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UNBIASEDNESS OF FEASIBLE GLS, QUASI-MAXIMUM LIKELIHOOD,

ROBUST, ADAPTIVE, AND SPECTRAL ESTIMATORS OF THE LINEAR MODEL
By Donald W. K. Andrews1

HEADNQTE

This note presents a set of conditions on the defining functions of
regression parameter estimators of the linear model, These conditions guar-
antee that the estimators are symmetrically distributed about the true
parameter value, and hence, are median unbiased, provided the conditional
distribution of the vector of errors is symmetric given the matrix of re-
gressors, The symmetry result helds even if the regression parémeters are
subject to linear restrictions, If the estimators possess one or more
moments, then the symmetry result also implies mean unbiasedness. Similar
conditions are provided that establish the property of origin (or shift)
equivariance for the estimators. Common feasible GLS, quasi-ML, robﬁst,

adaptive, and spectral estimators are seen easily to satisfy the requisite

conditions.
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1. TINTRODUCTION

This note presents a general result that establishes symmetry about the
true parameter vector of the distributions of a wide class of estimators
of regression function parameters in the linear model. Estimators covered
by this result include feasible generalized least squares (GLS), quasi-
maximum likelihood (ML), robust, adaptive, spectral, and instrumental
variable (IV) estimators. Of course, symmetry of the estimators implies
median unbiasedness (that is, the probability of an overestimate equals
that of an underestimate, see Lehmann [30]), and also mean unbiasedness
if the estimators possess one or more moments. The result holds if the
conditional distribution of the vector of errors is symmetric given the
matrix of regressors, and the defining function of the estimator in ques-
tion satisfies a certain set of conditions, which is usually quite easy
to verify.

The symmetry result is an important finite sample result both in
itself, and because it is uséful in simplifying the production and present-
ation of Monte Carlo results. For example, most Monte Carlo studies of
feasible GLS estimators are less definitive and more complicated than nec-
essary, since they do not.egploit the theoretical unbiasedness of the esti-
mators under investigation, Furthermore, the generality of the result
obviates the duplication of proofs of symmetry for the myriaﬁ of estimators
for which the result applies.

The conditions used to generate the symmetry result only need to
be altered slightly to ensure that the estimators under consideration also
are origin (or shift) equivariant (see the definition given in equation

(8) below), The property of origin equivariance of an estimator often is



desirable, because it implies that the estimator is appropriate for any
choice of origin used to measure the variable (see Andrews [6]). As pointed
out by Breuscn [11], this property also is useful because it implies that
the value of the estimand does not.affeEE the distribution of the estimator,
except by affecting the location of the estimator's distribution. Hence,
the parameter dependence of the distribution of the estimator is of a very
simple form, and Monte Carlo results performed for specific values of the
estimand have much wider validity than often is recognized.

The model under consideration includes the standard linear regres-

" sion model, the linear seemingly unrelated regressioms (SUR) model, the
multivariate linear fegression model (in particular, the unrestricted re-
duced form of a simultaneous equations system), the random coefficients
linear model, and the linear panel data model, The regression parameters
may be subject to non-homogeneous linear restrictions, the regressors may
be fixed or random, and the errors may be autoc0rre1ate& and/or heterosce-
dastic,

The symmetry and origin equivariance results apply to numerous esti-
mators including: (1) least squares (LS) estimators, (2) feasible GLS
estimators such as (i} weighted LS (e.g., see Amemiya [3]), (ii) Coghrane1
Orcutt {12] and Prais-Winsten [39]} procedures, (iii) Durbin's [15] estimator,
(iv) Amemiya's [2] estimator, {v) Pierce's [38] estimator, (vi} Swamy's
[44] estimator of the random coefficients model, and (vii) various esti-
mators of the error components model (e.g., see Maddala [33]), (3) all ML
and quasi-ML estimators (provided the specified conditional {quasi~) like-—
lihood of the errors given the regressors is symmetric), (4) spectral and
band spectral regression estimators (see Hannan [18], Duncan and Jones [14],
and Engle [16]}, (5) numerous robust estimators such as (i) Huber M-estimators

(see Huber {23] and Yohai and Maronna [47]), {ii) bounded influence



M-estimators (see Krasker and Welsch [27] and Maronna and Yohai [36]),
(iii) L-estimators {see Bickel {8]), (iv) R-estimators {see Adichie [1]
and Jurefkovd [24]), (v) minimum distance estimators (see Koul and DeWet
[26]), and (vi) GEM estimators (sée Andrews [5]), (6) adapative estimators
{e.g., see Bickel [10])}, (7) various one-step estimators that are equal

to a Gauss-Newton step away from an initial estimator (e.g., see Bickel
[8, 9]), and (8) IV estimators, including those of White [46] and Krasker
and Welsch [28].

