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"1, Introduction

A subject of major interest in oligopoly theory is tnhe nature and dEgr9e°§f
implicit collusion that can be sustained amongst quantity-setting firms, via 5
strategies that make output levels at time t depend upon aspects of the
history of the oligopoly prior to t. The scope of such strategies clearly ig
Timited by the extent of the firms' knowledge of that history. By far the most
attention has been given to the case in which the production levels of all firpg
in each previous period are common knowledge (see, for example, Friedman [4]
and Abreu [1]). The consequences of invok{ng the opposite polar assumption
about information are explored in two important papers by Porter [8] and
Green and Porter [5]. In their setting, firms cannot observe one another's
"past production levels; thus the actions of a firm are functions only of past
prices, and possibly of the firm's own quantity history. Information about the
history of production is further obscured by the fact that there is a stochastic
component to the market price; the level of aggregate production cannot be
inferred precisely from the price. Our paper exhibits strategies for the firms
in the Green-Porter model that form optimal symmetric sequential equilibria
of the discounted oligopolistic supergame. The equilibria have an extremely
simple intertemporal structure, and their optimality is established under very
general conditions.

Porter [8] studies the problem of how to maximize discounted profits
with strategies based on trigger prices and Cournot-Nash reversion. He assumes
that firms produce some quantity q. less than the Cournot-Nash amount, until
price drops below a trigger price p in some period. Thereafter, all firms
produce their Cournot-Nash quantities for T periods, after which they return

to q {which is maintained until price again falls below p, and so on).



porter characterizes the choice of q, p, and T (the latter may be infinite)

that yields cartel members the greatest discounted profit, subject to the

constraint that the resulting regime must be a sequential equilibrium.

The optimization described above is severely limited in that it restricts

attention to a small subset of the strategies available to cartel members.

Included among the restrictions implicitly imposed by Porter are the following:

(1)

(i)

(iii)

{iv)
(v)

The critical set of prices that trigger T periods of "punishment" is
of the form [0,p], that is, a tail test is used.

The trigger brice at time t 1is independent of prices prior to

t -~ 1, s0 review strategies such as those used by Radner [9] are

ruled out.

Only one punishment is used: a firm cannot increase its quantity by

different amounts, or for a different number of periods, depending on
how low the preceding price was.

A firm's output at t cannot be a function of its previous outputs.

Punishments more severe than Cournot-Nash reversion are not permitted

{see Abreu [1]).

Porter [8] understands that a global optimum may not be achieved by

equitibria of the sort he considers, and explains that complexity poses a major

problem:

“Since we will later allow the cartel to maximize joint value subject

to enforcement constraints, the restriction to simple trigger strategies may not

be desirable, given that more general strategies may*®lead to better outcomes...

Unfortunately, models with strategies such as these are extremely complicated

for computational purposes, and it is difficult to obtain any interesting

results.” {page 316).



After modifying the model (Section 2) by replacing the continuum of
possible production levels with a discrete production set for each player, we
are able to dispense with all five restrictions listed above. We find that
there exist equilibria of surprising simplicity which are optimal among all sy,

metric sequential equi]ibrial

. In these equilibria, only twc quantitias are
ever produced. To compute which quantity to produce in period t, a firm simpyy
needs to remember the prica in the previous period, and which quantity was spe.
cified by the equilibrium in that previous perjod. Thus the sequence of
equilibrium production-]evels is a Markov chain. 1In fact, (ii), (iii), and (i)
above are satisfied by these optimal equilibria: once (i) and (v) are retaxed,
porter's remaining conditions are unrestrictive! These results require only
mi]d regularity assumptions on demand, and the stochastic disturbance in price
can enter in a rather general way.

The central technique employed is the reduction of the repeated game to 3
static structure from which can be extracted the optimal equilibria in gquestion
(and indeed, equilibria supporting any symmetric sequential equilibrium payoff
vector). Notice that every symmetric sequential equilibrium (hereafter S.S.E.)
must prescribe other “"successor" S.S.E.'s to folliow each one-period price
history (we show that quantity histories can be ignored). One can imagine
constructing a new game by truncating the discounted supergame as follows:
after each first-period history, replace the 5.S.E. successor by the payoffs
associated with that successor. The first-period equilibrium quantities will
still constitute an equilibrium of the new game, and the resulting .total payoffs
will also be the same. More generally (if less intuitively), for any bounded

set W of real numbers, let B{W) ¢ R represent the total payoffs that players

1 £or the moment we restrict attention to equilibria in pure strategies. However

the extension to mixed strateqgy equilibria is straightforward (see the note at
the end of the paper).
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could receive in pure strategy equilibria of truncated games in which each
first-period price is followed by some symmetric payoff drawn from W. At

the end of the single period of the truncated game, firms receive their conven-
tional one-period profits, plus some element of W (the same for each player),
depending on the price that arises; the expected value of this sum, discounted
to the beginning of the period, will be one element of B(W).

W is said to be self-generating (in the context of a particular repeated

game) if W g B(W). Let V be the set of payoffs a player can receive in the
various $.5.E.'s of the repeated game. Section 3 establishes that every
self-generating set is a subset of V. Moreover, V itself is self-generating.
These properties yield an elementary proof that V 1is compact, so best and
worst S.S.E.'s exist whenever V is nonempty.

