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HEADNOTE

This note presents a set of conditions on the defining functions of
regression parameter estimators of the linear model, These conditions guar-
antee that the estimators are symmetrically distributed about the true
parameter value, and hence, are median unbiased, provided the joint distri-
bution of the errors is symmetric. The symmetry reésult holds even if the
regression parameters are subject to linear restrictions., If the estimators
possess one or more moments, then the symmetry result also implies mean
unbiasedness. Similar conditions are provided that establish a property
called origin (or shift) equivariance for the estimators. Common feasible
GLS, quasi-ML, robust, adaptive, and spectral estimators are seen easily to

 satisfy the requisite conditions,



1. INTRODUCTION

This note presents a general result that establishes symmetry about the
true parameter vector of the distributions of a wide class of estimators
of regression function parameters in the linear model. Estimators covered
by this result include feasible generalized least squares (GLS), quasi- |
maximum likelihood (ML), robust, adaptive, and spectral estimators. Of
course, symmetry of the estimators implies median unbiasedness (that is,
the probability of an overestimate equals that of an underestimate, see
Lehmann [25}), and also mean unbiasedness if the estimators possess one or
more moments. The result holds if the joint distribution of the errors is
symmetric, the regressors and the errors are independent, and the defining
function of the estimator in question satisfies a certain set of conditions,
which is usually quite easy to verify.

The symmetry result is an important finite sample result both in
itself, and because it is useful in simplifying the production and present-
ation of Monte Carlo results, For example, most Monte Carlo studies of
feasible GLS estimators are less definitive and more complicated than nec-
essary, since they do not exploit the theoretical unbiasedness of the esti-
‘mators under investigation. Furthermore, the generality of the result
obviates the duplication of proofs of symmetry for the myriad of estimators
for which the résult applies.

The conditions used to generate the symmetry result only need to
be altered slightly to ensure that the estimators under consideration are
also origin (or shift) equivariant (see the definition given in equation

(5) below). The property of origin equivariance of an estimator may be



desirable, because it implies that the estimator is appropriate for any
choice of origin used to measure the variables (see Andrews [6]).

The model under consideration includes the standard linear regres-
sion model, the linear seemingly unrelated regressions (SUR} model, the
multivariate linear regression model (in particular, the unrestricted re-
duced form of a simultaneous equations system), the random coefficients
linear model, and the linear panel data model, The regression parameters
may be subject to non-homogeneous linear restrictions, the regressors may
be fixed or random, and the errors may be autocorrelated and/or heterosce-
dastic,

The symmetry and origin equivariance results apply to numerous esti-
mators including: (1) least squares (LS) estimators, (2) feasible GLS
estimators such as (i) weighted LS (e.g., see Amemiya [3]), (ii) Cochrane-
Orcutt [11] and Prais-Wiﬁsten [33] procedures, (iii) Durbin's {13] estimator,
(iv) Amemiya's 2] estimator, (v) Pierce's [32] estimator, (vi) Swamy's
[37] estimator of the random coefficients model, and (vii) various esti.
mators of the error components model (e.g., see Maddala [28]), (3) all ML
and quasi-ML estimators (provided the specified (quasi-) likelihood of the
errors is symmetric), (4) spectral and band spectral regression estimators
(see Hannan [15], Duncan and Jones [12], and Engle [14]}, (5) numerous robust
estimators such as (i) Huber M-estimators (see Huber [19] and Yohai and
Maronna [40]), (ii) bounded influence M-estimators {(see Krasker and Welsch
[23] and Maronna and Yohai [30]), (iii) L-estimators (see Bickel [8]),

(iv) R-estimators (see Adichie [1] and Juretkovd [20]), (v) minimum distance
estimators (see Koul and DeWet [22]), and (vi) GEM estimators (see Andrews
{5]), (6) adaptive estimators (e.g., see Bickel [10]), and (7) various one-
step estimators that are equal to a Gauss-Newton step away from an initial

estimator (e.g., see Bickel [8, 9]).