Since the estimators considered do not necessarily have closed form
_expressions, attention is paid to the possibilities of non-existence and
non-uniqueness of the estimators.

The symmetry result presented here is already known for certain esti-
mators under certain conditions.2 The generality of the result, however,
has not been fully appreciated in the literature. For example, a large
number of papers introduce feasible GLS procedures, or present Monte Carlo
evidence for them, but do not discuss or exploit this result. Furthermore,
in the literature on robust, adaptive, and spectral estimation the result
has not received widespread attention.3 The purpose of this note is to
illustrate the generality of the result, with respect to both the estima-
tion procedure considered and the underlying errors assumptions, ana to
provide general conditions that eliminate the need for separate symmetry
proofs for each estimator or modelling situation that arises.

The proof of symmetry is not difficult. - It reliés on'a
simple oddness result that has been known for a long time, undoubtedly:

An odd function of a random vector with a symmetric distribution also has
2 symmetric distribution. For example, Hodges and Lehmann [22] used this

result in showing that their estimator of location has a symmetric



distribution about the true location parameter. Kakwani [25] used this
result in show1ng that Zellner s SUR estimator has a symmetric distribution,
More recently, Breusch [11], Magnus [34], Harvey [19], and others (see foot-
note 2) have used the oddness resalt td show symmetry of various estimators.
The usual method of exploiting the oddness result (e.g., see Kakwani
[25], Breusch [11], etc.) is to show that the estimator minus the estimand
can be written in closed form as an odd function of the errors and some
preliminary estimator that is an odd or even function of the errors. In
this note, however, we consider estimators that are defiqed implicitly by
a maximization problem or system of equations (which may depend on prelim-
inary estimators). Hence, a different method must be used to find condi-
tions under which the estimator minus the estimand is an odd function of
the errors. The advantage of considering implicitly defined estimators
is that it allows one to consider a very wide class of estimators, as in-

dicated above.

2. SYMMETRY RESULTS
The linear model considered here is written'as

1) y=X8 +u,

where y and u are n-vectors of dependent random variables and errors,
respectively, X is an nxk matrix of regressors, and B is a
k-dimensional parameter vector,

The regressors may be fixed or random. The regressor matrix X
is assumed to have full column rank with some positive probability. The

true value of £ , denoted BO , 1is unknown but is assumed to be known



to lie in a parameter space B that is an affine subspace (i.e., a trans-
lated linear subspace) of R .4 The distribution of the vector of errors

u conditional on X 1is assumed to be symmetric about_an n-vector of zeroes
{for almost all X ).5 That is, the conditional distributions of u and
-u given X are eguivalent. This condition on the errors obviously holds
if v end X are independent and u is symmetric. In addition, it allows
for heterosgedasticity of the sort where the error variances are related

to the values of the regressors, 1f instrumental variables (IV's) Z dre

used in estimation, then the symmetry assumption is assumed to hold conditional

on 2 (for almost all Z ), where the matrix Z dincludes X .

The above assumptions are the only assumptions placed on the model,
and they are sufficiently weak to incorporate all of the models listed in
the Introduction. ﬁote that the regressor matrix need not have full rank
with probability one, nor do the errors need to satisfy any assumptions
regarding independence (over time), identical distributions, existence of
" moments, or normality of marginai distributions,

Before describing the general class of estimators for which the sym-
metry result holds, we consider a simple example that exemplifies the method
of proof of the result for implicitly defined estimators., Consider an esti-
mator és that is defined as the solution to the maximization of r(y-X8)
over 8 € Rk , where x(+) 1is a real-valued function that is an even
function of its argument. For example, we might have
r(y-X8) = p‘(_(y-XB).‘(y-XB)) , for sbme cor;vex function p(+) . Further,
suppose r(+) is such that Es is always defined and is unique. The clainm
is that §S_ is symmetrically distributed about EO . Using the oddness

result described in Section 1, it suffices to show that és - 60 is an



odd function of errors u .,
Let és(u) and és(-u) denote the estimator és applied to the
data (y,X) = (u+)(50, X) and ()-',X) £ (-u+XBO, X) , 7Tespectively. Let

argmax r(y-XB) denote the vector« B in Rk that maximizes r(y-Xg) .
k
EER

The oddness of Es(u) - 80 in u is established using the following change

of variables manipulations:

§(u)

L]

argmax r(u+ X[BO -81

ek

= - argmax r(u+X'§) + BO R
Bes,-R"

by letting g = BO-B , where BO-Rk = {8 : 'BU=BO-6, for some B € Rk} .