In supporting a symmetric equilibrium with value v € V 1in a truncated
game, only the best and worst elements of V need be used following the
occurrence of any price. This result, proved in Section 4, is analogous to bang-
bang theorems in optimal control theory (see, for example, Artstein [2]).

The implication for the repeated game is a dramatic dimensional simplification.
1f v 1is the payoff associated with any S.S.E., v can be supported by an
$.S.E. which in every contingency (except for the first period) looks like
the first period of either the best or the worst S.S.E. The first period of
the equilibrium yielding v 1is no longer an exception if v is the optimal
element of V. These results are explained in detail in Section 5 , which
presents in addition a rgsu]t on the sensitivitx of%maxima1 cartel profits to
changes in the discount rate.

The conclusion raises the possibility of applying the analytic approach

taken here to other classes of repeated games.
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2. Igg_ﬂgde]

The structure presented here is based entirely upon the model deve!opedin'
Porter [8) and Green and Porter [5]. Departures from their assumptions are Noteg
below. The oligopoly is modelled by an N-person infinitely-repeated game with
discounting. The first step in defining the game is to specify the single-
period component game G.

The Single-Period Game: N identical firms simuitaneously choose quantitieg

P i=l,...,N, of output to produce. Whereas in [8] all non-negative output
levels are feasible, we assume that there is an indivisibility in production;
only integer multiples of some fundamental unit of production (which of course
may be arbitrarily small) can be produced. This assumption simplifies the mathe-
matics involved in Section 4. While it is a departure from tradition, it would
appear to represent an increase in realism. Firms incur a total production
cost C(qi) > 0 ([8] requires constant marginal cost). Market price p depends on
aggregate production q and a stochastic variable s, that is, p = P(q;8). In [8],
the inverse demand function is linear in q, and 6 enters as an additive or
multiplicative disturbance: p =a +bg + 8 or p = (a + bg)e. We dispense with

these assumptions. The payoff of firm i given o is
N
LI CIPRRR MH ) B qi'P(jzqu;e) - ¢{q;),
where qj is the quantity produced by firm j. Firms maximize expected profit. We

will denote by ?ﬁ the expected value of . {assumption (Al) below guarantees

that ?& is well defined), that is

© N
?i(ql""'qﬂ) = Lni(ql"'.'qﬁ;e).f(e:321q‘j) de,
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where f is the density function of 8, which we allow to depend on the aggregate
output. We do not need the assumption in [8] that f is an increasing function
over its support. Thus the one-period game is given by G = (51""’5N;?i""jﬂﬂ’

where S, = [0,1,2,...}, i=1,...,N.
We assume that:

(A1) There exists a constant K such that q’EeP(q;B) < kK for all q €3;.
(Note that S, = 1§y S;)

(A2) P(q;e) is strictly monotone in @.
(A3) The set

N
g = P(qu_;e)l eeR and f(e;

) >
j-.-l i= qJ

j=1

N
i=1
This assumption, which will later be relaxed slightly, ensures that under

is contained in R, and is independent of (ql,...,qN) en S{.

no circumstances will firms be able to infer from the price that with probabi-
1ity 1 , someone has deviated from equilibrium behaviour. Ability to make such
inferences fundamentally changes the nature of the probiem (see, for example,

Abreu [113).

(A4) c(0) = 0, c{q) » 0 for all q e,Sl and there ex‘ist'c0 >0 and gy > 0 such
that c(qg) » cp'q for all q » qq.

{AS) G has a symmetric Nash eq&i1ibrium (in pure strategies).



The Repeated Game G ($): G7(§) is the infinitely-repeated game defined by

the component game G and the discount factor 6 € (0,1). A strategy o5 for firm ;
specifies an output in each period t=1,2,..., as a function of past prices
pt'l = {(p(1},...,p(t-1)) and the firm's own past quantities qt -1,
(q.(l),...,q.(t-l)). Thus gy = {oi(l),ci(Z),...), where °i(1) € S; and
o (t): & l Sit'1+ S; is a (Lebesgue) measurable function for each t » 2,
A strategy profile ¢ has the form ¢ = (cl,...,oN), and for each t > 2,
o) (p* 50" h) = (oy () (p* hial ) se e s son () (pE ik Th)), where pE71 -

(p(1),..0sp(t-1)), q*1 = (q(l),...,qtt-1)), and q{s) = (a(s),e.eray(s)),
s=1,...,t-1.