Since the estimators considered do not necessarily have closed form
expressions, attention is paid to the possibilities of non-existence and
non-uniqueness of the estimators.

The symmetry result presented here is already known by some~-perhaps
even by many--for certain estimators.2 The large number of papers that
introduce feasible GLS procedures or present Monte Carlo evidence for them,
but do not discuss or exploit this result, indicates, however, that know-
ledge of the result and its generality is not sufficiently widespread.
Furthermore, in the literature on robust, adaptive, and spectral estimation
the result has not received widespread attention.

The proof of the symmetry result is not difficult. It relies on a
simple result that, undoubtedly, has been known for a long time: An odd
function of a random vector with a symmetric distribution also has a sym-
metric distribution. For example, Hodges and Lehmann [18] used this result
in showing that their estimator of location has a symmetric distribution
about the true location paraﬁeter. Kakwani [21] also used this result in
showing that Zellner's SUR estimator has a symmetric distribution. More
recently, Magnus [29] used this result to show symmetry of the distribution
of the ML estimator for the linear model with normal errors and covariance
matrix that depends on a finite number of parameters, Here we use the re-
sult in showing that a wide class of feasible GLS, quasi-ML, robust, adaptive,

and spectral estimators have symmetric distributions.



2. SYMMETRY AND ORIGIN EQUIVARIANCE RESULTS
The linear model considered here is written as
(1) y=XB +u,

where y and u are n-vectors of dependent random variables and errors,
respectively, X is an nxk matrix of regressors, and 8 is a k-dimensional
parameter vector,

The regressors X may be fixed or random, but are assumed to be
independent of the errors u . In addition, X is assumed to have full
column rank with some positive probability. The true value of B , denoted
8y » is unknown but is assumed to be known to lie in a parameter space
.B that is an affine subspace (i.e., a translated linear subspace) of Rk .3
The joint distribution of the errors is assumed to be symmetric about an
n-vector of zeroes.4 That is, the distributions of u and ~u are equiv-
alent.

The above assumptions are the only assumptions placed on the model,
and they are sufficiently weak to incorporate all of the models listed in
the Introduction. Note that the regressor matrix need not have full rank
with probability one, nor do the errors need to satisfy any distributional,
independence, or identical distribution assumptions.

The generic estimator under consideration, denoted B, is taken
to be the solution to either a maximization problem or a system of equations.
Most of the estimators considered in the literature can be so defined (in-
cluding those estimators that utilize zigzag iterative procedures, see
the discussion below). Since it is possible that the solution is not
unique or does not even exist, the estimator is defined in two steps. The

first step defines the set of solutions, B, to the maximization problem



or system of equations. The second step determines a unigue estimator from
the set B » which may contain zero, one, or many elements.

The least absolute deviations (LAD) estimator and M-estimators (see
Maronna and Yohai [30]) exemplify the case where multiple solutions may
exist for the minimization problem or system of equations. The problem
of existence of a solution may arise when the parameter space for some
nuisance parameter is not compact (since functions do not necessarily attain
their infimum on non-compact sets). For example, a2 non-compact parameter
space arises naturally if the errors are stationary, first-order autoregres-
sive, since the set of all points that generate stationary errors (i,e.,
all points in (-1,1)} is open.

Let ¥(v, Z, B, 9y, Bl’ 62) denote the optimand or System of equa-
tions whose solutions for B8 € B yield the set B . More specifically,

f consists of those values B in B such that

(2) (B, ¥,) solves max  T(y, Z, B, 6,, B., 8,) , oOT
! BEB,0.€0 T 1 2
1771
(3) (8, 8)) solves r(y, Z, B, 8;, B}, 8,) = 0,
where ©, 1is the parameter space of 6, . The set B is the null set if

the relevant problem, viz., (2) or (3), does not have a solution.