= -—argmax r(-u+}([-'§]) + 30
Berk

(2) since r(+*) 1is an even function and B8

= - argmax r(-u+X[BO -8]) + 280 |

BERk+BO

by letting 8 =8, +8 ,
= —BS(-u) + 280

since Rk+Bo = Rk .

Thus, és(u) - Bo = -(é(-u) -Bo) , as desired, This method of proof is
the basis of the proof given below for the general class of estimators.
We now consider the definition of this class,
The generic estimator under consideration, denoted E , is taken
to be the solution to either a maximization problem or a system of equations.

Most of the estimators considered in the literature can be so defined



{including those estimators that utilize zigzag iterative procedures, see
the discussion below). Since it is possible that the solution is not unique
or does not even exist, the estimator is defined in two steps. The first
step defines the set of solutions; § , to the maximization problem or
system of equations. The second step determines a unique estimator é
from the set B , which may contain zero, one, or meore elements.6

The least absolute deviations (LAD) estimator and M-estimators (see
Maronna and Yohai [36]) exemplify the case where multiple solutions may
exist for the maximization problem or system of equations. The problem
_of existence of a solution may arise when the parameter space for some
nuisance parameter is not compact-  For. example, a non-compact parameter-
space arises naturally if the errors are stationmary, first-pfder autoregres—

sive, since the set of all points that gemerate statiomary errors (i.e.,

all points in (—1,1))—15 OPEN.

Let F(y, 2, B, 8, ﬁl' 62) denote the optimand or system of equa-
tions whose solutions for B8 € B yield the set B . More specifically,

§ consists of those values § in B such that

(3) (8, 6,) solves max Ty, 2, B, © 8., 8.) or
1 i 8$.e Ee ? » » 1’ 1 2 » .
1771
(%) (8, 'é-l) solves T{(v, Z, B, By» El' 52) =0,

where ©, is the parameter space of ©; . ‘The set B is the null set if
the relevant problem, viz., (3) or (4), does not have a solution,
The defining function T depends on a matrix of instrumental vari-

ables (IV's) 2 that includes the regressor matrix X ., {The reason for



introducing instruments is discussed below.) The instrument Z may be
random or non-random. No assumptions are placed on the distribution of the
1V's (except the above assumption that u given Z is symmetric). The
estimator él » which appears as.an a&éument or T, is an initial esti-
mator of $ that may (or may not) be used in defining the optimand or
system of equations. For example, estimators that are defined to be one
Gauss-Newton step away from an initial estimator are of this form (see
Bickel [8, 9]). The parameters Bl and 6, are (nuisance) parameters of
the joint distribution of the errors that again may (or may not) be taken
into account when estimating @ . The parameter 8, 1is alloved to affect
T through an initial estimator’ 62 . For example, 8, may consist of

autoregressive or moving average coefficients of the errors, and §. may

2
be an estimator of these parametefs (see Cochrane and Orcutt [12), Prais
and Winsten [39], éﬁrbin [15], and Andrews [5}). The parameter 8y » on
the other hand, is estimated jointly with 8 as indicated in (3) and (4)
(e.g., see Beach andMacKinnon [7] and MaCurdy {32}). The parameters By
and 92 may be infinite dimensional (as e2 is in Bickel [101), and may
have elements in common (as in Pierce {Sé}). Of course, the defining func-
tion of most estimators does not depend on all of the arguments
(v, 2, B, el, él’ 52) listed for T . But, different estimators depend
on different arguments, so all of the arguments listed are needed in order
to achieve general results,

We allow the estimation procedure to depend on IV's, even though the
true model contains no endogenous variables, because the latter fact may be -
unknown, and IV procedures of one sort or another may be used as a safe-

guard., Given this possibility, it is useful to know the properties of the

IV procedures when none of the regressors is endogenous., The results below



apply to this situation, The IV estimators of interest include the standard
1V estimator and the estimators of White [46] and Krasker and Welsch [28],
Zigzag iterative procedures for the estimation of BO involve al-
ternating between estimating 8 and 85 » with each new estimate of B8
reiving on the latest estimate of 6, » and vice versa. Each step of these
procedures is usually based on solving a2 maximization problem or system of
equations for 8 or 6, . Hence, the last step in which B 1is estimated
is of the desired form, viz., that of equation (3) or equation (4)., The
stopping rule used to determine the number of iterations performed can be
incorporated into the definition of the estimator §2 {which equals the

final iterated estimate of 6. }. For example, one could define 8

2 to

2
be the first estimator from the infinite sequence of iterated estimators
of 6, such that the difference between successive iterated estimates of
92 (or B , perhaps) is less than some prespecified constant. Using this
approach, we see that most zigzag iterative estimators fit into the frame-
work of the generic estimator described above.

