. Holden Day: San Fran-
cisco, 1967.

[37] Sargan, J. D. and A, Bhargava. "Testing residuals from least squares
regression for being generated by a Gaussian random walk," Eecomometrica,
51 (1983), 153-174.

[38] Solo, V. "The order of differencing in ARIMA models," Journal of
the American Statistical Association, 79 (1984), 916-921.

[39] White, H., Asymptotic Theory for Econometricians. Academic Press:
New York, 1984. :

[40] White, H. and I. Domowitz. 'Nonlinear regression with dependent ob-
servations," Econometrieca, 52 (1984), 143-162.

{411 White, J. S. "The limiting distribution of the serial correlation
coefficient in the explosive case,'" Amnals of Mathematical Statistics,
29 (1958), 1188-1197.

[42] Yaglom, A. M. An Introduction to the Theory of Stationary Random
Functions. Dover: New York, 1973.