The defining function T depends on a matrix of instrumental vari-
ables (IV's) Z that includes the regressor matrix X . The instruments,
Z , may be random or non-random, but are assumed to be ‘independent of the
errors u . (The reason for introducing instruments is discussed below.)
The estimator El , which appears as an argument of T , is an initial

estimator of g that may (or may not) be used in defining the optimand or



system of equations, For example, estimators that are defined to be one
Gauss-Newton step away from an initial estimator are of this form (see
Bickel [8, 9]). The parameters &y and 8, are (nuisance) parameters of
the joint distribution of the errors that again may (or may not) be taken
into account when estimating B . The parameter 8, is allowed to affect
T through an initial estimator &, . For example, 6, may consist of
autoregressive or moving average coefficients of the errors, and 62 may
be an estimator of these parametefs {see Cochrane and Orcutt {11], Prais
and Winsten [33], Durbin [13], and Andrews [5]). The parameter 8, , on
the other hand, is estimated jointly with B as indicated in (2} and (3)
(e.g., see Beach and McKinnon [7] and MaCurdy [27]). The parameters &,
and 6, may be infinite dimensional (as 6, is in Bickel [10]), and may
have elements in common (as in Pierce [32]). Of course, the defining func-
tion of most estimators does not depend on all of the arguments

(y, Z, B, 81, El’ 52) listed for T . But, different estimators depend

on different arguments, so all of the arguments listed are needed in order
to achieve general results.

We allow the estimation procedure to depend on IV's, even though the
true model contains no endogenous variables, because the latter fact may be
unknown, and IV procedures of one sort or another may be used as a safe-
guard. Given this possibility, it is useful to know the properties of the
IV procedures when none of the regressors is endogenous. The results below
apply to this situation. The IV estimators of interest include the standard
IV estimator and the estimators of White [39] and Krasker and Welsch [24].

Zigzag iterative procedures for the estimation of Bo involve al-
ternating between estimating £ and By » with each new estimate of B

relying on the latest estimate of 0,5 5 and vice versa. Each step of these



procedures is usually based on solving a maximjzation problem or system of
equations for £ or 82 . Hence, the last step in which B 1is estimated
is of the desired form, viz., that of equation (2) or equation (3). The
stopping rule used to determine the number of iterations performed can be
incorporated into the defipition of the estimator 62 {(which equals the
final jterated estimate of 6, ). For example, one could define 62 to
be the first estimator from the infinite sequence of iterated estimators
of 6, such that the difference between successive iterated estimates of
8, (or 8 , perhaps) is less than some prespecified constant. Using this
approach, we see that most zigzag iterative estimators fit into the frame-
work of the generic estimator described above.

We return to the description of the generic estimator, and make the

following assumption about T :

Al)  The defining function T depends on y , B , and 51 only

through y-X8 , ¥y -xél , B -El , or 8, . That is, we can write

';(y’ Z, B’ e‘l’ ﬁl’ 62) = I‘(}’-'XB, Y'X§1: B"§19 Z, e]: éz) .

Further, in the case of the maximization problem (2), r is an even

function of its first three arguments:

r(y - X8, y- xé]_’ 3-31, 2, 91» 62) = r(-[y-X8], ‘[Y"xgll: ‘[B'ﬁlls Z, 91: 62) .

In the case of a system of equation problem®(3}), r 1is either an odd

or an even function of its first three arguments.

Assumption Al is extremely easy to verify, and is almost universally
met by those estimation procedures of type (2) or (3} that have been pro-

posed in the literature. For example, all of the estimators referred to in



the Introduction satisfy this assumption.
The second assumption we make is of import only if an initial esti-

mator B, of B is utilized by the generic estimator:

1

A2) The initial estimator él is such that él -8, 1is an odd function

0
of the errors u . That is, viewed as a function of u , 81 satis-

fies
Biw) - By = -(B (~w) -8y .