We return.to the description of the generic estimator @ . In order
to establish the symmetry of é about Bo , We need to make assumptions

~

on T(+) , §1 , 8, , and the tie-breaking rule that allow us to show
that § is an odd function of the errors. We make the following assump-

tion about T @
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Al) The defining function T depends on y , B, and él only

through y-X8 , yx-xﬁl , B 'él , or 62 . That is, we can write

?(}', Z: B! 31, B]’ 62,) = 1".()’.-)(5, )"‘XBI, B"‘élx Z: 81’ éz)

Further, in the case of the maximization problem (3), T is an even

function of its first three arguments:
r(y - X8, y-XB,, B-B,, Z, 0, B)) = r(-[y-X8), -[y-XB,1, -I8-R;1, 2,8, 8,).

In the case of a system of equation problem (4), r is either an odd

or an even function of its first three arguments.

Assumption Al is extremely easy to verify, and is almost universally

met by those estimation procedures of tvpe (3) or {4) that have been pro-

posed in the literature. For example, all of the estimators referred to in

the Introduction satisfy this assumption, The class of Bayes estimators

is the notable case where assumption Al fails., This is not restrictive,

however, since Bayes procedures that are based on proper prior distribu-

tions do not have distributions that are symmetric about the true parameter value.
The second assumption we make is of import only if an initial esti-

mator §1 of 8 is utilized by the generic estimator:

A2) The initial estimator él is such that §1- B, 1is an odd function

0

of the errors u . That is, viewed as a function of u , B8, satis-

1

fies

By(w) - By = -(By(-w} -8y .
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The verification of this assumption follows by the results of this
note applied to the initial estimator 8, rather than to the generic esti-
mator £ . If él depends on some otpgr ipitial estimator, say 82 R

then we apply the present results to éz and then to B etc, The num-

1 °
ber of such initial estimators that needs to be considered must be finite,
otherwise ﬁl is not properly defined. The results of this note apply to,
and are guite easy to verify for, most of the estimators that have been
suggested in the literature as initial estimators. Hence, assumption A2 is
relatively easy to verify, and is satisfied quite generally.

By assumption, the conditional distributions of u and -u are
identical. Thus, any parameter<of the conditional distribution of wu is
identical to that of the conditional distribution of -u . In consequence,
most estimation procedures that estimate some parameter of the conditional
distribution of u are invariant to changes in the data from u to -u.
We require this property to hold for the initial estimator §2 -of 8,

A~

(if such an estimator is used in defining the generic estimator 8 ):

A3) The initial estimator 52 of ©

is, viewed as a funcrion of u , 32 satisfies 52(u) = 52(—u) .

2 is an even function of u . That

The verification of £his assumption can be done in a number of ways.
1f 52 has a closed form expression, assumption A3 is usually straightforward
to verify., If 62 is the solution to a maximization problem or system of
equations basgd on a defining function f*,e one can use thé results of the
present note to verify A3, by identif&ing the initial estimator 62 as the
estimator 51- derived from the solution to (3) or (4) with * replacing

~ . - % . - . * Lavd
r . In this case, if 1" satisfies the assumptions listed here for r ,

then the result concerning 51 of Theorem 1 below establishes A3 for]fhe '



12

initial estimator 52 . If the initial estimator 52 is defined in some
other manner, often it Still is not difficult to establish A3 in some ad
hoc fashion.

Next we consider the second step in defining the generic estimator
B . This step consists of defining a tie-breaking rule, call it s , that
assigns to every set of solutions B a unique estimator B . The tie-
breaking rule is allowed to depend on an alternative estimator of £ , say
éz . Thus, B = s(B, ﬁz) . For example, the rule might be to take B to
be that element of B that is closest to éz (with further rules specified
to break remaining ties)., More specifically, when carrying out M-estimation
procedures (e.g., see Maronna and Yohai [36]) we might choose that soluticn
to the defining system of equations that is closest to the least squares
estimator or to the LAD estimator (if it is unique). Alternatively, 8
might be defined as that element of B that is generated by a specific
iterative computational algorithm that uses §2 as its starting value
{e.g., see Harvey [20], also see Sielken and Hartley {42]).