Given a history H(t) = (pt;qt) and a strategy profile o, we will denote by
clH(t) the strategy profile induced by ¢ on the subtree following H(t). Thus,
for any sequence of prices p(1),...,p(s) and any sequence of quantity vectors

Y(1),..057{s),
OlH(t) (5+1 )(Os ;Ys) = U(5+t+])(p(1)s-. . ’p(t):p(l),.. .,D(S);q(} )9-- -.Q(t) 9"((]),...,}’(‘

Let et denote the vector (6(1),...,8(t)). Given a strategy profile o, a path
(Q(l),q(Z)(61),q(3)(62),...) for the game is . generated in the following way. In
the first period, firms produce q{1) = (01(1),...,0N(1)), a vatue (1) of the
stochastic component arises from the density f(-;{Nzl qj(l)), and the market
price is p(l)(el) P(ZJ =19 (1);e(1)). In period t, t » 2, firms produce
a(t)(6"71) = o(t)(p(1) (o ),---,p(t-l)(et 13a(1),-40,q(t-1)(6"78)), and the
market price is p(t)(et) = P(ZN=1 qj(;)(et'l);e(t)), where 8(t) is the
stochastic component that arises from the density f(- ZN (t)(at 1)) We

Jj=1 J
will assume;

(A6) The stochastic variables o{t) t=1,2,..., are independently generated.



The value Vi(°) of the strategy profile o for firm i is the expected discounted

sum of the payoffs. Define

© w N
Ri(oit) = Jouof my(at) (e )0(6)) F(8(1)s T ag(1))-
J-'

N t-1
fle(t); ] qj(t)(e “5))de (1) -de(t).
j=1

Then
vi(o) = 1 &R, (ait),
t=1
Single-period payoffs are received at the end of each period; vi(a) is the value
of the infinite stream discounted to the beginning of period 1.
We use sequential equilibrium (see Kreps and Wilson [7]) as the solution
concept in the repeated game. A strategy profile o is symmetric if °1(t) =
_ oz(t) = ... = oN(t) for all t » 1. {A5) guarantees the existence of a symmetric
sequential equilibrium (S.S.E.), because the strategy profile specifying that in
every period, independently of the history, each firm produces its Cournot-Nash

2

output is easily shown to be a sequential equilibrium™. Therefore the set

V={vq(a) | ois an S.S.E. }

is nonempty.
Assumption (Al) and the fact that supergame payoffs are discounted, imply
the existence of a bounded set S C 51 such that any strategy for firm i spe-

cifying (in any contingency) an action 9; é g, is gtrongly dominated. By (A1)

2 We abuse terminology throughout by referring to a profile o as a sequential
equitibrium. Technically, we mean that there exists a system of beliefs w such
that (p,o) is a sequential equilibrium. Extensions to repeated games of the

ideas of consistency and sequential rationality used in defining a sequential
equilibrium are immediate.



there exists K > 0 such that
q-EeP(q;e) <K for all qe Sl'
Note that for any g,y e S1 s
q°€,Pla+y;8) < {qty)-E P(q+y;e) < K.

Since c(g) » 0 for all q eSl, the maximum single-period payoff for player j
is bounded by K, and consequently the maximum supergame payoff for player i is
bounded by &K/(1-5). For any q > qir = max { 455 K/(co(l-ﬂ)} }, the maximum
supergame payoff that firm i faces if it produces the quantity g, for any aggre.

gate production y e S.1 for the rest of the firms, is bounded by
Go{q'EeP(q+y;e) - c(q) + 6K/{1-8)} < &+{K - Cp'q + sK/(1-68)) < 0,

and since firm i can aiways choose to produce q = 0 {and therefore get a
supergame payoff of 0), firm i will only consider production quantities in

~ *

S = [0,q ]. This fact can be used to slightly relax assumption (A3) by requiring

only that the set g defined there be contained in R_ and independent of

~N
(qls-':qN) E-S .

in the course of the previous argument we have shown that V ¢ [0,8K/(1-8)1,

hence 'V_ is bounded.
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3. Reduction to a One-Period Problem

For each repeated game G”(a), we define below a function B: ZR + ZR, where

2R is the power set of the real numbers. From this function one can recover V,
the set of all payoffs received by a player in various S.S.E.'s (symmetric
sequential equilibria). B provides a simple method of constructing an S.S.E.
giving any desired payoff v & V to each firm. The function B is related to a
class of truncated games associated with G (&) as described in the introduction.
This relationship is developed in what follows, to give intuitive motivation for
the definitions and propositions; it is not needed for any of the formal

results.

The following definitions implicitly depend upon a particular game G (§).

N
j=1

We perform a change of variables to get the demsity g{-;}

By (A2) the function p = P(} qj;a) has an inverse § = G(P;Z?=1 qj).

N oa)

j=1 93) on price

space.
Definition: Given a set W CR, a pair (q,u) with g eg and u: Q + W

(Lebesgue) measurable, is admissible with respect to W if it satisfies the

following incentive compatibility constraints:

mi(arey) + [ ulp)-glp;sN=q) dp > my{q.a-ey 1) + [ ulp) g{p;(N-1)"q + q) dp
N 1 N-17 T L
for all q &5,

where ey = (1,...,1) e RN,

Hereafter, for a vector (ql,...,qN) e.n?=1 Sj and a measurable function

"u: R, + R, we use the notation

N
E;(qy,e00nqysu) = 8 | T (QraeeeaGy) + é u(p)’g(p:jzlqj) dp } for all i=1,...,N.
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Definition: For each W € R defire
B(W) = { El(q-eN;u) l (q,u) is admissible with respect to W }.