The verification of this assumption follows by the results of this
note applied to the initial estimator ﬁl rather than te the generic esti-
mator § . If él depends on some other initial estimator, say éz ,
then we apply the present results to ﬁz and then to §1 » etc. The num-
ber of such initial estimators that needs to be considered must be finite,
otherwise §1 is not properly defined. The results of this note apply to,
and are quite easy to verify for, most of the estimators that have been
suggested in the literature as initial estimators. Hence, assumption A2 is
relatively easy to verify, and is satisfied quite generally,

By assumption, the distributions of u and -u are identical, Thus,
any parameter of the distribution of u is identical to that of the dis-
tribution of -u . In consequence, most estimation procedures that estimate
some parameter of the distribution of u are invariant to changes in the
data from u to -u . We require this property to hold for the initial

estimator ©, of o, (if such an estimator is'used in defining the gemeric

estimator ﬁ )

A3) The initial estimator §z of 92 is an even function of u .

That is, viewed as a function of u , 52 satisfies 32(u) = 62(—u) .



The verification of this assumption can be done in a number of ways,
If 52 has a closed form expression, assumption A3 is usually straightforward
to verify. If 62 is the solution to a maximization problem or system of
equations based on & defining function T , one can use the results of the
present note to verify A3, by identifying the initial estimator 52 as the
estimator 31 derived from the solution to (2) or (3) with T replacing
T . In this case, if T satisfies the assumptions listed here for T ,
then the result concerning 51 of the Theorem below establishes A3 for the
initial estimator 8y If the initial estimator 52 is defined in some
other manner, often it is still not difficult to establish A3 in some ad
hoc fashion.

Next we consider the second step in defining the generic estimator
g . This step consists of defining a tie-breaking rule, call it s , that
assigns to every set of solutions B 2 unique estimator B . The tie-
breaking rule is allowed to depend on an alternative estimator of 8 , say
§2 . Thus, B = s(ﬁ, ﬁz) . For example, the rule might be to take B to
be that element of B that is closest to éz (with further rules specified
to break remaining ties). More specifically, when carrying out M-estimation
procedures (e.g., see Maronna and Yohai [30]) we might choose that'solution
to the defining system of equations that is closest to the least squares
estimator or to the LAD estimator (if it is umique).

The alternative estimator B (which may equal §1 ) 1is assumed

2
to be such that §2 - BO is an odd function ef the errors. This
assumption can be verified in the same manner as is A2, Whenever X

is of full rank such an estimator ﬁz exists, since the LS estimator quali-

fies. When X 1is of less than full rank, no such estimator exists and

ﬁz is set equal to n , where n 1is an abstract symbol that denotes that
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the estimator is not defined as an element of B . Note that we define
n=-n and nza=n, forall ac¢t Rk .

If the solution set B has a single element, then the tie-breaking
rule sets E equal to that element. If B is empty, then 8 is defined
to equal either n or ﬁz . In other cases, the tie-breaking rule is re-
quired to satisfy the equivariance and oddness conditions stated below.
Note that B is necessarily equal to n (i.e., essentially is undefined)
when X has less than full rank. This follows because B is either empty
or has multiple elements, and all potential alternative estimators 52
that satisfy the oddness condition must equal n .

The alternative estimator 32 and the tie-breaking rule s are

assumed to satisfy:

Ad4a) The alternative estimator ﬁz is such that éz"BO is an odd func-
tien of the errors u .,
b) The tie-breaking function s takes values in B U {n} , and is

equivariant and odd. That is,

(Equivariance) s(B+8, 8+8) = s(B,8)+§ , VBcB ; v, E€B U {n},

(Oddness) s(-B, -8) = - s(B,B) » YB=B; VBEBU{n)

As mentioned above, the verification of Ada parallels that of AZ.
The verification of A4b is straightforward.