The alternative estimator §2 (wvhich may equal ﬁl ) is assumed
to be such that ﬁé - B, is an odd function of the errors. This
assumption can be verified in the same mannmer as is A2. Whenever X
is of full raﬁk such an estimator 52 exists, since the LS estimator quali-
fies. When X is of less than full rank, no such estimator exists and
62 is set equal to n , where n is an abstract symbol that denotes that
the est:{;ator is not defined as an ;element of B . Note that we define
n=+n and n*ta=n, for all at€ Rk .

If the solution set B has a single element, then the tie-breaking
rule sets 8 equal to that element, If B is empty, then £ is defined

to equal either n or §2 . In other cases, the tie-breaking rule is re-
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gquited to satisfy the equivariance and oddness conditions stated below.
Note that B is necessari}y equal to n (i.e., essentially is undefined)
when X has less than full rank. This follows because B is either empty
or has multiple elements, and all'potehfial alternative estimators éz
that satisfy the oddness condition must equal n .7

The alternative estimator §2 and the tie-breaking rule s are

assumed to satisfy:

Ada} The alternative estimator ﬁz is such that §2 ”BO is an odd func-

tion of the errors u .
b) The tie-breaking function s takes values in B U {n} , and is

equivariant and odd. That is,

{Equivariance} s(B+§, B+E)

fl
*

s(B,)+£, VBcB; VB €EBU {n};veel,
(Oddness) s(-B, -B)

n
.

-s(B,g) » YBcB; VBEBU {n}

By definition, the set I is the lineér subspace that is parallel to B .
That is, L =8~ B = {EERk P g =8y - By, for some 81s 326‘3} . A dis-
cussion of the equivariance condition is given in Section 3 below. As men-
tioned above, the verification of Ada parallels that of A2, The verifica-
tion of Adb is straightforward.

It is interesting to note that tie-breaking rules are not discussed
at any length in the literature. This may be due to the concentration on
asymptotics in the literature, coupled with the common property of proposed
estimators that the particular tie-breaking fule used does not effect the
asymptotic froPerties of the estimators, The finite sample distributions
of these estimators, however, depends on the form of the tie-breaking rule,
and conditions such as those of A4 are needed to establish distributional

symmetry and unbiasedness of the estimators. As Sielken and Hartley [42}
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show, it is easy to construct estimators that are not symmetric about BO
if no conditions are placed on the form of the tie-breaking rule. The
necessity of such conditions indicates that tie-breaking rules probably
warrant more extensive consideration tﬁéh they have received thus far.

The symmetry results alluded to above are given now in the following

theorem:

THEOREM 1: For the linear model (1}, all estimators B that satisfy

Al, and when applicable, A2, A3, and/or A4, have distributions that are
eymmetric about the true parameter 8 {and are such that B -By 18 an

odd fumction of the errofs u ). Further, if an estimator 51 18 estimated'

sirultancously with B , then under the same assumptions, 61 18 an even

funetion of the errors u .

The proof of the Theorem is given in Section 4 below.

Note that the estimatqr 61 of the Theorem is precisely defined as
follows: 51 = v(@) , where & is the set of all points Ei such that
(8, ‘e'l) solves (3) or (4), and v(+) is a tie-breaking rule that chooses
a unique element from . If & is empty, then v(8) is equal to n .

No additional conditions are needed 6n this tie-breaking rule, because the
random set 8 is exactly the same for u and -u , and so, wv{*} chooses
the same value from & whether the errors generating the data are given

by u or -u.

It is interesting to mote that no conditions are needed to restrict
the way in which el and 62 'enter the function r(+) . This follows
because the symmetry result relies on the evenness {or oddness) of r(+)
as a function of u , and this property is not affected by the way in which

the non-random argument '91 or the random argument 52 enter T(*) ,
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provided §. is an even function of u . Also, it is worth pointing out

2
that r(+) can be an even or an odd function of its first three arguments
in the systeus of equations case {see Al), because the ‘'solutions to a sys-
ter of equations are unchanged when any equation is multiplied by minus
one,
Numerous examples of estimators that are covered by the Theorem are
given in the Introduction, Further examples can be found in the literature.
The estimators £ considered in the Theorem may be undefined (i.e.,
equal to n ) with positive probability. Hence, to even consider the
properties of mean and median unbiasedness for the estimators B, these
properties must be défined appraopriately. We adopt the following definitions:

®
The estimator B is said to be median unbiased if

5) Pa’(B-8p) <0, Ban) = Par -8 >0, Ban) , vae R .