Let Q and U be functions with domain B{W) such that for every w g B(W),
(Q{w),U{w)) is admissibie with respect to W, and w = El(Q(w)'eN;U(w)). Such a
pair of functions exists (thera may be many: if so, choose one pair) by the
definition of B{(W).

Definition: W ¢ R is self-generating if W c B{W).

Notice that B(W) < & { co(W) + ?i{g,...,g) }, so B(W) is bounded when W is
bounded. {Here, co{W) denotes the convex hull of W.) -

An alternative definition of B{(W) can be given via a class of one-period
games that are modifications of the component game G. For any measurable functio
uz R, » W, define G(u;¢) = ("E,..,,g;El(';u),...,EN(';u)). This is the same game
as G, except that players' payoffs are the sum of their payoffs in G and the
expected value of the reward function u, all discounted by 6. If (Qyeeerq) is
Nash equilibrium of G{u;8), then by definition (q,u) is admissible with respect
to W and El(q'eN,u) € B(W). Conversely, any w € B(W) is the payoff associated
with some symmetric pure strategy equilibrium of G(u;8), for some u: o +» W. In
other words, the incentive compatibility constraints invoked in the definition
of the admissibility of (q.,u), precisely express the fact that for any player

with payoff function Ei(';u), q is a best response to {g,...,q).

Proposition 1: (Self-generation). For any bounded set W e R, W B(W) implies
B(W) c V.

Proof: The idea of the proof is to exhibit, for each w c B{W), an S.S.E.

o{w) with vi(é(w)) = w for all i=1,..,N. With 0 and U as defined above, for each
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w € B(W), let Uo(w) = W, U1

(w) = U(w), and
vE ) %) = bt ) (V) (p(t))  for alt pte at and t=2,3,...

The functions Ut are well defined because W, the range of U, is contained in
B(W}, the domain of U. For each w € B(W), define the symmetric strategy pro-

file o{w) by
5,00(1) = aw) and & (W) (P el = Ut (p" ) 2,3,

Notice that o{w)(t) does not depend on the guantity history qt = (q{1),...,q(t));

consequently when referring to o ' we will write of ., suppressing the
H(t
redundant quantity arguments of H(t) = (pt;qt). We first show that the value of
E(W) for each player is w. Since
t-1 t-1 t-2 3
ou” “{wi(p” 7)) = Q(u” “(U(w)(p(1)))(p(2),...,p(t-1)))",
one can check that
s(w)| = s(utw)(p(1))).
p(1)
By definition of the functions Q and U, we have:
w= 6 { w:(Q(w)-ey) + [ U(w)(p)g(p;N-Q(w)) dp }.
Q
Also by definition:

Vi(a(w)) =& { ?G(G(W)(l)) + vi(&(w)l )'g(p;N;G(w)(l)) dp } for all i=1,...,N.
. 9 a p - .

But o(w)(1) = Q(w)-eN and 6(w)l = g(U{w)(p)). Therefore
P

3 It is understood that when t = 2, the right side of this equality becomes

QWO (u(wp(1))) = Qu(w)(p(1))).
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w- v, (o(w)) =6 s[g { U(w)(p) - v;(a(U(w)(p)))}-g(p:N-Q(w)) dp,

S0

v - vy <6 f i“é’s(u)lx - v; (6 *g(psN-a{w)) dp.

Since g is a probability density, and the above inequality holds for every
w e B(W),

sup Iw - vi(é(w))l < §'sup 'x - vi(é(x))l .
we B(W) x€B(W)

However, since § is compact and B(W) is bounded, the last inequality implies
that

- v.(o = 0.
wseug(w)lw 7 O(W))I

Hence vi(a(w)) =w for each w e B(W) and i=1,...,N.

Next we show that E(w) is a Nash equilibrium for each w & B(W). Because
G (8) and o(w) are symmetric in players, it is sufficient to work only with
piayer 1. Define the subsets of strategies for the first player £(t,x},
t=1,2,..., x €W, in the following way: 1 € Z(t,x) if t(s) = o;(x)(s) for all
s »>t. Also let (T.B_I(x)) = (t,&z(x),...,SN(x)). We first show that for
t 31, if vl(r,S_l(x)) < vi(o(x)) for all 1 e I(t,x) and al1 x € W, then
vl(r,é_l(x)) < vl(é(x)) for all 1 g I{t+l,x) and all x & W. Let
xe W and 1 e I(t+l,x). Notice that
T € z(t,U(x)(p)) for all p > 0.

| (p. (1))

Then

V.E(Tsa_l(x)) = 3§ {-EI(T(I):Q(X)'EN_I) + & VI(T sa_l(U(x)(p))).

l(p,<(1))
g(pst(1) + (N-1)-Q(x)) dp }
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L)

6 { my(e(1),0(x) ey ) + é v (a(U(x)(P)))*g(pix(1) + (N-1)-0Q(x)) dp |

#

§ { m(x(1),Q(x) ey ) + é U(x)(p)-gi{p;t(1) + (N-1)-0(x}} dp }

fa)

§ { m(Q(x)-ey) + é U(x)(p)-g(p:N-Q(x)) dp }  (since (Q(x),U(x}} fs

admissible w.r.t. W)

1l

X = vl(a(x)).

tor t=1, 1 & Z(1,x) only if <t = g(x). Thus vl(t.é_l(x)) = vl(é(x)). We have
:hen shown, by induction, that for every t > 1, no player wishes to deviate
from o(x) in the first t periods given that he must conform with a(x)
thereafter.