It is interesting to note that tie-breaking rules are not discussed
at any length in the literature. This may be dugﬁto the concentration on
asymptotics in the literature, coupled with the common property of proposed
estimators that no tie-breakiﬁg rule is needed for n -sufficiently large
with probability one. For finite samples, however, unique solutions to

(2) and (3) often are not guaranteed. In consequence, tie-breaking rules
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are needed, and conditions such as those of A4 are needed to establish dis-
tributional symmetry and unbiasqdness of the estimators under consideration,
The necessity of such conditions indicates that tie-breaking rules probably
warrant more extensive consideration than they have received thus far.
Before presenting the theorem that establishes the symmetry of B,
we discuss another property of the estimator £ that is easily proved in

the present framework. Consider the following transformation of the model (1):
(4) y=XB +urmy* = Xg* + u,

where y* =y + X8 and B =8 + 8, for some B €3B . This transforma-
tion occurs if the origin of the vector space that contains y is shifted
by an amount XE . Since, in principle, the origin is arbitrary, we may

be interested in estimators £ that are appropriate for any choice of ori-

gin. Such estimators are called origin (or shift) equivariant, and satisfy
(5) Bly+xg, 2) = 8(v,2) +E, YEEB,

where é(y,Z) denotes the estimator § when applied to the data (y,Z) .
(See Andrews [6] for a more detailed motivation and discussion of this
property. Also, see Lehmann [26].)

In order to establish the origin equivariance of the generic esti-
mator B we need two assumptions in addition to those of Al and A4, for the
case where initial estimators §1 , §2 and 62 are used in the definition

of B :

B1) The initial estimator él and the tie-breaking alternative estimator

B, are origin equivariant,
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~

B2) The initial estimator 8, is origin invariant (within XB-XB ).
That is,
(6) 6,(y+X8, 2) = §,(v,2) , YEEB,

where 52(y-+X§; Z) and 52(y,z) denote the estimator 52 applied

to the data (y-+xE, Z) and (y,Z) , respectively.

Just as assumption A2 can be established by using the symmetry re-
sults of this note applied to §1 s assumption Bl can be established by
applying the origin equivariance results below to El and §2 . Similarly,
assumption B2 can be established for initial estimators 52 that can be
defined as solutions to maximization or systems of equations problems of the

form (2) or (3). Proceed by identifving 62 with the solution §, of (2) or

1
(3) for some function T > and then apply the origin invariance result
for §1 given in the Theorem below.

The various results alluded to above are given now in the following

theorem:

THEOREM: (a) For the linear model (1), all estimatore B that sattefy
Al, and when applicable, A2, A3, and/or A4, have distributions that are
symmetric about the true parameter By (and are such that B -By is an
odd funetion of the errors u ). Further, if an estimator 51 18 estimated
stmultaneously with B , then under the same assumptions, §, s an even
funetion of the errors u ,

(b) Ali estimators B that satisfy Al, and when applicable, Bl,
i8

B2, and/or A4, are origin equivariant. Further, if an estimator 31

estimated simultaneously with 8 , then under the same asswmptions, 61

is origin itnvariant. The results of this part of the Theorem hold whether

or not the errors u have symnetric distribution.
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The proof of the Theorem is given in Section 3 below.
Note that the estimator 51 of the Theorenm is precisely defined as
follows: 31 = v(é) , Wwhere ® is the set of all points Ei such that
(8, 5}) solves (2) or (3), and v(+) is a tie-breaking rule that chooses
a unique element from 6. If & is empty, then v(®) is equal to n .
Numerous examples of estimators that are covered by the Theorem are
given in the Introduction. Further examples can be found in the literature.
The estimators B8 considered in the Theorem may be undefined (i.e.,
equal to n ) with positive probability. Hence, to even consider the
properties of mean and median unbiasedness for the estimators £ , these
properties must be defined appropriately. We adopt the following definitions:

-
The estimator B is said to be median unbiased if

f ~ o -~
) P(a'(B-8y) <0, Ban) = P(a’ (B -8y) 20, Ben) , Va€ R .
With this definition, part a of the Theorem establishes median unbiasedness
of all estimators B that satisfy its conditions.