With this definition, part a of the Theorem establishes median unbiasedness

of all estimators B that satisfy its conditions.

2 ®
The expectation of an estimator g , denoted EB , 1is defined to
equal

(6 [ 5 (@yen]SP @ /PEBG) #m)

provided the integral is finite, where w represents a specific sample
realization of the random variables (y,Z) . An*estimator ﬁ is said to
be unbiased if EB = 8y » for any true parameter B, in' B . Part

a of the Theorem establishes mean unbiasedness of all estimators £ that
satisfy its conditions, provided their‘éxpectations are finite. Note that
Srivastava and Raj [43] establish the existence of the expectation of Zell-

ner's estimator for the SUR model, under weak conditions on the distribution
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of the errors. Also, Fuller and Battese [17] show that a particular feas-
ible GLS estimator for the variance components model has finite expectation
for certain error distributions. For the general class of estimators con-
sidered above, the existence of one or moTe moments is an open question,
The work of Phillips [34], however, is relevant to this question. Phillips
derives an expression for the exact distribution of a class of feasible

GLS estimators for the case of normally distributed errors.

3. ORIGIN EQUIVARIANCE RESULTS

In this section.we show that in the linear model most estimators of
regression function parameters and error distribution parameters possess the
properties of origin (or shift) equivariance and origin invariance, respectively.
These preoperties are of interest for two reasons. First, origin egquivariance
can be motivated by the symmetries of the statistical model itself, and can
replace the somewhat arbitrary assumption of unbiasedness in the formulation of
the Gauss-Markov Theorem {seelehmann [31] and Andrews [6]). Second, origin
equivariance or origin invariance of estimators implies that the parameter
dependence of the distributionsof the estimators is of a very simple form, and
in consequence, Monte Carlo results for such estimators are mnot parameter
dependent,

The condition of origin equivariance is best motivated by consider-
ing the coordinate-free linear model, which is a generalization of the linear
model considered above in the case of fixed regressors (see Kruskal [29],
Malinvaud [35], Drygas [13], and Andrews [6]). In the coordinate-free model,
the dependent varisble vector y is viewed as an element of & vector space
V . The regression function is specified not in terms of regressor variables

and parameters, but in terms ofan affine subspace (i.e., a translated linear
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subspace), in which the expectation of the dependent variable vector must
lie. That is, the model specifies Ey € L , where L is an affine sub-
space of the vector space ‘V that contains y . Often V is just R,
In this framework, no coordinate system of V needs tb be specified, The
coordinate-free approach to the linear model has a number of advantages
including those of generality, simplicity, geometrical interpretability,
elegance, and computational flexibility (see the references above},

In Andrews [6], it is shown that the coordinate-free linear model

also is origin invariant. That is, if we consider the linear subspace F

that is parallel to the affine subspace L that contains Ey , then the
same statistical model is generated no matter which point in F 1is chosen
as the origin of the vector space V . When the origin of V is shifted
between points in F, the estimand shifts in like manner. That is, the
estimand is origin equivariant. Since the origin is arbitrary within F
from a mathematical perspective, it seems reasonable to require an es;i-
mator to be appropriate for any origin in F . This is the case only if
it shifts in like manner to the estimand and the origin, i.e., only if it
also is origin equivariant.

In terms of model (1) above, an origin shift within F corresponds

to the transformation
(73 Yy =XB 4+ uey*=Xg*+u,

where y* =y + Xt and 8* =B + £, for some E €JL , where L is the
linear subspace that is parallel to B (i.e., 2 =B-B). An estimator

is origin equivariant then, if it satisfies

(8) Bly+xt, 2) =B(y,2) + &, veedl,
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where £(y,Z) denotes the estimator 8 when applied to the data (y,Z) .
As alluded to above? the GLS estimator is the best linear origin

equivariant estimator, in the sense of minimum mean squared error

uniformly over the parameter space B and over the class of all error dis-

tributions with given finite, non-singular covariance matrix (see Lehmann [31]

and Andrews [6]). 1In addition, if the errors have multivariate normal dis-
tribution with a given non-singular covariance matrix, then the GLS estimator
is the best origin equivariant estimator in the sense of minimum risgk, uni-

formly over the parameter space B , for any convex loss function -{see

~ Lehmann [31)). Thus, origin equivariance is a property of some interest from

a theoretical perspective.