Finally, assume that there exist w & W, a strategy oy for player 1 and

e > 0 such that
Vl(al:a_l(w)) = V1(5(N)) +eg=w+e.
But for T sufficiently large,

I 8t[Ry(ay,0_q(W)5t) = Ry(alw)st)| < e/2.
t>T
Therefore the strategy 0; e £{T,w), defined by g;(t) = Ul(t) for all

t=l,..,T-1, satisfies:
* ”~

This is a contradiction. Therefore g{w) is a Nash equilibrium.
It remains only to show that for each w &B(W), olw) is a sequential
equilibrium. Let player i's beliefs at an information set following price

history pt, when 1 has followed some strategy 9i» be generated by the belief
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that the profile (o (W',---,o (W) o , 0, (w),...,é (w))} is being followed

i+l
(with certainty), where 'E = {o; (1),..0504 (t).c \t+1),s (t+2),.-.). The problep
of consistency (see [7]) does not arise, because {A3) ensures that every price
observation is compatibie with the above beliefs. Note that actions prior to
period (t + 1} do not affect payoffs from (t + 1) onward, and o(w) is inde.
pendent of quantity histories. Therefore beliefs about the past are irrelevant,
and to demonstrate sequential rationality, it is sufficient to show that after eyy

price history, the profile induced by G{w) on the "remainder supergame" is a Nash

equilibrium. Now, for any price history pt, t>1,

s)| (s)(e%) = S(w)(s+t)(p(1),+00,p(t),p(1), 00 nsp(s))
p .

SN () (p(1), e nupl(s))s

t+1(p )

~ ~n, x *
Tharefore o(w)’ t ° o(w ), where w = € W, and we have just shown that

R
o{w ) is a Nash equilibrium for all w € B(W). Q.E.D.

In the context of “simple strategy profiles”, Abreu [1] has shown that in
order to check for subgame perfection, it is only necessary to verify that in no
contingency is a "one-shot" deviation profitable. In the course of proving
Proposition 1, we have established the equivalent principle for sequentiality of
strategy profiles in G"(G). The method of proof is much more general than that
of [1]; it also appears in a recent paper of Harris [6].

The idea of the proof of Proposition 1 can be explained jnforma?ly using
the modified component games described earlier. Suppose that w € B{W) for some
self-generating set W. Any S.S.E. with value w has.to specify some q for all
firms to produce in the first period, and "successor” S.S.E.'s for each price
p(1) that might arise. These successor profiles implicitly generate a "future

reward function” u(p). Begin to construct o{w) (of Proposition 1) by choosing a
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:pair (g;u) that is admissible with respect to W, and satisfies w = E1(g,e00,q5u).
o(w) specifies that each firm produce g in period 1, and implicitly "promises"
future rewards u{p) for each p(l) that might arise. (For the moment, postpone
worrying about how o(w) will provide S.S.E's that deliver the promised
utilities.) If each firm takes these future rewards as given, essentially the
modified game G(u;8) is being played in the first period of the supergame, and
(gs--+,q) is an equilibrium of that game. Since for all p, u(p) is in W, it is
possible, following any first-period price p(l}, for o(w) to "deliver" u(p(1))
by choosing another admissible pair (r,v) with u(p(1}) = E1(r,...,r;v), spe-
cifying that r be produced in period 2, and “promising" future rewards v(p(2))
beyond period 2. Again, if firms believe that v(p(2)) will occur if p(2) is the
-realization of the price in the second period, it is optimal for them to produce
(Pyasesr), an equilibrium of the game G(v;é). Repeating this process, one can
generate, for any given t, quantities to be produced by obedient firms in the
first t periods, for every possib]g history; in fact, the proof of the
Proposition uses an inductive step to define o(w)(t) for all t. This produces a
strategy profile from which no one wishes to deviate in only one period
(admissibility of the (q,u) pair invoked in each contingency guarantees this).
Finally, the principie alluded to in the paragraph immediately following the

- proof, implies that no firm will deviate from a(w) even if it is free to do so

in infinitely many periods.

Proposition 2: {(Factorization) vV = B(V).

‘Proof: Consider w € V. We show that w € B(V). By definition, there exists an
S.5.E. ¢ such that vi(o) =w,i=1,...,N. Define q = al(l) and u: 2 + R by

u{p) = vl(cl ( : ))) for every p € Q. Since ¢ is a symmetric strategy pro-
P, oll '
file, o;(1) = 6y(1) for all i = 2,...,N, and o is also symmetric.