2 E3 .
The egpectation of an estimator £ , denoted EB , is defined to

equal
(® JB(mJl[g(mm]dp(mmﬁtwl n) ,

provided the integral is finite, where w represents a specific sample
realization of the random variables (y,Z) . An estimator § is said to
be unbiased if E§.= By » for any true pa}ameter By inm B . Part

2 of the Theorem establishes mean unbiasedness of all estimators B that
satisfy its conditions, provided their expectations are finite. Note that
Srivastava and Raj [36] establish the existence of the expectation of Zell-

ner's estimator for the SUR model, under weak conditions on the distribution
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of the errors. For the general class of estimators considered above, the
existence of one or more moments is an open question. The work of Phillips
[31], however, clearly is relevant to this question, Phillips derives an
expression for the exact distribution of a class of feasible GLS estimators

for the case of normally distributed errors.

3., PROOFS

PROOF OF THEOREM: We only consider the case where £ is defined as

the solution of the maximization problem (2). By altering the wording be-
low from "maximizes the function r " to "sets the function r equal to
a vector of zeroes," the same proof applies to estimators that solve the
system of equations (3).

~ ”~

For notational convenience we append (u) or (-u) to B , B1 '
52 » etc. to denote that these statistics are calculated using the data
{y,2} = (u+XBO, Z) or (-u+XBo, Z} , rvTespectively. By definition,
B(u) is the set of points B such that (B, 6,) maximizes
r(u+X(8, - 8, u+X(so-§1(u)), B-B (W, Z, e, 62(u)) over B x 6, .

Let %(u) be the set of points £ , and é(u) be the set of points

61 , such that (g, el) maximizes

(9) T(n-Xg, u-X(B () -By), £- (By(w -8y, Z, 8y, ) (9

0 2 §(u) . Now,

by definition, -Z(u) and é(uJ are the sets of '‘points £ and el ,

over Lxel , where L =B - BO . Note that ﬁ(u) - B

respectively, such that (g, el) maximizes

(10) T(uXe, u-X(8) () - 8p), -E-(B () - By), 2, 8y, B,(w) =

U}
=
-
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over (8, -B) x©, . Using A2 and A3, and then Al, we find

D = r(usXg, ueX(f;(-u)-8y), ~£+(B,(-u)-8), 2, 6, 6,(-w)
(11)
| = I'(*U*XE, -U-X(Bl(-u)-ﬁo). +E"(é1('u)"80)’ z’a els 62("“))

Hence, by the above definitions of E(u) and O(uw) , 2(-u) and &(-u)
are the sets of points £ and 61 , respectively, such that (g, Bl)
maximizes D over Lxel . Since B is an affine subspace, Bo -B

equals L , and so, -Z(u)

"

’§(-u) and é(u) = 5(-u) . This gives

(12) 8, = vEW) = viB(-w) = §(-w) , and
(13) Bu) - By = Ew = ~E(-w) = -(B(-w) - 8,) ,

where v(+) 1is the tie-breaking rule that yields a unique estimator of
51 from the set & of solutions to (2) or (3). Equation (12) shows that
61 is an even function of u . Equation (13) is used in showing the

following:

B-w) - By = s(B(-w), B,y(-w) - By = s(B(-u) -8, B,(-u) -8;) by Adb,

u

s(-[B(v) 'BOL -[ﬁz(u) -BOJ) by (13) and Ada,

-s(B(u) -8, B,(u) -By) by Adb,

D,

-(B(u) - By) » by Adb again,

Hence, ﬁ-BO is an odd function of u , and '8 has a symmetric disttibu-
tion about 80 , conditional on 2 . Since this holds for all realiza-~
tions of Z , and Z and u are independent, g has unconditional dis-

tribution symmetric about 80 .