In order to establish the origin equivariance of the generic esti-
mator 3 introduced in Section 2,we need two assumptions in addition to
those of Al and A4, for the case where initial estimators §1 R 82 and

-

62 ‘are used in the definition of é :

B1) The initial estimator §1 and the tie-breaking alternative estimator

~

_ 62 are origin equivariant,

B2) The initial estimator 62 is origin invariant. That is,

() §,(y+xe, ) = 8,00,2) , vEeL,

where éz(y-+X€, Z) and 52(y,2) denote the estimator 52 applied

to the data (y +X§, 2) and (y,Z) ,, respectively,

Just as assumption A2 can be established by using the symmetry re-
sults of this note applied to ﬁl , assumption Bl can be established by
applying the origin equivariance results below to §1 and §2 . Similarly,

assumption B2 can be established for initial estimators 32 that can be

~
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defined as solutions to maximization or systems of eguations problems of

the form (3) or {4). Proceed by identifying 62 with the solution 31
of (3) or (4) for some function T , and then apply the origin invariance

result for 51 given in the Theorem below,

THEOREM 2: ALl estimctors B that satiefy Al, and when applicable, Bl,

B2, and/or A4, are origin equivariant, Further, i1f an estimator 51 18
estimated simultaneously with £ , then wnder the same assumptions, 31
i8 origin invariant. The results of thies Theorem hold whether or not the

errors u have symmetric distribution given Z .

Following Breusch [11], we point out that Theorem 2 and the defini-
tions of origin equivariance and origin invariance, given in equations (8)
and-(g), respectively, imply that the distributions of 8 - B, and él
do not depend on BO . (They still depend, however, on the distribution
of Z .) Since we are interested generally in the distributioqs of B and
31 for each true 80 in B, this result is extremely informative. It
also is useful because it shows that Monte Carlo results for the estimators

B and ﬁl, generated for some fixed 80 , are valid for any other BO

in B .

4. PROOFS

PROOF OF THEOREM 1: We only consider the case where £ is defined

as the solution of the maximization problem (3)« By altering the wording
below from "maximizes the function T " to "sets the function T equal
to a vector of zeroes," the same proof applies to estimators that solve

the system of equations (4).
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We condition on Z and show that the symmetry result heolds for al-

most all Z . This implies that the symmetry result also holds uncondi-

tionally.

For notational convenience we aﬁpénd (uy or (~u) to B, 81 .

6, » etc. to denote that these statistics are calculated using the data

(v,Z) = (u+X80, 2} or (-u +XBO, Z) , rTespectively. Let
argmax T(+) denote the sets of solutions (ﬁ_, él) for B8 and 91 R
(S.Bl)ﬁBxel

respectively, for the maximization of xr(+) over B x © We have

1"

(B(w, &,(w) =  argmax x{u+x{e 8], u+X[8 ~B. (W], 8-8,(w), z, 8,, 8, (W)
1 (s,el)eBxel 0 01 1 1 2 ;

argmax r(u-XE, :1+X[B B, (wl1,8-[B (w-8.1, z, 8., 8 (u))+(B 9}

by letting & =B - BO , where I =3B - By 1is a linear subspace,

= argmax r(-u+X£, —U"'X[B 'é (‘u)]s -§- [é ("u)'B ]; Z, g :62("11)) + (BO”'O")
(£,8,)€Lxe, ST BTl

using the evenness of r in its first three arguments (A4), and
(10)
assumptions A2 and A3,

= -argmax r(-u+X[B -8}, ~u+X[B -8.(-w)], 8-8.(-u),Z,6 ,8 ("11))* (284,9)
(8,91)6[50"1]"91 0 0 "1 1 1- 2

by letting B = BO - £, where BO - =B because L is a linear subspace,

= -(B(-w), 6,(-w) + (28,5, 0) .

That is, B(u) - B, = -(B(-u) -8y , and B, (we= §;(-u) . Hence,

(11) 8(w = v(8, () = v(§;(-w) = §,(-v) , and
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B(-u) - By = s(B(-u), By(-w)) - By = s(B(-w) -8B, B,(-u) -By) by Adb,

s(-[B(w) - 85), -[B,(w) -8,1) by (10) and Ada,

-s{f(w) "B, ﬁ'z'(u) -85) by Adb,

-(B(u) -8,) , by Adb again,

Thus, & - By and 6, are odd and even functions of u , respectively,

1

and £ has a symmetric distribution about 8, , conditional on Z . Q.E.D.