Lp.ot1))
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By {A3) the information sets (p,oi(l)), i=1,...,N are reached in equilibriy,
for all p € Q. Because ¢ is a sequential equilibrium, this implies that

is a sequential equilibrium too. Hence is an S.S.E. ang

ip,ot1))

cI( (11)
P, }
u(p) = Vl(o ’

e v for all p g Q.

l(p,0(1))
By definition,

Eq{aresu) = & { 7 (avey) + [ ulp)g(p;N-q) do }

Vl{o) = W,

and to complete the proof we need only check that the pair (q,u) satisfies the

incentive compatibility constraints of admissibiliity. For any y e '§, define c;

* * ~
by ol(l) = y and oll( \ for a1 peq and r e S. Then
p.r

) Ul'(psq)

V(*: =8 { mlv.q- + : Yeg(pi(N-1)-
1 01 0_1) { ﬂl(Y q eN-l) £ Vl(ﬂ}l(p’y) g(P ( ) q+ Y)

s O
1|(p,Q'eN_1)

Since and u{p} = vylo ),

clI(p,v) ) 01|(p,q) l(p.q-eN)

vilogs0.) = 6 mv.acey ;) + é u(pP)+g(ps(N-1)-q + v) dp }.

¢ is an N.E., therefore vy(o) > Vl(o;,o_l), that is
8 { wy{avey) + [ ulp)-g(psN+q) dp }
194
> 8 { m(viacey_y) + [ ulp)-g(ps(N-1)+q + v) dp }
Q

as required. This establishes that V € B(V). By Proposition 1, B(V) C V.

0.E.D.



In any S.S.E. o, the value to firm i of the successor S5.5.E. specified
fo1lowing a given first-period price p, must be independent of the quantity that
i produced in period 1 (this is because no one else has observed that quantity,
aﬁd hence i faces the same future environment regardless of his initial output
1evel). Thus the value of o for each player can be factorized into two terms:
the profit from firét-period production, and the discounted expected value of a
is an S.S.E., this

‘reward function u(p) = ). Since

v,(o a

1 "(ptl).a(l)) f(p(l).o(l))
reward function is drawn from V. This, together with the constraints that the
firms are willing to produce of{1) = (g,...,q) in period 1, means precisely that
(q,u) is admissible with respect to V. Thus the requirements for o to be an

S.S.E. are exactly those needed for v(o) to be in B(V), and therefore V = B(V).

Corollary 1: For every w e V, there exists an S.S.E. o such that vl(o) = w and

for every t > 1, o(t) is independent of the quantity components of the history

H{t) = (p(1),...,p(t)5q(1),...,q(t)).

Proof: For each w € V, o(w) {defined in Proposition 1) is such an S.S.E..

Proposition 3: Let W C R be compact. Then B(W) is compact.

Proof: For each d €S - S  define the map hy: sn (§ - d)] x L7(a;W) » R by
hd(q,u) = El(q+d,q-eN_1;u). Endow L=(Q:W) with the weak-* topology. For each

qe § define
ulq;W) = {ue Lo (2;W) | (q,u) is admissible w.r.t. W }.
Then
u(q;W) = [ u € L(a:H) l hy(a,u) < hy(q,u) for all de S - ql.

For each q € S the maps hd(q,'): L"(Q;w) +R, de S - q, are continuous, and

using Alaoglu's Theorem [10] it is easy to check that u(q;W) is compact.
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By definition, B(W) = U_ ho[{q} x u(q;W)]. Since pu(g;W) is compact for
Ged )
each qe S, hy s continuous in u, and ¥ is finite, B(W) 1is compact as

required, Q.E.D.

Corollary 2: V is compact,
Proof: Notice that Wy g_wé implies B(wl) E.B(”g) (the operator B is monotong)

Let ¢1(Vv) denote the closure of V, Since V is bounded (see Section 2), c1(V) is
compact. B(cl1(V))contains B(V) = V, by monotonicity, and by Proposition 3
B(c1(v)) is compact, Hence c1(V) ¢ B{(c1(V)), therefore Proposition 1 implies

ci(V) < v, that is, V is closed, and hence compact, Q.E.D.

Recall that (A5) implies V is nonempty.

max V. and v = min V. Then

Corollary 3: Let Vv

v = max { EI(Q’eN;u) ] (q,u} is admissible w.r.t, V },
and
¥y = min { E,(q-ey;u) I {q,u) is admissible w.r.t. v }.
Proof: v = max B(V) and v = min B(V) by Proposition 2. Q.E.D.

We have shown that V can be recovered from the function B. By Proposition
2, V is a fixed point of B; Proposition 1 implies V is the largest compact fixed
point of B. Moreover, since V is self-generating, any element w'of V is the
payoff of S(w), the 5.S.E. constructed in Proposition 1. This supergame
equilibrium is described entirely by two functions Q and U, and the number w.
Section 4 proves that U may be chosen to have a "bang-bang" property that makes

the intertemporal structure of the equilibrium entirely elementary.
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4. £xistence of a Bang-Bang (Optimal) Reward Function.

Proposition 4 shows that if the pair (q,u) is admissible with respect to V,

there exists a function u taking on only the two values v =max V and

y = min ¥V, such that {g,u) is admissible and El(q,...,q;u) = El(q.---.q;l_f),

that is, the value is unchanged. As a consequence, each function U(w) used in

constructing G(W) can be chosen to have range {_\L,V}.