Next, part b of the Theorem is established. For notational conven-

ience we append (y,Z) or (y+x?3', Z) after fl, ﬁ, él s, OT 8., to

2
denote that these statistics are calculated using the data (y,Z)} or

(y*, 2) , respectively, where y* z y+Xg ., By definition and assumption

Al, ﬁ(y+x§', Z) 1is the set of points B such that (8, 61) maximizes

r(y+X[B-8), y+X[B-8, (v, 231, 8-8,(yeX8,2), 2, 6, B,0y+XE,2))
(14)

r(y-x(8-B), y-XB,(v,2), 8-B-8,(v,2), Z, 8y, 8,(y,2)) =D,

L

over foel , where the equality uses assumptions Bl and B2,

Also by definition, the set of points 8- such that (B-'g, 61)
maximizes 02 with respect to (B-'EY, 81) and over _'}.:»’xe:l is ﬁ(y,Z] .
Hence, the set of points £ such that (8, 61) maximizes DZ with respect

to (B, 61) and over Bxel is ﬁ(y,Z) +§' . Using (14), this gives

(15) Bly+X8, z) = By, 2) + B, VEe3B.
Now, we have

By +XB, 2) = s(B(y +3B, ), B,(v+3E, 2))

s(8(v,2) +8, B,(y,2) +8) by (15) and B},
2

s(B(y,2), B,(y,2)) +B by A4,

{16) B(y,2) +% .

1]

Since (16) holds for all B €B , & is origin eguivariant.

. -, » '
A similar argument shows that 51 (y + X8) = 8;(¥), and so,

51 is origin invariant. Q.E.D.

Cowles Foundation, Yale University
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FOOTNOTES

11 would like to thank J, L. Powell, P. C. B, Phillips, and M. D.

Shapiro for their helpful comments on this paper.

2The symmetry result has been established by Adichie [1] and Koul

and DeWet [22], for the specific robust estimators they propose. Kakwani
[21] has shown that Zellner's SUR estimators is symmetrically distributed.
Taylor [38] has shown that a particular two-stage Aitken estimator is sym-
metrically distributed in the special case of a heteroscedastic error model,
For a more general model he has shown the weaker result that it is “unbiased
to any order in probability." Maddala [28] has shown that his error com-
ponents estimator is unbiased under the assumption of normality of the errors.
Magnus [29] has shown symmetry of the distribution of the MLE for the linear
model with normal errors and covariance matrix that depends on a finite num-
ber of parameters. Numerous others indicate their knowledge that the sym-
metry result applies to many more estimators than those just mentioned,

See, for example, Kakwani [21], Hendry and Srba [17], Harvey and MacAvinchey
[16], and Rothenberg [34}. Even these authors, however, make explicit
references to unbiasedness only for estimators that possess closed form
expressions given some covariance matrix estimator., Many of the estimators
referred to in the Introduction camnnot be written as such. For estimators
defined implicitly, the problems of uniqueness and existence of the esti-
mators must be addressed, as is done below. Furthermore, none of the above
authors provide general sufficient conditions for the symmetry result to
hold, as are given here. Note that the sufficient conditions given here

not only encompass a wide range of estimation procedures, they also permit



linear restrictions on the regression parameter vector. Such restrictions

have not been considered in any of the special cases treated in the liter-

ature,

3This assumption on the parameter space B is not made just for
convenience. If B is not an affine subspace, e.g., if B is a compact
set or an orthant, then the symmetry result below will not hold in general,

see the proof of the Theorem below,

4If the distribution of u is symmetric about an n-vector of ident-
ical constants, ¢ , not equal to 0, and the regression function contains
a constant term, then a symmetry result still holds. The result of the
Theorem below can be extended to show that the estimators considered are
symmetTic about 80 + (¢, 0,...,0)' . Hence, the estimators of the regres-
sion coefficients, excluding the constant term, have symmetric distributions

about the true values,