PROOF OF THEOREM 2: We append (y) or (y*) to B, B, B, , and &

1
to denote that these statistics are calculated using the data (y,Z2) or

2

-

(y*,2) = (y+Xg, 2) , for some” £ €L =B -B . Using the argmax notation

of the proof of Theorem 1, we have

(By®, 8;(y*)) = argmax -r(y-X[B-c‘:]. y+X[§-8,(y*) 1, B-ﬁl(y*).z.el.éz(y*))
(8,8)€Bx0,

argmax T (Y'x [B'E] » Y- Kél (Y) » B-g-gl (Y) 22, eli‘az(y))
(8,0,)€EBx0,

using assumptions Bl and B2,
(12)

argmax r(y-x'é', y-XB, (¥), B-B,(¥),2,8,,8 (}’)) + (£,0)
(B,0,)€Bx0, oo . v

by letting § = 8-f , and using B =3B-f ,

1t

By, 8,67 + (6.0 .

That is, By+Xe) = B0n) + ¢, and 8 (y+xg) = & () . -Hence, B, = v(§;(»)

is origin invariant., Also,
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-~

By = s(BUy*), B,0M)

s(B(y) +£, £,(y) +E) by (12) and BI,

(13)

[}

s(B(y), B,(y) + £ by A4,

B(y) + &,

~

and so, B 1is origin equivariant. G.E.D.

Cowles Foundation, Department of Economice
Yale University
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2The symmetry Tresult has been established by Adichie [1], Harvey [19]
and Koul and DeWet [26], for certain robust estimators in models with in-
dependent, identically distributed (iid) errors. Kakwani [25] has shown
that Zellner's SUR estimator is symmetrically distributed in models with
iid error vectors, Taylor [45]shas shown that a particular two-stage Aitken
estimator is symmetrically distributed in a heteroskedastic error model,
Maddala [33] has shown that his error components estimator is unbiased under
the assumption of normality of the errors. Fuller and Battese [17] have
proved unbiasedness of a class of estimators for the error components model.
-Breusch [11] and Magnus [34] have shown symmetry of the distribution of the
MLE for the linear model with normal errors and covariance matrix that depends
on a finite number of parameters, Numerous others indicate their knowledge
that the symmetry result applies to many more estimators than those just
mentioned. See, for exampie, Kakwani [25], Fuller and Battese [17], Hendry
and Srba [21], Breusch [11], Harvey and MacAvinchey [20], and Rothenberg
[40]. Even these authors, however, make explicit references to unbiased-
ness only for estimators that possess closed form expressions given some
covariance matrix estimator or some preliminary estimator of the reéression
function parameters. Many of the estimators referred to in the Introduction
cannot be written as such. For estimators defined implicitly, the problems
of uniqueness and existence of the estimators must be addressed, as is done

below, Furthermore, none of the above authors provide general sufficient
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conditions for the symmetry result to hold, as are given here. The suffi-
cient conditions given here not only encompass a wide range of estimation
procedures and error characteristics (including autocorrelation and hetero-
skedasticity, they also permit nohhomééeneous linear restrictions on the
regression parameter vector. In the literature, only Breusch [11] has con-

sidered linear restrictions.

SThe paper by Harvey [19] shows symmetry for a particular class of
robust estimators, viz., M-estimators, unfortunately however, this paper-

has not received widespread recognition in the literature.

4This assumption bn the parameter space JB is not made just for
convenience. If B is not an affine subspace, e.g., if B is a compact
set or an orthant, then the symmetry result below will not hold in general,

see the proof of the Theorem below.

SIf the distribution of u given X 1is symmetric about an n-vecter
of identical constants, ¢ , not equal to 0, and the regression function
contains a constant term, then a symmetry result still holds, The result
of the Theorem below can be extended to show that the estimators considered
are symmetric about Bo + (¢, 0, «.., 0)' . Hence, the estimators of the

regression coefficients, excluding the constant term, have symmetric dis-

tributions about the true values.

6

1f one chooses to report & set-valued estimator, this second step is
superfluous. A symmetry result, analogous to that established below for
uniquely defined estimators, can be established for set-valued estimators.

For set-valued estimators ﬁ'. we say that B is symmetric about BD if

the distribution of ﬁ - B is the same as that of -(3 - B

0 0)-
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A

7 . ;
I1f set-valued estimators B are considered, then estimators need
not be undefined in the case of less than full rank regressor matrices, and

the symmetry property of footnote 6 still can be established.