Proposition 4: Let (q,u) be an admissible pair with respect to a compact set
WeC R tet w =min W and w = max W. Then there exists a function |

u: @ + {w,w} such that (q,u) is admissibie with respect to W and

E1(Qs.ee0a5u) = E1{q5.00,q50).

Proof: As in Proposition 3, let hd(q,u) = El(q + d,q-eN_l;u). deS - q. We

show that the set

F={u:Q+W l (q,u) is admissible w.r.t. W and ho(q,u) = hn(q,ﬁ)}

contains an element with the bang-bang property. Clearly F C F, where

F o= {u: 2 + co(W) l (q,u) is admissible w.r.t. co(W) and hy(q,u) = hofa,)}
= {ue€ L™ (n;co(W)) ] ho(q,u) = ho(q,i) and hd(q,u) < ho(q,u) for all
de S-ql.

It is easy to check that F is convex, and as in Proposition 3, it may be

verified that F is compact when L"(Q;co(V)) is endowed with the weak-* topo-

e

logy. Since (q,u) is admissible with respect to W, F and therefore F are
nonempty. Thus F is a nonempty compact convex set. By the Krein-Milman
Theorem, F has an extreme point. In what follows we show that each extreme point

u of F has the bang-bang property that u(p) € {w,w} for all p € q.
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The proof is by contradiction. Assume that u is an extreme peint of F, but
there exists a set MC @ of positive (Lebesgue) measure such that u(p) & {w.¥)
for each p € M. Without loss of generality, we can assume that there exists
e >0 such that u(M) c [w + ¢e,w - ] (see, for example Proposition 14, pg.61
in Royden [10]).

Let m be the cardinality of § Partition M into m+l sets M(k), k=1,..,m+],

of positive measure. Define the matrix A = (ad k) in the following way:

gk =/ 9(P:Ng+d)dp forall deS-q andall kel,...ml.
K mik)

Let x e R™! be a non-zero solution of Aex = 0 with |x | <e for all
k=l,...,m+l. Such a solution exists because A has m rows and m+l columns. Define
the function v: @ + (-e,e) by v = ):::]i xk.xM(k)’ where xM(k) is the charac-
teristic function of M(k). Since (u + v) € L”(n;co(w)) and hd(q,u + ) =
hd(q,u) for all des§ - q, (h +v)E€ F. Similarly (u - v) e F. However
u=(u+v)/2+ (u-v)/2, contradicting the fact that u is extreme. Therefore
u: 2 + {w,Ww} as asserted.

Finally, since {w,w} c W, u belongs to F. Q.E.D.

Let W be any compact subset of R, and define w = min W and W = max W. An

immediate consequence of Proposition 4 is that

B({w,W}) = B() = B(co(W)).
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5. The Elementary Intertemporal Structure of S.S.E.'s

Proposition 4 of the last section makes it possible to simplify further the
equilibria that support elements of V. We show that for every w € V, there
exists an $.S.E. with value w, that is completely described by three quantities
and three subsets of Q. If w = Vv or v , only two quantities and two subsets are
required. These two quantities are the only ones produced in the equilibrium in
question, the alternation between them constituting a Markov process. A further
application of Proposition 4 occurs in the proof (given later in this section)
of the monotonicity of maximal symmetric cartel profits in the discount rate §.

Recall that the profile o(w) was constructed in Section 3 {for any w € V)
by choosing, for each w € V, a pair (Q(w),U(W)) that was admissible with respect
to V, and satisfied w = EI(Q(J),...,Q{G);U(W)). Proposition 4 shows that this pair
can always be chosen such that the range of the function U(W) is simply {v,V}.
In what follows we assume that the functions Q and U were indeed chosen this
way. A trivial argumeﬁt establishes that for any w € V, only two quantities are
ever produced after period 1 in the equilibrium a(w). In period t > 2, the pro-
duction level is O(Ut'l(w)(pt'l)), which is either O(V) =7q or Q(v) = g
(depending on pt'l), since V and v are the only values that Ut’l(w)(pt'l) =
U(Ut'z(w)(pt“z))(p(t-l)) can assume.

For any w, U(w) partitions price space into a “"reward" region, in which
U(w)(p) = v, and a "punishment" region; in which U{(W)(p) = v . We denote the

reward region and its compiement as follows:

R(w)
RC (W)

{ pealu@p
{ pealuWip)

"
<]
L ——t

1]
|=
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Let R = R(¥) and R = RS(v). In the first period of the S.S.E. &(w), each fipm
produces Q{w), and some price p{l) is generated. If p(1)} falls in R{w}, secong.
period production is g, and third-period production is determined by whether o
not p(2) belongs to the favourable set R. If instead p(1) falls in Rc(w),
second-period production is g, and third-period production is g if p(2) is-hng,
or q otherwise, In any period t > 2, either the favourable regime is in effect
(firms are producing q and enjoying relatively high expected profits) or an
unfavourable regime is operat{ve (firms produce g, a higher, less profitable
quantity except in the degenerate case where q = q). Associated with these
states are the reward regions R and EF, respectively. The regime in period t +1
is favourable if and only if p{t) Vies in the reward region associated with the
regime of period t. Hence, o{w) is described entirely by the quantities 0(w), g,
and g, and the reward regions R{w), R, and RE. Of course if w is V or v, only

 two gquantities and regions are invoived. A probability measure is induced on

price space by equilibrium behaviour (given some history); the probability
measures of the sets R and R give the probabilities of remaining in the reward
and punishment states, respectively.

The next result concerns the sensitivity of maximal symmetric profits to
changes in the discount rate. Since this requires reference to two different
sets V (one for each discount rate) and two functions B, we now make the depen-

dence on & explicit by writing V(§), v(&8), v(8), and B(W;s).

Proposition 5: (Monotonicity in Discount Factor). Let 61 and 62 be two discount

factor§ such that 0 « 61 < 62'< 1. Then:

(% . v, > 170 Wisy)
65 6,
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(2) 2~ %2 . (Ws,y) - we)) > Lo 81l (W) - w(e))
5 !

That is, V(&) and the length of the interval co(V(§)) are increasing in ¢,

even when discounted profits are “normalized” by the factor (1 - 8)/6.
proof: Define

k = 2 1, E=k'_\7(61),g=k'1(61),

W = {_v_(él) + a, '\7(61) + al, and W, = co(W).

1

For each y € R, let [y] denote the constant function from & into {y}. It is
easy to check that if (q,u) 1is admissible with respect to V(ﬁl). (g,u + [v])

{s admissible with respect to Wy for 211 vy € [a,al. Let (q,u) be admissible
with respect to V(Gl) and satisfy El(E-eN;lT,Gl) = 7(61). Then (q,u + [a])

is admissible with respect to "1 and

E (@ eysu + Lal,6,) = 6, { T (Goey) + é'ﬂ'(p)'g(p;ﬂ'ﬁ) dp + @ }
s, Y8 43
(L)

vis,) + 82 7 8 L V(e,) + 8,07 = V(s,) + 5
U 1 2 1
1

By a similar argument, there exists (q,u) admissible with respect to V(Gl)

L]

such that El(g-eu;g_,ﬁl) = v(é) and E (geey;u + [g],sz) = !_(61) + a. Thus
L B(wl;az). By Proposition 4, B(Hl;éz) = B(H;Gz). Hence, by Proposition 1,
WC V(szi, and

V(Gz) >’v'(61) +a and 1(62) < 1(51) +a.

The reader may verify that these inequalities imply (1) and (2) above. Q.E.D
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6. Conclusion

This paper shows that every 5.S.E. payoff in the Green-Porter model [53,8)
can be supported by sequential equilibria that are easily described, and are
extremely simple in their intertemporal structure. In every period of the
optimal $.S.E. (and in all but the first period of any S$.S.E.), firms produce
according to one of two "regimes", corresponding to the first perfods of the
best and worst S$.S.E.'s, respectively. The alternation between the two regimes
resulting from equilibrium behaviour is a Markov process. Potential complexities
such as employing varying severities of "punishment" depending on now far a
price realization is from its "mormal" range, or making the set of prices that
trigger a change from the favourable to the unfavourable regime depend on recent
price history, do not arise. These and other results are derived by reducing the
repeated game to a static structure that is far more accessible for the purpose
of analysis. This technique also enables us to work with much weaker assumptions
than those invoked in earlier papers on this subject. Apart from minor regu-.
larity conditions, the cost and demand functions (for a given reaiization of the
random variable @) are unrestricted, and the stochastic disturbance to demand is
modelled in quite a general way.

while the paper has focused exclusively on the Green-Porter model, it
demonstrates an approach to the study of repeated games that might be of hroader
interest. The factorization and seif-generation properties of Section 3 in par-
ticular have analogues in many classes of supergame. Such results are availablie,
for example, for the simple strategy profiles of Abreu [1], and yield an alter-
native proof of the existence of an optimal simple penal code. Adaptation of the
reduction function B to particular strategic situations should permit productive

analysis of many repeated games heretofor considered intractable.
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Not2 on Mixed Strategies

Working with behaviour strategies rather than mixed strategies involives no
1oss of generality (see Aumann's extension [3] of Kuhn's Theorem). Consequently
it suffices to study the pure strategy equilibria of the supergame H”(§), having
component game H = (M,...,M;?&,...;FN), where an element of M is a probability
distribution on the set g of Section 2, and the original functions ;}, i=1,440,N,
are extended to M by an expected profit calculation. The self-generation and
factorization propositions of Section 3 apply immediately to H" (&), and with -
some additional arguments Proposition 3 (and hence Corollary 2) can a]so be
established. The proof of the bang-bang result depends upon there being only a
finite number of.incentive compatibility constraints defining the set u(q;W)
{see Proposition 3). Since a strategy in H can be no more profitable than the
most lucrative strategy giving weight to only one quantity in g, there are still
only a finite number of constraints. Thus Proposition 4 is unchanged by the
introduction of randomizations over production levels. This implies that the
values of all S5.S.E.'s of H®(8) are generated by S$.S.E.'s using only two ele-
ments of M after period 1. The two elements are those used in the best and worst

§.5.E.'s of H®(§), respectively.
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